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Abstract The problem of option pricing is one of the most critical issues and fundamental

building blocks in mathematical finance. The research includes the deployment

of a lower-precision type in two option-pricing algorithms: the Black-Scholes

and Monte Carlo simulations. We make an assumption that the shorter the

number used for calculations is (in bits), the more operations we are able to

perform at the same time. The results are examined by a comparison to the

outputs of single- and double-precision types. The major goal of the study is to

indicate whether the lower-precision types can be used in financial mathema-

tics. The findings indicate that Black-Scholes provided more precise outputs

than the basic implementation of the Monte Carlo simulation. Modification of

the Monte Carlo algorithm is also proposed. The research shows the limitations

and opportunities of the lower-precision type usage. In order to benefit from

the application in terms of the time of calculation, the improved algorithms

can be implemented on a GPU or FPGA. We conclude that, under particu-

lar restrictions, the lower-precision calculation can be used in mathematical

finance.
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1. Introduction

An option is a derivative security that gives someone a right to buy (call option) or

sell (put option) to its holder the underlying instrument for an agreed-upon price

(strike price) on an agreed-upon date (expiry date). The most-popular underlying

instruments are stocks, foreign exchanges, bonds, stock market indexes, or future

contracts. Option pricing refers to the amount (premium) to be paid or received for

an option contract. Option pricing is a demanding process due to its complexity.

Depending on the type of option, there are a number of different variables to be ta-

ken into consideration. The two most-fundamental approaches are the Black-Scholes

and Monte Carlo options model. The Black-Scholes formula was the first commonly

used option-pricing model. It is applicable to European options and uses the current

stock price, strike price, interest rates, time left to expiration, volatility, and divi-

dend. In the Monte Carlo option-pricing model, the price is calculated as an option’s

discounted expected value. This method uses simulation to generate a large number

of random price paths for the underlying instrument. The exercise value is calculated

for each path, then the prices are averaged and discounted. New trading strategies

like algorithmic trading require fast financial instrument calculation tools. Delivering

valuations faster means a higher number of calculated financial instruments at the

same time. It is a natural progress to adapt any existing algorithms and deliver new

ones to accelerate valuations.

In order to accelerate calculations, researchers started to rebuild pricing algo-

rithms to be performed in parallel. Many of them tried to deploy the algorithms

on Graphical Processing Units (GPUs) as powerful, programmable, and cost-efficient

computing architectures. Subsequent articles involve the use of Field-Programmable

Gate Arrays (FPGA).

The main goal of the study is to reduce the precision of the calculations as

compared to the precision used currently in the pricing process in such a way that

it does not affect the final valuations. We make an assumption that the shorter

the number used for calculations is (in bits), the more operations we are able to

perform at the same time on a CPU as well as on a GPU. The calculations with

the lower-precision type on a GPU is enabled by NVIDIA’s CUDA by introducing

new datatypes (half-precision type) and intrinsic functions for operating on them.

An additional benefit of the use of the lower-precision type is a reduction in memory

usage and smaller bandwidth requirements for the memory-processor bus.

In this work, we want to prove that the half-precision type can be successfully

applied to option pricing with an acceptable aberration. Our contribution to achieve

this goal encompasses:

• two modifications to the Monte Carlo algorithm,

• the confirmation that the Black-Scholes method can be applied without any alte-

ration.
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The results from the Black-Scholes approach are a suitable benchmark for further

research. For the Monte Carlo method (due to the differences between architectures

to be used for lower-precision type calculations), two modifications are proposed. For

example, calculations denoted with HalfM1 are suitable for architectures that do not

support the mixing of different precision types in calculations.

This paper is structured as follows: Section Literature and related work presents

the latest implementations of option pricing using GPUs as a method of acceleration

in the financial calculations. There is also a reference to the errors that are associated

with the use of single- and double-precision types. This section provides examples

of the implementations of the half-precision type (for example, in neural networks).

Section Research problem and thesis outlines the main research questions and goals.

Section Analysis of the output concerns the basic Monte Carlo simulation, Black-

Scholes outputs, and two modifications of the Monte Carlo simulation. At the end of

the study, we conclude and present possible future works.

2. Literature and related work

2.1. The performance of option pricing on GPU

A parallel implementation of binomial tree method on a GPU was described in [8].

Researchers studied the acceleration of binomial option pricing via parallelizing along

time-axis on a GPU. The authors demonstrated the applicability of the approach to

the pricing problem via binomial trees and its implementation on a GPU. In [14],

the researchers discussed the problem of pricing Asian options with Black-Scholes

and CUDA. The usage of the Quasi Monte Carlo simulation with a geometric Asian

option as a control variate provided prices that are accurate with 2E-4 within a 50th

of a second. The authors of [16] were interested in Monte Carlo simulations on

a GPU and its optimizations. The proposed approach compacted the data to shrink

the memory space with a crossing-path layout, which made GPU memory accesses

possible. The developed Monte Carlo Exotic option-pricing approach was faster on

the GPU than on the multi-core CPU.

The researchers in [6] obtained a speedup of about 18x for the double-

precision calculations of a parallel implementation on a GPU (CUDA) of ADI time-

discretization methods for European Rainbow and Basket options compared to the

optimized sequential CPU computations. The equations were set in three spatial

dimensions with mixed spatial derivatives in a variety of applications in computati-

onal finance. The results revealed the efficiency of the parallel methods. In [18], the

authors reported an improvement in optimizing the Monte Carlo approach for the

averages of 10 000 iterations, which overcame the limitations of the CPUs even for

a moderate set of options. In [9], a significant speedup was achieved for the paral-

lelization of the Black-Scholes, Monte Carlo, Bonds, and Repo code paths from the

QuantLib library using hand-written CUDA and OpenCL codes that were specifically

targeted for the GPU. In [7], the authors employed the Least Squared Monte Carlo
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method on a GPU, which led to a reduction of computing time for the numerical

pricing of European Multi-dimensional options based on the COS Method.

In [23], the researchers proved the acceleration of European and Bermudan

option-pricing techniques based on Fourier cosine expansions. Then, [1] used GPU

Monte Carlo European option pricing, which reduced the time of execution by 40×
and energy consumption by 50×. The American options, which were implemented

using the Longstaff and Schwartz regression method, were supplied with a speedup

that varied between 2× and 10× according to the number of generated paths, dimen-

sions, and time discretization. Authors of [22] explored the calculation of individual

options with OpenCL and CUDA, proposing several parallel implementations of the

Lattice model and Monte Carlo numerical pricing methods. The parallel implemen-

tations achieved a significant performance improvement over serial implementations.

The research conducted by [19] concerned the effects of errors in floating-point

arithmetic in the context of the insufficiency of mathematical descriptions of models in

the literature to replicate the outputs exactly in reference to real number arithmetic.

The authors emphasized that, although the implemented code is correct, a computer

platform used for computation can be responsible for surprising effects in its com-

putations. The authors showed the impact of very simple modifications to the code

(which should theoretically be mathematically equivalent). They considered FP32

and FP64 calculations. The authors pointed out interval arithmetic as a solution.

2.2. Use of FP16

Since the release of CUDA Toolkit 7.5 in the third quarter of 2015 [11], it is possible to

launch efficiently native calculations on CUDA using FP16 as well as FP32 and FP64

types. This toolkit supports FP16 storage for up to 2× larger data sets and reduced

memory bandwidth. The calculations with the FP16 type are enabled by adding new

datatypes (newhalf and half2 ) and intrinsic functions for operating on them. The

applications that previously suffered from the limited memory bandwidth may get up

to a 2× speedup.

The half-precision floating-point type, according to the available literature, has

gained popularity in neural networks. There is proof that the application of the half

float-type may provide some benefits. The authors of [5] trained deep neural net-

works with low-precision storage and high-precision arithmetic on GPUs and FPGA.

Researchers used a higher precision to store parameters, activations, and gradients.

A lower precision was used for the forward and backward propagation. The results

revealed that very-low-precision storage was sufficient not just for running trained

networks but also for training them.

In [2], the authors used lower precision in the context of a parallel heterogeneous

system, implementing a mixed-precision iterative refinement solver for substantial

linear systems. Thanks to the combination of FPGA and GPU, it was possible to

achieve a speedup of 3.7x for large dense 24 064×24 064 matrices compared to a tuned

multi-threaded CPU solver based on the ATLAS linear algebra library. Further, [10]
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studied the effect of limited-precision data representation and computation on neural

network training. The results of their research revealed that the use of FP16 led to no

degradation in the classification accuracy. According to [15] from the Intel company,

there are many benefits resulting from the use of the half-precision type on a CPU

too. As compared to the single-precision type, the half-precision type may fit into a

lower level of cache with lower latency. Moreover, the reduced memory bandwidth

may be freed up for other operations.

3. Research problem and thesis

The research concerns the problem of the FP16 type application in the valuation of

financial options. This study is focused on the following questions: Is it possible

to use the FP16 type in the valuation of financial options in order to obtain com-

parable results to those obtained using the FP32 and FP64 types? If the precision

is satisfying, which algorithms are possible to be applied? What are the sources of

errors? The following research thesis appears: In spite of the lower precision of the

half-precision type, it is possible to obtain valuations of European options that fit

within an acceptable aberration in comparison to the pricing with a single or double

precision.

The research is based on the available literature concerning the improvement of

the option pricing using a CPU and GPU. To the best of our knowledge, there has

been no research focusing on the implementation of the half-precision type on a GPU

for option pricing. The most-representative and most-popular methods of option

valuation are the Black-Scholes formula and Monte Carlo simulation. It is a proper

base for applications of any further pricing algorithms.

4. Option pricing

4.1. Option pricing – basic concepts

An option is one of the most-fundamental terms in mathematical finance. An option

is a derivative security that gives someone a right to buy (call options) or sell (put

option) the underlying instrument for an agreed-upon price (strike price, exercise

price) on an agreed-upon date [3]. The most-popular underlying instruments are

stocks, foreign exchanges, bonds, stock market indexes, or future contracts. Each

financial option has its own specification. The strike price (exercise price) is an agreed-

upon price for an underlying asset at which exercise will occur. The expiration date

is the last date an option can be exercised. Each options also has settlement terms

that indicate when a contract can be exercised, for example. In terms of the expiry

date, different styles of options may be distinguished.

The most-basic ones are European and American options [21]. These are called

vanilla options. American options can be exercised on any trading day on or before

it expires. Contrary to the American, European options can only be exercised on
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the expiration date. Exotic options is a wide category including options with various

types of exercise or calculation of a payoff. An Asian option payoff is dependent on

the average value of an underlying instrument until it expires. The average may be

calculated as an arithmetic or geometric mean. Barrier option exercise depends on

reaching an agreed-upon barrier level by the price of the underlying instrument. For

a basket option, the underlying asset constitutes a group of commodities, securities

or currencies. Rainbow options are vulnerable to two or more sources of uncertainty,

contrary to simple types of options that are exposed to one source (the price of an

underlying asset).

Option pricing refers to the amount to be paid or received for an option contract.

Factors that affect the value of an option include the current price of a stock (spot

price), time left to expiration, volatility, interest rates, and dividend [12]. Option pri-

cing is a demanding process due to its complexity. Depending on the type of option,

there are a number of manifold variables to be taken into consideration. The most-

common models are the Black-Scholes model, binomial option-pricing model, trino-

mial trees approach, Monte Carlo option model, greeks, finite difference methods for

options, and many others. These models are constantly being developed. Computati-

onal finance is a field of applied computer science that exploits advanced computation

methods to deliver efficient financial models or systems [17]. Computational Finance

has three major applications: Algorithmic Trading (AT), High-Frequency Trading

(HFT), and Mathematical finance. The new trading strategies require fast financial

instrument calculation tools. Delivering valuations faster means a higher number of

calculated financial instruments at the same time. It is a natural progress to adapt

any existing algorithms and deliver new ones to accelerate valuations.

We decided to choose two basic algorithms that are still used by many financial

institutions. These models are the Black-Scholes and Monte Carlo simulations, which

constitute a suitable benchmark for any further consideration. Black-Scholes involves

basic calculations, while Monte Carlo deploys simple calculations with simulation.

Considering the vanilla options, the Black-Scholes model is only applicable for options

that can be exercised at one point in time. These are European options.

4.2. Black-Scholes

An option is one of the derivative securities. Its price is dependent on the price or

value of the basic security. The basic security is called an underlying security [3].

An option’s holder has a right to buy (sell) the call (put) option at exercise price

(K ). Contrary to the American option, European options can be exercised only at

maturity (T ). A call option exercised at maturity gives payoff CT = max(0, ST −K),

and a payoff for a put option equals PT = max(0,K − ST ). St is the price or value

of the underlying security at time t. A call and put option priced for date t equal

(respectively):

c = SN(d1)−Ke−r(T−t)N(d2) (1)

p = Ke−r(T−t)N(−d2)− SN(−d1) (2)
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where:

d1 = 1
σ
√
T−t (ln( SK ) + (r + 1

2σ
2)(T − t)) (3)

d2 = d1 − σ
√
T − t (4)

According to the assumptions on the assets, r is the continuously compounded risk-

free interest rate. Volatility is represented by σ. This is the standard deviation of the

underlying asset. N(·) is the cumulative normal distribution.

4.3. Monte Carlo

The underlying method used in the Monte Carlo experiment is the Black-Scholes

equation [4]. As previously outlined, a call option price equals CT = max(0;ST −K)

at maturity. In the Monte Carlo simulation, an option’s price at date t equals its

expected present value:

Ct = E[PV (max(0;ST −K))] (5)

Adding the assumption of risk neutral result, Ct can be calculated as:

Ct = e−r(T−t)E∗[max(0;ST −K)] (6)

where E∗ indicates a transformation of the former expected value. In order to estimate

a call price, there is a need to conduct simulations of a large number of sample values

of ST . The estimated price is an arithmetic average of the simulated values.

Regarding the law of large numbers, the average should converge to the actual call

price. The deployed number of simulations has an influence on the rate of convergence.

The calculation of a call price by simulation involves simulating the terminal price of

the underlying security, which equals ST . The interval between t and T is irrelevant;

therefore, the average of option payoffs at maturity is estimated: E∗[max(0;ST −K)].

Additionally, it has to be discounted at the risk free rate:

ct = e−r(T−t)
1

n

n∑
i=1

max(0;ST,i −K)

where n is the number of simulations. Respectively, the put price equals:

pt = e−r(T−t)
1

n

n∑
i=1

max(0;K − ST,i).

5. Analysis of output

There were three data representation types used in the study: half-, single-, and

double-precision floating-point. According to IEEE Standard 754 [13], the half-type

consists of 1 bit sign, 5 bits exponent, 10 bits mantissa, and this type uses all of the

standard IEEE rules like infinities, NaNs, and denormals. The range of the half-type
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is limited. The representable minimum and maximum is (respectively): 5.96·10−8 and

65 504. The half-precision library in version 1.11.1 used in the calculations provides

an IEEE Standard 754 16-bit half-precision floating-point type. Arithmetic operators,

type conversions, and commonly used mathematical functions are also available [20].

The Black-Scholes approach requires initial values of the following parameters:

• S – current value of the underlying asset,

• K – strike price,

• r – risk-free interest rate,

• σ – volatility,

• time – time left to maturity.

Additionally, the Monte Carlo approach demands a number of simulations (nsims).

Each simulation was repeated 100 and 500 times (nreps) in order to collect basic

statistics like mean, median, and minimum and maximum prices. Finally, 2 800 pairs

of Black-Scholes put and call mean valuations and 28 000 pairs of mean put and call

Monte Carlo valuations were produced.

The initial task of the research was focused on replacing the former representation

types of the variables with the half-type in the Monte Carlo simulation (section 5.1)

and Black-Scholes approach (section 5.2). The algorithms were not modified except

for changing the variable representation types (for example, from double to half) to

limit the precision.

Unfortunately, the results of achieved in the basic application of the Monte Carlo

approach were not accurate. The first modification (Section 5.3) introduced an auxi-

liary variable represented by a half-precision type. This variable was responsible for

collecting the partial sums in order to improve the accuracy of the outputs. The

outputs provided by this method were denoted with HalfM1. The second modifica-

tion – HalfM2 (Section 5.4) – regards a situation when the architecture of the system

supports the use of mixed-data types. The variable that gathered the sum of the

payoffs was represented with a single-precision type. It acted as an accumulator in

the simulation.

5.1. Monte Carlo simulation

Performed valuations reveal that, in the Monte Carlo method, numerous missing

put and call price pairs (10 981 out of 28 000) were produced, where at least one of

them indicated infinity. The number of invalid pairs of prices grows with the number

of simulations. For example, for nsims = 1000, the quantity equals 1791, and for

nsims = 5000, this reaches 2463.

The problem stems from the accumulation of the sum of the payoffs in the Monte

Carlo simulation. The total sum of payoffs is divided by the number of simulations.

There is a real possibility of exceeding the range in calculations with the half-precision

format. For example, this occurs for a call valuation for the following set of the

parameters: S = 78.89, K = 78.89, r = 0.5, σ= 0.7 and time = 0.3. The sum reaches

the value of 65 504 and then becomes infinite. It occurs for the 4684th simulation
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step. Further analysis reveals that, with the growth of the number of simulations, the

precision drops. These two effects can be illustrated in Figure 1; here are presented

half (gray dashed line), float (gray dotted line) and double (solid gray line) call prices

for 5000 simulations. Since the 500th step of a simulation, half valuation gradually

begins to fall while the double and float prices converge. Consistently, prices for the

4684th simulation step and further are not available.
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Figure 1. Half, Float, Double Call prices for S=78.89, K=78.89, r= 0.5, σ=0.7,

time=0.3, and nrep=1.

5.2. Black-Scholes output

The outputs of the Black-Scholes calculations are in some ways more rewarding. No

infinite values were produced. Moreover, half outputs correspond with those provided

by the float or double. The sample results in Table 1 present the overall performance

of the calculations.

Table 1
Black-Scholes put and call prices for S=100.991, K=140, r= 0.5, and σ=0.2.

Time Price Half Float Double

0.3 put 11.1719 11.1786 11.1786

0.3 call 0.0541077 0.0587816 0.058782

0.6 put 10.8281 10.8381 10.8381

0.6 call 0.338867 0.349241 0.34924

The differences between the float and double prices basically do not exist. The

differences between the prices calculated with the half-type and float or double are

fractional. However, these fractional disparities are the most problematic to the prices
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below unity, especially those striving to zero. Table 2 provides examples of negative

prices that are instances of the problems with rounding the fractional parts of the

numbers. The first visible cause is the set of initial parameters and the way the half

format represents them (Tab. 3).

Table 2
Black-Scholes prices for S=100.991, K=140, r= 0.001.

Time σ Price Half Float Double

0.3 0.2 put 39 38.9724 38.9724

0.3 0.2 call −0.00786591 0.00535116 0.00535322

0.6 0.1 put 38.9375 38.9251 38.9251

0.6 0.1 call −0.0190277 0.0000315246 0.0000254553

Table 3
Examples of parameters in half arithmetic.

Variable Value Half representation

S 100.991 100.938

r 0.001 0.000999451

σ 0.2 0.199951

time 0.6 0.599609

5.3. Half pricing by simulation – modification

The first modification, denoted as HalfM1, regards the introduction of an auxiliary

variable in the Monte Carlo simulation. It was an experimental remedy for the de-

clining precision of the results with the increasing number of simulations. This idea

was applied bearing in mind the situations when, due to the architecture of a system,

it is not possible to mix various data types. It has its limitations, since it does not

eliminate the problem with infinite values.

In the basic Monte Carlo approach, partial sums were added to the sum of the

payoffs in each run of the loop. The application of the half-type in the algorithm

caused situations in which some of the partial sums were too modest to have an impact

on the total sum of the payoffs. The modification involved adding an auxiliary variable

that collected the partial sums until the auxiliary variable reached an arbitrarily

chosen value. This value was the last positive integer value that can be exactly

represented with a half-type – this is 2048.

After reaching this value, the amount accumulated by the auxiliary variable is

added to the sum of the payoffs, the auxiliary variable becomes zero, and the process

is repeated. Unfortunately, the introduced modification does not lead to a decrease in

the number of missing values that are the cause of exceeding the range. Eventually,

the sum of the payoffs calculated with the modification will not be lower than the sum
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calculated with the primary solution. This can result in a situation when previously

underestimated valuations exceed the range.

The problem still happens to set S = 78.89, K = 78.89, r = 0.5, time = 0.3, σ= 0.7

and nrep = 1 for call price (Fig. 2) where, with an increasing number of simulations,

the pricing becomes infinity and is not available (HalfM1, black dotted line). A higher

number of simulations means either a growing or constant sum of payoffs. The accu-

mulating partial sums are captured; therefore, the valuation is more-precise. The limit

is reached for a smaller number of simulations than for the basic Monte Carlo pricing

function. Nonetheless, the prices are converging now. The put price for the same set

of initial parameters also performed better (Fig. 3). One can see that the new method

of pricing indicates improvement in the pricing process (HalfM1).
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Figure 2. HalfM1, HalfM2, Float, Double Call prices for S=78.89, K=78.89, r= 0.5,

σ=0.7, time=0.3, and nrep=1.

This modification was an experimental way of improving the pricing process.

In a certain way, it delivers more-precise valuations; for example, for set S = 78.89,

K = 78.89, r = 0.1, time = 1, σ= 0.1, nsims = 5000, and nrep = 100 for call prices. After

the deployment of a new formula, there was a jump from 4.38938 to 7.84004 (Tab. 4),

which is a considerable outcome. The distance between the new half prices and

float or double prices is still significant as compared with the distance between the

float and double prices. The valuations below unity are not as properly performed

as those above unity. The mean put half price obtained by the pricing function

after modification for S = 78.89, K = 78.89, r = 0.5, time = 0.02, σ= 0.2, nsims = 2000,

and nrep = 100 (Tab. 4) is still closer to the basic half price. It appears that the

modification does not grant an improvement for prices under unity. Notwithstanding,

the call price experienced a recovery from 2.07435 to 2.36568.
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Figure 3. HalfM1, HalfM2, Float, Double Put prices for S=78.89, K=78.89, r= 0.5,

σ=0.7, time=0.3, and nrep=1.

Table 4
Half, HalfM1, Float and Double call and put prices: S= 78.89, K=78.89, and nrep=100.

r Time σ nsim Type Put Call

0.1 1 0.1 5000 HalfM1 0.58273 7.84004

0.1 1 0.1 5000 Half 0.540288 4.38938

0.1 1 0.1 5000 Double 0.626697 8.13098

0.1 1 0.1 5000 Float 0.624729 8.13021

0.5 0.02 0.2 2000 HalfM1 0.564639 2.36568

0.5 0.02 0.2 2000 Half 0.567339 2.07435

0.5 0.02 0.2 2000 Double 0.634074 2.57531

0.5 0.02 0.2 2000 Float 0.624683 2.57529

The introduced modification for set S = 10.23, K = 22, r = 0.1, σ= 0.7, time = 0.3,

and nsims = 5000 provides sufficient results (Fig. 4). The new half call price (HalfM1 –

black dotted line) coincides with the double and float prices, and the double call price

is accompanied by the half price for the majority of the simulations. It is hard to

clearly say that the modification brought exact valuations. A brief analysis of the

boxplots for the same set with nrep = 500 for the put price after modification (Fig. 5)

indicates that the mean put price has moved closer to the double and float prices.

One can see that the modification brought an improvement regarding some sets of the

initial parameters. However, there are two main drawbacks for this method. The first

includes a significant number of unavailable prices due to the surpassed range. After

modification, there were about 880 more infinity values than before the addition of
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the auxiliary variable. The second disadvantage is the poor condition of the prices

for some specific sets of variables.
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Figure 4. HalfM1, HalfM2, Float, Double Call prices for S=10.23, K=22, r= 0.1, σ=0.7,

time=0.3, and nrep=1.

5.4. Half pricing by simulation with float-type

The results obtained by the presented methods are not sufficient to perform a reliable

output. A second modification of the basic half-pricing function was proposed in

which the sum of the payoffs was represented by a single floating-point type. This

action prevents the sum of the payoffs from exceeding the range, and it solves two

main problems: the presence of infinite values and the lack of precision. For the

whole initial set of parameters, it was possible to obtain all of the valuations. The

second modification, denoted as HalfM2, involves the use of a float-type variable for

the accumulation of the sum of the payoffs.

This modification regards the situation when the architecture of the system sup-

ports a use of mixed data types. This single-precision type variable worked as an

accumulator in the simulation. As a result, it was possible to obtain all of the va-

luations with improved precision. The sum of the payoffs for the call prices for set

S = 78.89, K = 78.89, r = 0.5, σ= 0.7, time = 0.3, and nrep = 1 indeed reaches a value of

65 504 for the 3268th step of the simulation (like in the case with an auxiliary variable)

and then continues collecting the summands (Fig. 2). It is clear now that the call-half

valuation (HalfM2 – black solid line) for the following number of simulations is rea-

chable and follows the double price path. The outputs for the put valuations are quite

satisfying as well (Fig. 3). The mean values for the call and put prices for nrep = 500

(Tab. 5) resolves any doubts. The mean values of HalfM2 provides sufficient outputs.
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The call valuation for S = 10.23, K = 22, r = 0.1, σ= 0.7, time = 0.3, nsims = 5000, and

nrep = 1 is acceptable as well (Fig. 4). What is worth noticing, all mean call prices

for this set of initial values that are mentioned in Table 5 perform fairly well. Step

by step, the put prices climb and provide a comparable output: 11.1826 for HalfM2

and 11.1808, 11.1785 for the double and float prices.

Table 5
Half, HalfM1, HalfM2, Float Double call, and put prices for nsims=5000 and nrep=500.

S K r Time σ Type Put Call

78.89 78.89 0.5 0.3 0.7 HalfM2 6.49563 17.4358

78.89 78.89 0.5 0.3 0.7 HalfM1 6.34454 inf

78.89 78.89 0.5 0.3 0.7 Half 4.69036 inf

78.89 78.89 0.5 0.3 0.7 Double 6.49423 17.4669

78.89 78.89 0.5 0.3 0.7 Float 6.49674 17.5025

10.23 22 0.1 0.3 0.7 HalfM2 11.1826 0.0587925

10.23 22 0.1 0.3 0.7 HalfM1 10.8114 0.0575419

10.23 22 0.1 0.3 0.7 Half 4.13828 0.0579714

10.23 22 0.1 0.3 0.7 Double 11.1808 0.0588854

10.23 22 0.1 0.3 0.7 Float 11.1785 0.0584732

A brief analysis of the boxplots for set S = 10.23 K = 22, r = 0.1, r = 0.7,

time = 0.3, nsims = 5000, and nrep = 500 for the put price after modification with

the float variable (Fig. 5) indicates that the mean prices are nearly the same despite

what was illustrated by the charts of valuations at each step of the simulation. The

results obtained by this form of modification of the Monte Carlo formula are more

rewarding in most cases. The precision of the valuations for both the call and put

prices is much higher. Better results are obtained even for those valuations below

unity.

Double Float HalfM1 HalfM2

10
.8

11
.0

11
.2

Type

P
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Figure 5. Boxplots. HalfM1, HalfM2, Float, Double Put prices for S=10.23, K=22,

r= 0.1, σ=0.7, time=0.3, nsims=5000 and nrep=500.
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6. Conclusions and future works

6.1. Results

We were focused on the use of basic unaltered forms of the Black-Scholes and Monte

Carlo algorithms. The first use of the Monte Carlo algorithm with the FP16 type was

not sufficient to supply satisfying results. When the outputs were available, many

of them suffered from the lack of precision. By contrast, all of the Black-Scholes

valuations were produced with an acceptable precision. They outperformed those

delivered by the basic Monte Carlo simulation. The first modification of the Monte

Carlo simulation provided a lower number of non-missing valuations. Nevertheless,

the results of the first modification were double-sided. The precision of the options was

enhanced; however, this caused the unavailability of many of them. The partial sums

were collected more precisely, which resulted in the surpassing of the range of the half-

precision type. In the second modification, all of the valuations were available, and the

precision was improved. Nevertheless, this approach has its limitations considering

the architecture to be used for calculations. Overall conclusions may indicate that

there is a need to analyze a number of repetitions of the pricing algorithms that

retrieve the basic statistics. An analysis of a single run of the Monte Carlo simulation

is also necessary for an examination of the road where the simulation goes.

Under particular conditions, it is possible to use the FP16 type in option pricing

obtaining reasonable outputs. Black-Scholes as well as the mixed-precision Monte

Carlo solution provide the best results. The limitations of the FP16 type are directly

linked to its range for particular sets of parameter values. The distorted values of the

initial parameters represented by FP16 as well as the problems with rounding under

unity and over 65 504 are the main sources of errors in the calculations.

6.2. The contribution

The problem of option pricing is one of the most-critical issues and fundamental

building blocks in mathematical finance. This means that, in the most cases, the

process must be performed in real time. Financial computations with the FP16 type

not only offer new possibilities but also bring new challenges.

The conducted research is important for a number of reasons. The presented rela-

ted work focused mainly on the application of single- and double-precision types, and

none of the studies showed a deployment of a lower-precision type in terms of option

pricing. In our study, we show the outputs of the basic implementations of FP16 on

the proposed algorithms and explain the limitations of the FP16 type in the presen-

ted methods. We have shown that the Black-Scholes algorithms with the FP16 type

supply acceptable outputs without any alterations. These results are a sufficient ben-

chmark for further calculations. We have also identified the main problems resulting

from the shift from single- or double- to lower-precision types in the option-pricing al-

gorithms. The most visible and influential difficulties were encountered in the Monte

Carlo approach. We have developed two useful modifications to enhance the compu-
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tations due to the differences between the architectures offering lower-precision types.

Calculations denoted with HalfM1 are suitable for architectures that do not support

mixing different precision types in their calculations. The modification named HalfM2

is applicable for more-flexible architectures. Both modifications may be useful for any

other research than option pricing.

The significance of this work is attached to the use of a new native precision

type in pricing algorithms. To the best of our knowledge, none of the existing rese-

arch has introduced the lower-precision type in terms of option pricing. Most of the

presented studies focused on accelerating the calculations. By contrast, we tried to

provide accurate results. Acceleration is possible if the results calculated with the

low-precision type are accurate. Acceleration may require usage of, e.g. a GPU and

rewriting the same algorithms in the CUDA framework using lower precision.

6.3. Future works

Having algorithms that provide accurate results, it is justified to implement them on

various architectures (including GPUs) in order to check the performance, effective-

ness, and precision of the calculations. The stress should be put on the benefits of

the use of a half-precision type on a GPU. Further research may involve hermetic mo-

difications and an exact evaluation of the inaccuracy sources. The implementations

should also be verified on real examples. One way of developing this study includes

the construction of a classifier or a collection of heuristics, which will decide which

type of precision is suitable for a given algorithm.
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