
Tomasz Jurczyk
Barbara G lut

TREE STRUCTURES
FOR ADAPTIVE CONTROL SPACE
IN 3D MESHING

Abstract The article presents a comparison of several octree- and kd-tree-based struc-

tures used for the construction of control space in the process of anisotropic

mesh generation and adaptation. The adaptive control space utilized by the

authors supervises the construction of meshes by providing the required metric

information regarding the desired shape and size of elements of the mesh at

each point of the modeled domain. Comparative tests of these auxiliary struc-

tures were carried out based on different versions of the tree structures with

respect to computational and memory complexity as well as the quality of the

generated mesh. Analysis of the results shows that kd-trees (not present in

the meshing literature in this role) offer good performance and may become

a reasonable alternative to octree structures.

Keywords control space, kd-tree, octree, anisotropic metric, mesh generation and

adaptation

Citation

2016/10/16; 13:02 str. 1/20

Computer Science • 17 (4) 2016 http://dx.doi.org/10.7494/csci.2016.17.4.541

Computer Science 17 (4) 2016: 541–560

541

http://journals.agh.edu.pl/csci/

1. Introduction

The generation and adaptation of meshes for 3D models play an important role in

a number of areas, such as numerical simulations, computational geometry, computer

graphics, the visualization of objects, surface reconstruction, and many others.

The mesh should meet a number of requirements related to the geometry of the

object and its application. Regarding the geometry of the object, it is necessary to

take into account the curvature of the boundaries, sharp edges, proximity to other

elements of the object, boundaries between the different sub-domains, or the specific

requirements of the user. In many cases, it is preferable to create a mesh consisting

of anisotropic elements. In order to generate a mesh fulfilling the specified quality

criteria, it is necessary to assign the desired size and element shape to each point of

the modeled object. A common way to achieve such a result is to use the Rieman-

nian metric, changing it locally in various sub-areas of a three-dimensional object

[1, 2, 5, 11]. The sources of the metric may be of a various nature, relating to the

characteristics of the domain and specific application of the mesh. The task of the

generator is to create an isotropic mesh in a prescribed Riemannian space, which will

be appropriately adapted (and sometimes anisotropic) in Euclidean space.

The process of meshing often requires the creation of a structure in which informa-

tion can be stored and updated, and from which it is possible to retrieve information

about the metric at any given point in the domain. In general, prescribing the size

and shape of the elements is closely integrated with the algorithm of mesh generation

and adaptation. With respect to code efficiency, the key issues are the access time

of retrieving this data and the memory required for storage of this structure. The

structure design, together with the algorithms implementing its crucial functionality,

may also affect the quality of the generated or adapted mesh.

In the literature, propositions of different forms of this structure can be found

(as well as its various names: sizing map, cartesian mesh, background mesh), with

the octree structure being the most-typical choice. Pirzadeh[16] introduced a uniform

Cartesian mesh, where the sizing field is smoothed globally. A major drawback here

is the memory needed to store such a structure. Aubry et al. [3] and Deister et

al. [6] locally adapted the field in an adaptive Cartesian mesh. Another is to use

the quadtree/octree structure (currently, the most-common approach that reduces

the need for storage). Various approaches may be applied for the refinement of these

structures, which take into consideration the geometry of the domain or gradient-size

function [13, 15, 18]. There are also methods in which the creation of an octree is

performed using a medial axis [17]. In the area of mesh adaptation for computation,

a background mesh identical to the mesh from the previous calculation step is also

quite often used [14]. While there are plenty of articles relating to methods of metric

application to generate meshes, relatively little attention is paid to issues like the

impact of the form of this auxiliary structure on generation time and the quality of

the produced mesh.

2016/10/16; 13:02 str. 2/20

542 Tomasz Jurczyk, Barbara Głut

1.1. Metric and Control Space in Meshing

In an automated process of mesh generation and adaptation, it is a common approach

to take advantage of a metric defined in any point of the domain. This metric is

applied as an operator determining the desired size and shape of the elements. The

metric itself may come from different sources (both continuous and discrete) and have

different representations [10]. The metric data gathered from various sources should

be properly adjusted in each point of the domain. For this purpose, several elementary

operations on metric have been developed (i.e., interpolation, comparison, intersection

and gradation control). More detailed information about the technical details of

these operations can be found in [9]. In the created mesh generator, an auxiliary

structure covering the modeled domain was introduced – an adaptive control space

(ACS) – responsible for gathering and adjusting metric data as well as supervising

the construction and adaptation of the mesh [8]. ACS stores the metric information

in discrete points. At the step of gathering and processing metric data from different

sources, the ACS was equipped with a number of operations, such as initializing all

control vertices based on available metric sources, setting a continuous metric source

in the whole domain, inserting a discrete metric source at some point, and adjusting

metric gradation according to the prescribed maximum metric gradation ratio. In the

process of mesh generation, the most-elementary task of ACS is to return a metric

tensor at any point of the modeled domain by means of metric interpolation from the

discrete control vertices of ACS. The applied interpolation procedures depend on the

nature of the control space and metric representation.

Two families of such control structures are presented in this article – those based

on octree and kd-tree. The main task described in this article is preparing dis-

crete stucture K(P) approximating an analytical (continuous) sizing field (isotropic

or anisotropic) F(P) at each point P in the domain D of F . Such a conversion has

a number of advantages:

• storing data in a unified discrete structure allows us to further adjust the sizing

information; for example, smoothing the sizing field or setting an appropriate

anisotropy ratio,

• when the cost of computing the original sizing information is too high, conversion

to a computationally efficient structure may be advantageous,

• information stored in a discrete way can be combined with other sizing sources,

both discrete and continuous.

The price of conversion is an additional computational cost associated with the cre-

ation of a proper discrete structure approximating the given sizing field with the

prescribed precision.

2. Kd-tree and Octree Structures

The structure of a discrete control space is based on a three-dimensional tree. In order

to be memory efficient, a distinction is made between the internal nodes and the leaves

2016/10/16; 13:02 str. 3/20

Tree structures for adaptive control space in 3D meshing 543

of the tree. The proposed kd-tree structures were created based on a general form of

kd-tree[4] with modifications introduced by the authors (with respect to the kd-tree

application as a control space structure for mesh generation and adaptation).

The kd-tree structure is created with an adaptation procedure that recursively

performs the following steps (starting from an initial tree containing a single node –

the root of the tree):

• evaluate the approximation error δn(F ,K) for the given leaf,

• if the approximation error is higher than the given threshold and the maximum

depth of the tree has not yet been reached:

– select a dividing hyperplane,

– split the leaf with the selected hyperplane,

– assign metric values for the newly created two leaves (using F),

– call this procedure recursively for both leaves,

For octree structures, the adaptation is similar (with the exception of splitting,

since nodes in an octree are always split into eight children of equal dimensions).

2.1. Error Estimation for Tree Nodes

For each kd-tree (or octree) node where the approximation error needs to be evaluated,

the maximum difference between the approximation and function values for a regular

grid of points within the cell is computed:

δn = max
Pi∈Sp

δM(F(Pi),K(Pi)) , (1)

where Sp is a set of points within a node arranged in a regular grid of size Ns×Ns×Ns
and δM is a measure of metric non-conformity[11].

2.2. Method of Node Splitting

The nodes of a kd-tree (where adaptation is required) are split along the selected

axis and a point defining a splitting hyperplane. The following methods of splitting

a hyperplane were implemented and tested:

1. Longest Axis (sL). The node is split in the middle along the longest axis.

2. Maximum Gradient of the Approximated Function (sG). The node box

is split into Ns segments along the axes. Let us introduce split boxes numbering:

si,j,k where i, j, k ∈ {1, 2, . . . , Ns}. Then, we will consider a gradient to be the

difference of function values between two faces of the kdtree node box si,j,k; i.e.,

∇xi,j,k = δM(F(xm +
1

2
dx, ym, zm),F(xm −

1

2
dx, ym, zm)) (2)

∇yj,i,k = δM(F(xm, ym +
1

2
dy, zm),F(xm, ym −

1

2
dy, zm)) (3)

∇zk,i,j = δM(F(xm, ym, zm +
1

2
dz),F(xm, ym, zm −

1

2
dz)) (4)

2016/10/16; 13:02 str. 4/20

544 Tomasz Jurczyk, Barbara Głut

where dx, dy, dz are the sizes of the box along the x, y, and z axes, respectively,

and xm, ym, zm are the coordinates of the box’s si,j,k center.

The axis with the largest gradient is then chosen to be split along. The point of

the split is the middle (xm, ym, zm) of the node box with the largest gradient.

3. Maximum Sum of Gradient of the Approximated Function (sS). Let us

introduce the numbering of split boxes and the gradient as in the method sG.

For each dimension (d ∈ {x, y, z}), the sums of gradients are computed as

Σd =

Ns∑

i=1

Ns∑

j=1

Ns∑

k=1

∇di,j,k . (5)

The axis d∗ with the largest sum of gradients is then chosen to be split along.

In order to determine the point of a split, the value of τ is obtained

τ = min



t |

t∑

i=1

Ns∑

j=1

Ns∑

k=1

∇d∗i,j,k >
1

2
Σd∗



 . (6)

The node is split at the position




xm of the box sτ,j,k if d∗ = x,

ym of the box sj,τ,k if d∗ = y,

zm of the box sj,k,τ if d∗ = z,

(7)

where j, k ∈ {1, 2, . . . , Ns}.

2.3. Kd-tree-L

2.3.1. Structure description

The kd-tree structure KL approximates the source function F with values stored

exclusively in its leaves (one value per leaf). The function value is constant within

each leaf.

The main kd-tree structure (Fig. 1) stores the bounding box and a reference

to the tree root. Internal nodes store the selection of a split axis, coordinates of

a split point, and two references to child nodes. Leaves of this kd-tree store only

single-function values (in the form of a metric tensor).

2.3.2. Adaptation procedure

The adaptation procedure follows the general scheme described earlier. The recursive

procedure takes as parameters source function F , approximation threshold δτ , the

current tree level, and the bounding box of the current tree node. Instead of storing

the bounding box locally for each tree node, the bounding box from the main kd-tree

structure is passed as an initial value; after each adaptation split, this bounding box

is accordingly adjusted, and the updated versions are passed to both child nodes for

further adaptation. The function values in the child nodes are calculated from source

function F in the middle point of each of these nodes.

2016/10/16; 13:02 str. 5/20

Tree structures for adaptive control space in 3D meshing 545

struct KdTreeL

{

Box3d box;

KdNode *top;

};

struct KdNode

{

bool isLeaf;

union KdData

{

struct KdInternal

{

Axis axis;

double coordinate ;

KdNode *children[2];

} split;

struct KdLeaf

{

T value;

} leaf;

} data;

}

Figure 1. Structure declaration for kd-tree KL.

2.3.3. Retrieving data

In order to retrieve value KL(P) of point P within the bounding box of the tree,

the containing leaf is found using information about split axes and coordinates in

the internal nodes. After the containing leaf is found, the value stored within it is

returned directly.

2.4. Kd-tree-V

2.4.1. Structure description

This version of kd-tree structure (KV) approximating source function F has values

stored in the vertices of the tree nodes. The function value within each leaf is calcu-

lated from the vertices using linear shape functions.

The main kd-tree structure (Fig. 2) stores the bounding box and a reference to

the tree root – plus a container of function values referenced in the vertices of the

kd-tree. Some vertices are shared between several tree nodes (neighboring and/or

descending); thus, actual values are stored in a single container on a main level, and

the nodes of a tree store only references.

Internal nodes store the same data as KL (split axis, split coordinate, and two

references to child nodes). Leaves of this kd-tree store an array of eight references to

function values corresponding to its eight vertices.

2.4.2. Adaptation procedure

The adaptation procedure is similar to KL. The main difference is the initialization

of the new nodes, where arrays of references have to be appropriately prepared for

both child nodes. The child nodes inherit half of their vertices from the parent node;

the other half is common for both child nodes and has to be calculated from source

function F at the intersections of the parent node and the splitting hyperplane.

2016/10/16; 13:02 str. 6/20

546 Tomasz Jurczyk, Barbara Głut

struct KdTreeV

{

Box3d box;

KdNode *top;

List<T> values;

};

struct KdNode

{

bool isLeaf;

union KdData

{

struct KdInternal

{

Axis axis;

double coordinate ;

KdNode *children[2];

} split;

struct KdLeaf

{

T* values[8];

} leaf;

} data;

}

Figure 2. Structure declaration for kd-tree KV .

2.4.3. Retrieving data

In order to retrieve value KV (P) of point P , the containing leaf is found as in KL.

However, during descent through the internal nodes, the local bounding box needs

to be updated (as in the adaptation procedure). Then, after the containing leaf is

found, local coordinates for shape functions are calculated, and the returned result is

computed as a weighted sum of values from the vertices of this leaf.

2.5. Kd-tree-Li

2.5.1. Structure description

Another proposed version of kd-tree structure (KLi) approximating source function

F has values stored in the leaves only (as in KL). However, the value within each

leaf is calculated using not only the value stored therein but also values stored in the

neighboring leaves.

The main kd-tree structure (Fig. 3) stores the bounding box and a reference to

the tree root. Internal nodes store the same data as KL (split axis, split coordinate,

and two references to child nodes). In the leaves of KLi, some additional data is

stored besides the single scalar or metric value (for the sake of adaptation and/or

the retrieving procedure). The array of references to neighboring nodes is necessary

for computing results in the retrieving procedure. Other data (level, local bounding

box, and the flag isAdapted) are required for the adaptation procedure due to its

breadth-first characteristics.

2.5.2. Adaptation procedure

The adaptation procedure for KLi is a bit more complicated because, in order to

estimate the approximation error in any leaf, its neighbors should already be adapted,

since they influence the function value retrieved from this leaf. In order to overcome

2016/10/16; 13:02 str. 7/20

Tree structures for adaptive control space in 3D meshing 547

struct KdTreeLi

{

Box3d box;

KdNode *top;

};

struct KdNode

{

bool isLeaf;

union KdData

{

struct KdInternal

{

Axis axis;

double coordinate;

KdNode *children[2];

} split;

struct KdLeaf

{

T value;

KdNode* neighbours[6];

int level;

Box3d box;

isAdapted;

} leaf

} data;

}

Figure 3. Structure declaration for kd-tree KLi.

this obstacle, the adaptation scheme utilizes a breadth-first approach. Before deciding

whether to split the current leaf, an additional step is taken, ensuring that all existing

neighbors of this leaf either have finished their adaptation or their adaptation has

reached at least the same level as the current leaf. If any neighboring leaf does not

fulfill these conditions, it is adapted up to the level where these requirements are

met. Implementing these modifications requires some additional data to be stored

in the leaf nodes of the tree: local bounding box, local level, and a flag marking the

completion of adaptation for a given leaf.

The adaptation procedure follows the general scheme described earlier. The

recursive procedure takes as parameters source function F , approximation threshold

δτ , the current tree level, and the bounding box of the current tree node. The function

values in the child nodes are calculated from the source function at the middle point

of each of these nodes.

2.5.3. Retrieving data

In order to retrieve value KLi(P) of point P , the containing leaf is found, along

with all neighboring leaves closest to point P (starting from the information about

neighboring nodes stored in the containing leaf).

Let vc be the value stored in the containing leaf and vx0, vx1, vy0, vy1, vz0, vz1 be

the values stored in the neighboring leaves. If any neighboring node is missing, vc is

used instead.

2016/10/16; 13:02 str. 8/20

548 Tomasz Jurczyk, Barbara Głut

The result value is calculated using 27-node quadratic hexahedral shape functions

for local coordinates of point P within the containing leaf with the following vertex

values:

• the inner vertex of the node box has value vc,

• the mid-face vertices of the node box have values set as the average of vc and the

value stored in the leaf adjacent through the given face (if any neighboring node

is missing, vc is used in its place),

• the mid-edge vertices of the node box have values set as the average of the mid-

face vertices from the two adjacent faces,

• the corner vertices of the node box have values set as the average of the mid-face

vertices from the three adjacent faces.

2.6. Octree structures

Several versions of octree structures were also implemented following the typical ap-

proaches used in the area of meshing[5, 12, 18] as reference for comparison with the

proposed kd-tree structures.

Although efficient, an octree structure for control space in meshing also has some

drawbacks:

• Cartesian system alignment of the tree, which may degrade the approximation

quality for non-axis-aligned models and reduce its capability to capture other

symmetry (e.g., polar or spherical) of mesh density,

• global characteristics, which can spatially combine metric information for topo-

logically independent (or distant) parts of the model, often resulting in the un-

necessary refinement of the mesh size.

These problems are also valid for the presented versions of kd-tree structures, and

their correction requires separate research.

2.6.1. Octree-L

KoL stores values in the leaves only. Each internal node contains coordinates of the

middle node and an array of eight references to the child nodes. Leaves have only

single values of metric tensors.

2.6.2. Octree-LB

The KoLB structure also stores metric values only in the leaves. However, in order to

obtain better regularity, a local balancing of nodes is introduced (with a maximum

depth difference between children set to 1). Internal nodes contain the same data as

in the KoL structure. For the leaves, additional data is introduced besides the value

of the metric tensor: current tree level, coordinates of node box, and references to

neighboring nodes — in order to facilitate maintaining the local balancing condition.

2016/10/16; 13:02 str. 9/20

Tree structures for adaptive control space in 3D meshing 549

2.6.3. Octree-V

KoV is an octree structure without balancing, where metric values are stored in the

vertices of the leaves and the metric within an octree leaf is calculated using linear

shape functions. Internal nodes are similar to KoL. Leaves contain the current tree

level, references to neighboring nodes, and references to leaf vertices – which are stored

in a separate container.

3. Tests

The tests were designed to measure the quality of the created trees, performance of

the creation, and the quality of the meshes produced by using a tree-based control

space.

3.1. Test Functions

All test functions were defined to produce a metric (isotropic of anistropic) defined

by

Ms =




h−2
1 (x, y, z) 0 0

0 h−2
2 (x, y, z) 0

0 0 h−2
3 (x, y, z)


 , (8)

where h1, h2, h3 are the lengths of elements along the main directions.

The tests were performed for five different test functions. Functions F1, F2, and

F3 were selected as formulas emulating typical definitions of metric sources [9, 17]

defined in some vicinity of a point (F1) and mesh spacing correlated with the distance

to some linear boundary (F2) or discrete model features (F3), and function F4 and

F5 were based on the numerical examples presented in [7]:

1. 3DGaussian

F1 : D1 3 (x, y, z)→ h = e
x2+y2+z2

2·0.12 (9)

where D1 = [−1, 1]× [−1, 1]× [−1, 1] and h1 = h2 = h3 = h,

2. Squared Distance to Line

F2 : D1 3 (x, y, z)→ h = max(d2
L, ε) (10)

where dL is the distance to the reference line passing through points

(−1,−1,−0.5) and (0.5, 1, 0), h1 = h2 = h3 = h and ε = 10−10.

3. Linear Distance From 3 Points

F3 : D1 3 (x, y, z)→ h = max(dP , ε) (11)

where dP is the mean of distances from points P1 = (0.5, 0.5, 0.5), P2 =

(0.5, 0.5,−0.5) and P3 = (0, 0, 0), and h1 = h2 = h3 = h.

2016/10/16; 13:02 str. 10/20

550 Tomasz Jurczyk, Barbara Głut

4. Test-iso

F4 : D2 3 (x, y, z)→ h =





1− 19y/40 if y ∈ [0, 2]

20(2y−9)/5 if y ∈ (2, 4.5]

5(9−2y)/5 if y ∈ (4.5, 7]
1
5 + 4

5

(
y−7

2

)4
if y ∈ (7, 9]

(12)

where D2 = [0, 9]× [0, 9]× [0, 9] and h1 = h2 = h3 = h,

5. Test-aniso
F5 : D3 3 (x, y, z)→

h1 =





1− 19x/40 if x ∈ [0, 2]

20(2x−7)/3 if x ∈ (2, 3.5]

5(7−2x)/3 if x ∈ (3.5, 5]
1
5 + 4

5

(
x−5

2

)4
if x ∈ (5, 7]

h2 =





1− 19y/40 if y ∈ [0, 2]

20(2y−9)/5 if y ∈ (2, 4.5]

5(9−2y)/5 if y ∈ (4.5, 7]
1
5 + 4

5

(
y−7

2

)4
if y ∈ (7, 9]

h3 =





1− 19z/40 if z ∈ [0, 2]

20(2z−11)/7 if z ∈ (2, 5.5]

5(11−2z)/7 if z ∈ (5.5, 9]
1
5 + 4

5

(
z−9

2

)4
if z ∈ (9, 11]

(13)

where D3 = [0, 7]× [0, 9]× [0, 11].

3.2. Test Design

The building process of all of the presented tree structures was analyzed for each of

the defined functions. Each function was tested with a number of accuracies (i.e., {
4.0, 2.0, 1.0, 0.5, 0.3, 0.1, 0.08, 0.06}), meaning the maximal difference between the

kd-tree’s output value and the actual output of the function (error). Three methods of

splitting the node boxes were tested: longest axis, maximum gradient, and maximum

sum of gradients. For each case, the following quantities were measured:

• average access time (ta) – a uniform grid of points in D was created; for each

point, the metric value was retrieved from the tree structure, then the average

value was calculated,

• creation time (tc) – total time required for adaptation of the tree structure to

given function F ,

• approximation error (δD)– maximum value of difference δM between the kd-

trees/octree’s approximation and the actual value of function F (checked for

a uniform grid of points in the D of F ,

• tree size – number of tree nodes, number of metric values stored in the tree, and

the total memory usage of the tree structure (mu),

• tree balancing – maximum depth of the tree and maximum local balance.

2016/10/16; 13:02 str. 11/20

Tree structures for adaptive control space in 3D meshing 551

Additionally, for test functions F4 and F5, each created control structure was

used to generate a tetrahedral mesh with the test-tree structure fulfilling the role of

control space. In order to evaluate the quality of the created meshes, the quality

criteria for edge lengths and size and shape of the mesh elements were calculated –

based on the reference control space (using base function F directly). The created

meshes were compared using the following criteria:

• size of the mesh – represented as number of tetrahedra in the mesh (NT),

• length of edges (in metric space):

L – mean value,

Lσ – standard deviation,

LR – number of edges with length sufficiently close to optimal (for an ideal mesh,

each edge should have a metric length equal to 1), where LR denotes the

ratio of number of edges with metric lengths in the range of [0.8, 1.25] to

the total number of edges in the mesh,

• quality of elements – metric non-conformity coefficient δM was used to evaluate

both the size and shape of the elements in the mesh:

δM – mean value,

δσM – standard deviation,

δRM – number of elements with the value of the quality coefficient sufficiently

close to optimal (for an ideal mesh, all elements should have the value of

the non-conformity coefficient equal to zero), where δRM denotes the ratio of

number of elements with δM ∈ [0, 2] to the total number of elements in the

mesh.

4. Analysis of Results

A precise evaluation and presentation of the results is difficult, due to the high number

of parameters affecting the particular results and the large number of performed tests.

Because of this, only selected results – the most important – are presented. The

analysis was carried out with an emphasis on the time and memory efficiency of

various versions of the kd-tree structures as well as the accuracy of approximation

and its impact on the quality of the generated meshes.1

4.1. Time and Memory Efficiency

As can be seen in Tables 1, 2, 3, 4, 5, and 6, the total size of the trees depends on

approximated function F and the given approximation accuracy threshold δτ .

For F1, the created tree structures have the largest sizes; in this case, the splitting

method has no significant influence. For F4 and F5, the effect of selecting the splitting

method is clearly visible. Method sL produces structures with sizes considerably

different than the other techniques (for all tested kd-tree versions). For functions F4

1The tests were performed using an Intel Core i7-3520M 2.9 GHz computer with 16 GB memory.

2016/10/16; 13:02 str. 12/20

552 Tomasz Jurczyk, Barbara Głut

Table 1

Selected results for tree structures created for function F1.

tree size (mu) [kB] access time (ta) [µs]

tree split δτ = 2 δτ = 0.5 δτ = 0.06 δτ = 2 δτ = 0.5 δτ = 0.06

KL sL 348.3 2337.1 50132.3 31.8 40.4 69.5
sG 296.1 2271.7 29683.7 34.7 44.5 65.7
sS 237.5 1780.1 39054.6 32.7 42.0 67.4

KV sL 131.5 399.2 1871.8 63.9 66.2 71.6
sG 100.0 299.1 2204.9 70.6 75.0 83.3
sS 95.4 285.0 2563.9 69.4 73.2 81.5

KLi sL 932.8 4267.2 76370.8 326.4 338.0 384.0
sG 900.5 3438.8 52316.6 343.3 356.1 403.7
sS 604.2 2840.6 48540.8 327.3 341.0 378.5

KoL 714.9 4500.9 115446.9 18.5 21.7 36.5
KoLB 1251.0 7877.9 202037.3 18.6 21.8 37.5
KoV 813.6 11874.2 139598.2 84.3 91.4 113.4

Table 2

Selected results for tree structures created for function F2.

tree size (mu) [kB] access time (ta) [µs]

tree split δτ = 2 δτ = 0.5 δτ = 0.06 δτ = 2 δτ = 0.5 δτ = 0.06

KL sL 333.7 956.8 6209.3 21.6 26.9 40.9
sG 544.0 1502.1 7420.0 22.2 29.0 43.1
sS 605.4 1469.2 7595.6 20.9 25.9 39.5

KV sL 455.3 690.6 1625.4 57.6 59.1 77.4
sG 987.9 1841.3 4511.3 60.9 64.9 72.2
sS 1143.7 1935.5 4985.8 59.3 62.1 67.7

KLi sL 791.2 1865.8 10064.9 299.7 308.8 331.9
sG 1541.3 2932.1 11560.9 306.0 344.3 350.8
sS 1774.3 2627.9 10510.7 299.8 308.1 333.3

KoL 735.9 2095.7 13413.9 15.1 17.2 22.2
KoLB 1423.0 3671.3 23474.3 15.5 17.4 23.0
KoV 1051.6 3260.7 22490.4 77.4 80.4 90.8

and F5, it gives much larger structures; but, for F2 and F3, the structures created by

splitting with sL are actually smaller than for the other splitting methods. Clearly,

the selection of a splitting method should take into account the nature of variation of

the metric in the given domain. The sizes of octree structures were, in general, larger

than the kd-trees (especially for smaller approximation accuracy thresholds).

Access time is more advantageous for structures where no interpolation of a met-

ric is required (KL, KoL, KoBL). The highest values of access time were noted for KLi,
where the most-complex interpolation scheme was used. Despite the fact that the tree

sizes for octree structures are, in general, larger than in the case of kd-trees, the time

cost of retrieving the results from leaf-based octree structures (avoiding interpolation

of metrics) is still quite advantageous.

During the phase of structure creation, an important factor (besides the final

size of the structure) is the overhead associated with the calculation of the criterion

2016/10/16; 13:02 str. 13/20

Tree structures for adaptive control space in 3D meshing 553

Table 3

Selected results for tree structures created for function F3.

tree size (mu) [kB] access time (ta) [µs]

tree split δτ = 2 δτ = 0.5 δτ = 0.06 δτ = 2 δτ = 0.5 δτ = 0.06

KL sL 0.2 0.9 30.0 11.1 14.0 24.4
sG 0.2 1.0 16.0 11.4 15.9 25.1
sS 0.2 1.3 17.5 11.0 16.2 24.8

KV sL 0.9 2.8 10.7 47.7 54.1 56.7
sG 1.2 4.5 31.1 52.9 57.6 66.8
sS 1.2 4.2 29.8 51.0 56.8 64.2

KLi sL 0.6 4.0 47.0 273.8 284.3 301.1
sG 0.6 2.0 28.1 277.3 285.7 308.7
sS 0.6 4.0 31.2 276.6 287.2 307.2

KoL 0.9 3.9 54.9 12.3 13.0 16.1
KoLB 1.5 6.8 96.0 12.4 13.2 16.1
KoV 2.5 2.5 215.9 64.5 65.0 72.6

Table 4

Selected results for tree structures created for function F4.

tree size (mu) [kB] access time (ta) [µs]

tree split δτ = 2 δτ = 0.5 δτ = 0.06 δτ = 2 δτ = 0.5 δτ = 0.06

KL sL 34.1 175.0 3335.5 21.0 27.5 38.4
sG 0.2 1.1 3.7 11.1 15.4 18.9
sS 0.6 1.1 2.9 13.0 14.6 17.3

KV sL 29.1 433.3 6552.2 59.6 62.8 67.5
sG 2.5 2.8 5.1 54.0 54.6 56.0
sS 1.9 2.8 5.1 51.0 52.8 54.4

KLi sL 145.6 626.9 6232.4 307.1 317.8 338.3
sG 0.9 3.0 9.5 279.9 285.6 288.4
sS 2.0 3.3 7.5 278.1 281.0 284.6

KoL 66.9 342.9 6534.9 15.0 17.0 20.6
KoLB 138.0 705.0 13068.8 15.6 17.4 21.3
KoV 210.4 2665.9 14538.6 78.9 87.1 92.0

used to decide how and whether to split the nodes of the tree. This requires a num-

ber of calls of function F and structure K being built. Thus, the structures using

metric interpolation will have creation times accordingly longer. A comparison of the

structure creation times for all test functions F and for the selected approximation

accuracy (δτ = 0.5) are shown in Table 6.

4.2. Approximation Accuracy

Figures 4 and 5 present approximation error δd (for splitting method sG and functions

F4 and F5) as a function of tree size. These examples illustrate the efficiency of these

trees. For these cases, the kd-tree structures had much smaller sizes, and the requested

error threshold could be met with a significantly lower memory cost.

Even though tree KV usually gives better approximation accuracy and a lower

number of tree nodes for the given approximation threshold, the additional memory

2016/10/16; 13:02 str. 14/20

554 Tomasz Jurczyk, Barbara Głut

Table 5

Selected results for tree structures created for function F5.

tree size (mu) [kB] access time (ta) [µs]

tree split δτ = 2 δτ = 0.5 δτ = 0.06 δτ = 2 δτ = 0.5 δτ = 0.06

KL sL 29.1 565.3 4716.3 22.5 30.7 40.3
sG 1.3 10.5 94.8 16.4 22.7 32.8
sS 1.3 10.8 73.7 15.6 22.4 30.0

KV sL 29.1 829.7 5197.7 58.6 65.1 69.0
sG 8.8 24.8 120.6 60.5 64.0 69.2
sS 8.1 24.5 105.2 59.1 64.1 67.5

KLi sL 63.5 506.9 12176.5 303.6 317.1 345.7
sG 8.8 26.7 198.2 293.9 300.4 316.0
sS 10.5 28.1 154.6 292.6 300.8 308.4

KoL 84.9 1614.9 11934.9 15.8 18.6 22.4
KoLB 159.0 3214.5 23705.3 16.0 18.9 22.9
KoV 465.1 3679.1 54338.9 80.2 90.1 101.6

Table 6

Selected results for tree structures for all functions created for accuracy δτ = 0.5.

tree size (mu) [kB] creation time (tc) [ms]

tree split F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

KL sL 2337.1 956.8 0.9 175.0 565.3 294 86 1 21 119
sG 2271.7 1502.1 1.0 1.1 10.5 841 328 1 1 6
sS 1780.1 1469.2 1.3 1.1 10.8 594 438 1 1 8

KV sL 399.2 690.6 2.8 433.3 829.7 27 38 1 34 89
sG 299.1 1841.3 4.5 2.8 24.8 37 209 1 1 4
sS 285.0 1935.5 4.2 2.8 24.5 41 225 1 1 3

KLi sL 4267.2 1865.8 4.0 626.9 506.9 932 262 1 148 162
sG 3438.8 2932.1 2.0 3.0 26.7 1100 642 1 1 9
sS 2840.6 2627.9 4.0 3.3 28.1 958 654 2 1 8

KoL 4500.9 2095.7 3.9 342.9 1614.9 341 88 1 36 287
KoLB 7877.9 3671.3 6.8 705.0 3214.5 363 81 1 39 311
KoV 11874.2 3260.7 2.5 2665.9 3679.1 556 96 1 154 435

cost of storing metric values in the vertices of tree nodes and the time cost of metric

interpolation results in it being outperformed by KL, a simpler version of kd-tree (in

terms of approximation accuracy and access time per used memory). Kd-tree KLi
also does not show results that are sufficiently good enough to outweigh its higher

complexity and metric interpolation cost.

4.3. Impact on Created Meshes

Figure 6 presents the reference meshes created with control spaces directly using the

analytical form of test functions F4 (for domain D2) and F5 (for domain D3).

Figure 7 illustrates the influence of the error threshold used to control the adap-

tation process on the quality of the produced meshes. Decreasing threshold δτ has

2016/10/16; 13:02 str. 15/20

Tree structures for adaptive control space in 3D meshing 555

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1x106 1x107 1x108

ap
pr

ox
im

at
io

n
er

ro
r

(δ
D

)

tree size (mu) [B]

KL
KV
KLi

KoL
KoLB
KoV

Figure 4. Approximation error of control tree structures created (with splitting method sG)

for function F4.

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000 1x106 1x107 1x108

ap
pr

ox
im

at
io

n
er

ro
r

(δ
D

)

tree size (mu) [B]

KL
KV
KLi

KoL
KoLB
KoV

Figure 5. Approximation error of control tree structures created (with splitting method sG)

for function F5.

a) b)

Figure 6. Tetrahedral mesh generated for control space using the analytical function directly:

a) F4 (isotropic) – NT=2208833, b) F5 (anisotropic) – NT=652056.

2016/10/16; 13:02 str. 16/20

556 Tomasz Jurczyk, Barbara Głut

the effect of producing meshes more like the reference meshes (i.e., generated using

the control space based directly on functions F).

a) b) c)

d) e) f)

Figure 7. Tetrahedral mesh generated for KV tree structure adapted with split method sG:

a) F4, δτ = 4, NT=319136, b) F4, δτ = 0.5, NT=909652, c) F4, δτ = 0.06, NT=2028032,

d) F5, δτ = 4, NT=61365, e) F5, δτ = 0.5, NT=424594, f) F5, δτ = 0.06, NT=576523.

The quality of meshes generated for control spaces based on tree-based structures

adapted with a decreasing approximation error threshold is illustrated in Figures 8

and 9. The quality is represented here by the LR criterion, providing the ratio of

number of edges with metric length sufficiently close to optimal in the whole mesh.

It can be seen that sufficient quality of the mesh can be reached with reasonably low

threshold δτ . If threshold value δτ is set too high, the characteristics of the generated

mesh may be distorted in some subareas of the domain. The results are consistent

with the analysis of quality of the kd-tree structures presented in Figures 4 and 5.

4.4. Conclusions

Based on our experiments, the presented kd-trees seem to be a good alternative for

octree structures as a control space structure for mesh generation and adaptation.

They provide greater flexibility for the adaptation procedure, which (in most cases)

allows us to create more-efficient structures with smaller memory overhead.

Both kd-tree and octree structures are sensitive to the orientation of the model.

Their efficiency and quality of approximation may be worse in the case where model

orientation is not aligned with the principal axes of the created tree structure. In both

types of trees, some improvements in this respect would be desirable (e.g., associated

with the analysis of the skeleton and symmetry of the model). Similarly, in the case

2016/10/16; 13:02 str. 17/20

Tree structures for adaptive control space in 3D meshing 557

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 100 1000 10000 100000 1x106 1x107 1x108

m
et

ric
 e

dg
e

le
ng

th
 (

L R
)

tree size (mu) [B]

KL
KV
KLi

KoL
KoLB
KoV

Figure 8. Quality of meshes generated for control tree structures created with splitting

method sG for function F4.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 1000 10000 100000 1x106 1x107 1x108

m
et

ric
 e

dg
e

le
ng

th
 (

L R
)

tree size (mu) [B]

KL
KV
KLi

KoL
KoLB
KoV

Figure 9. Quality of meshes generated for control tree structures created with splitting

method sG for function F5.

of models with complex and/or concave boundaries, it would be beneficial to consider

the introduction of some additional data into the tree structure, or make a domain

decomposition of the control space.

With respect to our selection of the recomended kd-tree version, it seems that the

relationship of quality and efficiency to the size of the structure in the typical problems

is most advantageous for the simplest kd-tree structure (KL). The kd-tree structures

with interpolation of metric value within the leaves (KV and KLi) generally yield

better results for the given threshold accuracy of adaptation; however, it is burdened

with additional cost of execution time (both during the adaptation and subsequent

use of the structure). It should be noted that trees with an interpolation of metric

2016/10/16; 13:02 str. 18/20

558 Tomasz Jurczyk, Barbara Głut

value within leaves (KV and KLi) provide higher continuity of the approximated size

function, which may be relevant depending on the application (e.g., the algorithm for

mesh generation or adaptation).

5. Summary

This article presents the implementation details and comparison of several kd-tree

or octree structures for facilitating automated 3d anisotropic mesh generation and

adaptation. Time and memory efficiency were inspected in a number of practical tests,

together with the approximation quality of the created structures and the quality of

the volume meshes generated using control space based on the tested structures.

The analysis of results show that the tested kd-tree structures offer an attractive

alternative to the octree structure commonly used as a control space structure in the

area of mesh generation. The selection of the optimal version of kd-tree structure

may, however, depend on the nature of the approximated sizing field.

Acknowledgements

The research presented in this paper was partially supported by the AGH grant

11.11.230.124.

References

[1] Alauzet F.: Size Gradation Control of Anisotropic Meshes. Finite Elem. Anal.

Des., vol. 46(1–2), pp. 181–202, 2010.

[2] Alauzet F., Loseille A., Dervieux A., Frey P.: Multi-Dimensional Continuous

Metric for Mesh Adaptation, pp. 191–214. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2006.

[3] Aubry R., Karamete K., Mestreau E., Dey S., Löhner R.: Linear Sources for Mesh

Generation. vol. 35(2), pp. A886–A907, 2013, ISSN 1064-8275 (print), 1095-7197

(electronic).

[4] de Berg M., Cheong O., van Kreveld M., Overmars M.: Computational Geometry:

Algorithms and Applications. Springer-Verlag, 2008.

[5] Borouchaki H., George P.L., Hecht F., Laug P., Saltel E.: Delaunay mesh gener-

ation governed by metric specifications. Part I. Algorithms. Finite Elements in

Analysis and Design, vol. 25, pp. 61–83, 1997.

[6] Deister F., Tremel U., Hassan O., Weatherill N.P.: Fully automatic and fast

mesh size specification for unstructured mesh generation. Eng. Comput. (Lond.),

vol. 20, pp. 237–248, 2004.

[7] George P., Borouchaki H.: Delaunay Triangulation and Meshing: Application to

Finite Elements. Butterworth-Heinemann, 1998.

[8] Jurczyk T., G lut B.: Adaptive Control Space Structure for Anisotropic Mesh

Generation. Proc. of ECCOMAS CFD 2006 European Conference on Computa-

tional Fluid Dynamics, Egmond aan Zee, The Netherlands, 2006.

2016/10/16; 13:02 str. 19/20

Tree structures for adaptive control space in 3D meshing 559

[9] Jurczyk T., G lut B.: The Insertion of Metric Sources for Three-dimensional Mesh

Generation. Proc. 13th Int. Conf. on Civil, Structural and Environmental Engi-

neering Computing, Chania, Crete, Greece, 2011, paper 116.

[10] Jurczyk T., G lut B.: Preparation of the Sizing Field for Volume Mesh Genera-

tion. Proc. 13th Int. Conf. on Civil, Structural and Environmental Engineering

Computing, Chania, Crete, Greece, 2011, paper 115.

[11] Labbé P., Dompierre J., Vallet M.G., Guibault F., Trépanier J.Y.: A universal

measure of the conformity of a mesh with respect to an anisotropic metric field.

Int. J. Numer. Meth. Engng, vol. 61, pp. 2675–2695, 2004.

[12] Lo D.S.: Finite Element Mesh Generation. CRC Press, 2015.

[13] Miranda A.C.O., Martha L.F.: Mesh generation on high-curvature surfaces based

on a background quadtree structure. Proceedings, 11th International Meshing

Roundtable, pp. 333–342, 2002.

[14] Owen S.J., Saigal S.: Surface mesh sizing control. International Journal for Nu-

merical Methods in Engineering, vol. 47(1–3), pp. 497–511, 2000.

[15] Persson P.O., Staten M.L., Xiao Z., Chen J., Zheng Y., Zeng L., Zheng J.: 23rd

International Meshing Roundtable (IMR23) Automatic Unstructured Element-

sizing Specification Algorithm for Surface Mesh Generation. Procedia Engineer-

ing, vol. 82, pp. 240–252, 2014.

[16] Pirzadeh S.Z.: Structured Background Grids for Generation of Unstructured

Grids by Advancing-Front Method. AIAA Journal, vol. 31(2), pp. 257–265, 1993.

[17] Quadros W.R., Vyas V., Brewer M., Owen S.J., Shimada K.: A computational

framework for automating generation of sizing function in assembly meshing via

disconnected skeletons. Engineering with Computers, vol. 26(3), pp. 231–247,

2010.

[18] Zhu J., Blacker T., Smith R.: Background Overlay Grid Size Functions. Proc.

11th Int. Meshing Roundtable, pp. 65–74, Sandia National Laboratories, Ithaca,

NY, 2002.

Affiliations

Tomasz Jurczyk
AGH University of Science and Technology, jurczyk@agh.edu.pl

Barbara G lut
AGH University of Science and Technology, glut@agh.edu.pl

Received: 20.08.2016

Revised: 14.09.2016

Accepted: 14.09.2016

2016/10/16; 13:02 str. 20/20

560 Tomasz Jurczyk, Barbara Głut

