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Abstract Free scheduling is a task ordering technique under which instructions are exe-

cuted as soon as their operands become available. Coarsening the grain of

computations under the free schedule, by means of using groups of loop nest

statement instances (tiles) in place of single statement instances, increases the

locality of data accesses and reduces the number of synchronization events,

and as a consequence improves program performance. The paper presents an

approach for code generation that allows for the free schedule for tiles of ar-

bitrarily nested affine loops at run-time. The scope of the applicability of the

introduced algorithms is limited to tiled loop nests whose inter-tile dependence

graphs are cycle-free. The approach is based on the polyhedral model. Results

of experiments with the PolyBench benchmark suite, demonstrating significant

tiled code speed-up, are discussed.
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1. Introduction

One of the goals of code transformations applied by an optimizing compiler is to

reorganize loop nest iterations so that their execution is performed faster without

altering program semantics. This objective is achieved either by extracting indepen-

dent calculations and/or by means of grouping together statement instances accessing

a common memory addressing space, improving the locality of computations as a re-

sult. On the whole, code transformations are mostly aimed at finding a new legal

execution order of loop nest statement instances.

In theory, free scheduling [4] is the fastest known ordering technique under which

instructions are executed – possibly in parallel – as soon as their operands become

available.

In practice, however, taking into account the architecture of modern processing

units – characterized by a limited number of cores and a multi-level memory hierarchy

– the approach can fail to yield satisfactory speed-up. When the tasks to be scheduled

are loop nest statement instances, the main drawback of free scheduling is its fine

granularity which can lead to a significant number of synchronization events.

Tiling [10] is a well-known iteration reordering transformation aimed at increa-

sing the locality of computations. The technique involves partitioning the points of

an iteration space into smaller blocks (known as tiles) so that data chunks needed

for computations performed within each block fit in a cache memory and are reused

multiple times before getting evicted, hence reducing the total number of reads and

writes to a shared storage.

In this paper, we present an approach for code generation that allows for the

free schedule for statically formed tiles of arbitrarily nested affine loops at run-time.

The scope of the applicability of the algorithms is limited to tiled loop nests whose

inter-tile dependence graphs are cycle-free.

Our approach is based on the polyhedral model [5–7]. Experimental results

demonstrate that the overhead induced by redundant operations, required to define

tiles to be executed at run-time, can be outbalanced by a sufficient number of parallel

tiles, a reduced number of synchronization events, and an increased level of data

locality, all of which eventually lead to satisfactory code speed-up.

The main contributions of this paper over previous work can be summarized as

follows:

• we propose an approach that allows to define first static tiles for arbitrarily nested

loops and then execute them under the free scheduling at run-time;

• we demonstrate that computing the free schedule does not require neither any

affine transformation nor dependence graph transitive closure; as a consequence,

this leads to the low time-complexity of this approach and allows to obtain sa-

tisfactory parallel tiled code speed-up;

• we describe a simple way to detect whether an inter-tile dependence graph is

cycle-free and demonstrate its effectiveness for the PolyBench loop nests;
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• we present publicly available academic software, the TC compiler, implementing

the presented approach;

• we discuss the speed-up of parallel tiled code generated by means of the presented

approach.

The rest of the paper is organized as follows. The next section introduces the

background and mathematical theory. Section 3 presents the algorithm and demon-

strates its application to a working loop nest. The results of our experiments are

discussed in Section 4. Section 5 revises related techniques. In the summary, we

conclude and present our plans for future research.

2. Background

In this paper, we deal with affine loop nests where lower and upper bounds, array

subscripts, and conditionals are affine functions of surrounding loop indices and sym-

bolic constants, and the loop steps are known constants.

The presented algorithm is based on the polyhedral model [5–7]. Let us remind

that this approach includes the following three steps: i) program analysis, aimed at

translating high-level codes to their polyhedral representation and providing a data

dependence analysis based on this representation; ii) program transformation, with

the aim of improving program locality and/or parallelization; iii) code generation.

A loop nest is perfectly nested if all of its statements are surrounded by the same

loops; otherwise, the loop nest is imperfectly nested.

A statement instance S[I] is a particular execution of loop statement S for given

iteration I. Two statement instances S1[I] and S2[J ] are dependent if both access the

same memory location and at least one access is a write. S1[I] and S2[J ] are called the

source and the target of a dependence, respectively, provided that S1[I] is executed

before S2[J ]. The sequential ordering of statement instances, denoted S1[I] ≺ S2[J ],

is induced by the original execution ordering of iteration vectors, or by the textual

ordering of statements if I = J .

An iteration vector can be represented by a k-integer tuple of loop indices in the

Zk iteration space. Consequently, a dependence relation is a mapping from tuples

to tuples of the form { [source] → [target] | constraints }, where source defines de-

pendence sources, target defines dependence targets, and constraints is a Presburger

formula (built of affine equalities and inequalities, logical and existential operators)

that imposes constraints on the variables and/or expressions within source and target

tuples.

It is often convenient to group related elements of a set – like instances of the

same statement in particular – using a named integer tuple [21]. Typically, a name

associated with a tuple is the same as the label of a corresponding statement (if

the tuple represents an iteration vector), or as the name of a variable (if the tuple

represents memory offsets in subsequent array dimensions).
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Let LD denote a loop nest iteration domain comprising all statement instances.

A schedule is a function σ : LD → Z that assigns a discrete time of execution

(timestamp) to each loop nest statement instance.

A schedule is valid if for each pair of dependent statement instances, S1[I] and

S2[J ], satisfying the condition S1[I] ≺ S2[J ], the condition σ(S1[I]) < σ(S2[J ]) holds

true, i.e., the dependences are preserved when statement instances are executed in

an increasing order of their timestamps. If σ(S1[I]) = σ(S2[J ]), statements S1[I] and

S2[J ] can be computed in parallel.

The free schedule (1) is the schedule that assigns the earliest valid timestamp to

each loop statement instance, i.e., as soon as the statement dependences are resol-

ved [4],

σ(p) =


0; if there is no p′ ∈ LD s.t. p′ → p ∈ R,
1 + max(σ(p1), σ(p2), ..., σ(pn)); p, p1, p2, ..., pn ∈ LD ∧

p1 → p, p2 → p, ..., pn → p ∈ R,
(1)

where:

p, p′, p1, p2, ..., pn are statement instances,

R is a relation describing data dependences,

n is the number of dependences whose destination is statement instance p.

An access relation is a mapping ϕ : LD → D, where D is a data space, that

associates a statement instance with memory locations that are read from (read access

relation) or written to (write access relation) by the source statement instance.

For manipulating sets and relations, we use common operations, such as in-

tersection (∩), union (∪), difference (−), composition (◦), domain of a rela-

tion (domain(R)), range of a relation (range(R)), application of a relation to

a set (R(S)), restriction of the domain of a relation (\).

3. Tiling algorithm

In this section, we present a working example, static calculations, and code generation

allowing for tile execution under the free schedule at run-time.

The key idea of the approach introduced in this paper is to split a tiling proce-

dure into two parts. First, compile-time computations translate the input code into

its polyhedral representation, group iteration points into rectangular tiles and form

a (possibly infinite) directed graph representing inter-tile dependences; code scanning

statement instances contained within a single parametric tile is generated. Then, the

graph is checked to determine whether it is cycle-free; if so, code is generated to form

the tile free schedule at run-time and to execute statements associated with tiles at

each timestamp.
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3.1. Static computations

Given a loop nest of q arbitrarily nested statements, the algorithm starts with ex-

tracting a polyhedral model from the input code to yield the following data: loop

nest iteration domain (LDi) of each statement Si, i = 1, ..., q, schedule (S), and

read/write access relations (RA, WA, respectively). The loop nest iteration domain

is the set of statement instances executed by a loop nest for each statement. Sche-

dule S is represented with a relation which maps an iteration vector of a statement to

a corresponding multidimensional timestamp, i.e., a discrete time when the statement

instance has to be executed. An access relation maps an iteration vector to one or

more memory locations of array elements.

Next, we apply a rectangular tiling scheme to each statement. For each statement

Si, i = 1, ..., q, surrounded by di loops, a corresponding tile can be represented by

parametric set TILEi, i = 1, ..., q, that groups statement instances included in a block

identified by given symbolic constants (2),

TILEi(IIi) =[IIi]→ { [Ii] | Bi ∗ IIi+
LBi ≤ Ii ≤ min(Bi ∗ (IIi + 1i) + LBi − 1i, UBi) ∧ IIi ≥ 0i }

(2)

where vectors LBi and UBi include the lower and upper bounds, respectively, of the

indices of loops enclosing statement Si; diagonal matrix Bi defines the size of a rec-

tangular original tile; elements of vectors Ii and IIi represent the original indices of

loops enclosing statement Si and the identifiers of tiles, respectively; 1i and 0i are the

vectors whose all di elements have value 1 and 0, respectively.

Additionally, with each set TILEi, i = 1, ..., q, we associate another set,

II SET i, i = 1, ..., q (3), that includes the identifiers of all the tiles in a corresponding

iteration space.

II SETi = { [IIi] | IIi ≥ 0i ∧Bi ∗ IIi + LBi ≤ UBi } . (3)

The introduced approach requires an exact representation of loop-carried and

loop-independent data dependences. The relation representing dependences can be

computed according to formula (4) presented in paper [21].

R = ((RA−1 ◦WA) ∪ (WA−1 ◦RA) ∪ (WA−1 ◦WA)) ∩ (S ≺ S) . (4)

Formula (4) calculates a union of flow, anti, and output dependences that ex-

ist under the lexicographic order of timestamps of all statement instances. S ≺
S denotes a strict partial order of statement instances, computed as: S−1 ◦
({ [e]→ [e′] | e ≺ e′ } ◦ S).

We aim at tiling both perfectly and imperfectly nested loops. This implies that

the computations on sets and relations need to be fulfilled regardless of which iteration

space a particular statement instance belongs to. While this may not be an issue for

perfectly nested loops – whose all statements reside in a single iteration space – it gives
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rise to the problem of applying operations to sets and relations with different sizes of

tuples in the case of arbitrarily nested loops; i.e., a dependence source can belong to

one iteration space while the corresponding dependence target can reside in a distinct

space, for example, S1[1] → S2[2, 4]. To make computations on sets and relations

feasible, and enable the handling of separate statements uniformly, all of the sets and

relations that are subject to further processing need to be normalized. A normalization

procedure involves extending corresponding tuples with extra dimensions that will

i) make tuple sizes to be equal, ii) allow us to unambiguously identify which statement

a given normalized tuple refers to.

To normalize sets and relations, we apply the following transformation: given

a loop nest of maximal depth d, we extend the tuples of these sets and relations

to length 2d. The elements of each tuple are built from a series of d pairs. Each

pair corresponds to a single loop. The first element of such a pair holds the value

of the iterator of its associated loop; the second value is the numerical order of the

statement relative to a directly enclosing loop (a loop with its body is considered as an

indivisible statement at a given depth). Pairs within each tuple are ordered starting

from the outermost to the innermost loop, each enclosing the associated statement.

The remaining elements of tuples whose statements are enclosed by fewer than d

loops are filled with the value 0. Eventually, from each tuple we remove each element

corresponding to a numerical order that has the value 0 in all normalized tuples. If

the analyzed static control part includes more statements at depth 0, we insert an

additional element at the leftmost position of each tuple, indicating the numerical

order of the corresponding outermost statement relative to that static control part.

In practice, to make sets and/or relations to be normalized, we can apply a sche-

duling function S computed by the Polyhedral Extraction Tool [22] to tuples of these

sets and/or relations. We will denote the union of all normalized sets TILEi and

II SETi, i = 1, ..., q, as TILE and II SET , respectively.

Next, we are interested in constructing a relation, R TILE, describing inter-tile

dependences: a dependence between tiles exists iff there exists a data dependence

such that its source originates from a statement instance within one tile and targets

a statement instance included in another tile. For this purpose, we adapt the idea

presented in paper [14] to form relation R TILE (5),

R TILE = { [II]→ [JJ ] | II, JJ ∈ II SET ∧ II 6= JJ ∧
∃I, J : I ∈ TILE(II) ∧ J ∈ TILE(JJ) ∧ J ∈ R(I) } ,

(5)

where II, JJ are vectors representing tile identifiers, while I, J are vectors represen-

ting statement instances. This relation ignores intra-tile dependences – they will be

respected by sequential execution of statement instances within each tile.

It is well-known that for a cycle-free graph, a legal schedule for the vertices of

this graph can be found [5, 6]. However, because we form rectangular tiles that can be

of arbitrary sizes without considering possible inter-tile dependences, we do not gua-

rantee that a corresponding dependence graph will be cycle-free. We would therefore
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like to ensure that a graph is acyclic. With this purpose, we check whether relation

R TILE is lexicographically forward [11], i.e., iff ∀x → y ∈ A, y − x � 0 (y − x is

lexicographically positive). If so, this guarantees that a graph is cycle-free [11] and ob-

viates the need to compute the positive transitive closure of relation R TILE (which

may be expensive). In the case of the presence of lexicographically backward edges,

we conclude that the graph may contain cycles, therefore, the algorithm cannot be

applied. Despite the fact that the presented technique is very simple, we demonstrate

in Section 4 that it is able to recognize all of the PolyBench benchmarks whose cor-

responding inter-tile dependence graphs are cyclic. Techniques aimed at eliminating

cycles are discussed in Section 5.

Algorithm 1 provides a formal description of the approach discussed in this sub-

section. Step 1 transforms a loop nest into its polyhedral representation. Steps 2–7

form sets and relations that are subject to run-time computation of the free schedule.

Step 8 builds an inter-tile relation. Steps 9–11 verify whether the inter-tile relation is

cycle-free – if not, dynamic scheduling cannot be applied. Step 12 generates code for

the execution of statement instances included in a single parametric tile.

Algorithm 1: Static calculations for the purpose of dynamic tiling.

Input: Arbitrarily nested affine loops.

Output: Relation R TILE, set II SET , code scanning the elements of set

TILE.

1. Transform the loop nest into its polyhedral representation including:

an iteration space, access relations, and global schedule S.

2. For each i, i = 1, 2, ..., q, and di, where q is the number of loop nest

statements, and di is the number of loops surrounding statement Si,

form the following vectors, matrix and sets:

• vector Ii whose elements are original loop indices i1,i2,...,idi
;

• vector IIi whose elements ii1,ii2,...,iidi define the identifier of

a tile;

• vectors LBi and UBi whose elements are lower lb1,...,lbdi and

upper ub1,...,ubdi bounds of indices i1,i2,...,idi of the enclosing

loops, respectively;

• vector 1i whose all di elements are equal to the value 1;

• vector 0i whose all di elements are equal to the value 0;

• diagonal matrix Bi whose diagonal elements are constants

b1,b2,...,bdi
defining a single tile size;

• set TILEi including the iterations belonging to a parametric tile

defined with parameters ii1,ii2,...,iidi as follows:

TILEi(IIi) = [IIi]→ { [Ii] | Bi ∗ IIi + LBi ≤ Ii ≤
min (Bi ∗ (IIi + 1i) + LBi − 1i, UBi) ∧ IIi ≥ 0i };
• set II SETi including the identifiers of corresponding tiles:

II SETi = { [IIi] | IIi ≥ 0i ∧Bi ∗ IIi + LBi ≤ UBi }.



202 W lodzimierz Bielecki, Piotr Skotnicki

Algorithm 1: cont’d

3. Carry out a dependence analysis to produce a set of relations

Ri,j , i, j = 1, 2, ..., q describing all of the dependences present in this loop

nest.

4. Normalize the tuples of relations Ri,j and sets TILEi, i, j = 1, 2, ..., q by

applying schedule S, received in step 1. Introduce a new dimension in

the normalized parameter space for each fixed element of the tuples,

equal to the value of that element, and group the identifiers in

sets II SETi.

5. Calculate a union of all normalized sets TILEi, i = 1, 2, ..., q and denote

the result as TILE.

6. Calculate a union of all normalized sets II SETi, i = 1, 2, ..., q and denote

the result as II SET .

7. Calculate a union of all normalized relations Ri,j , i, j = 1, 2, ..., q and

denote the result as R.

8. Form a relation R TILE representing inter-tile dependences as follows:

R TILE = { [II]→ [JJ ] | II, JJ ∈ II SET ∧ II 6= JJ ∧ ∃I, J : I ∈
TILE(II) ∧ J ∈ TILE(JJ) ∧ J ∈ R(I) }.

9. Introduce a parametric point, P , in the n-dimensional normalized space:

P = [ii1, ii2, ..., iin]→ { [i1, i2, ..., in] | ii1 = i1 ∧ ii2 = i2 ∧ ... ∧ iin = in }.
10. Introduce a parametric set, P LT :

P LT = [ii1, ii2, ..., iin]→ { [i1, i2, ..., in] | (i1, i2, ..., in) ≺ (ii1, ii2, ..., iin) }.
11. Verify whether relation R TILE is lexicographically forward, i.e., whether

the following condition is satisfied:

R TILE(P ) ∩ P LT = ∅.

If it is not satisfied, then end, the algorithm cannot be applied.

12. Generate code enumerating statement instances of a single parametric tile,

represented with set TILE, in the lexicographic order, by means of

applying any code generator.

3.2. Working example

In order to illustrate the presented approach, let us consider the following working

example of a multi-statement, imperfectly-structured loop nest.

Example 1.

for (i = 1; i <= 4; ++i) {

S1: B[i] = A[i+1][4] + B[i+1];

for (j = 1; j <= 4; ++j) {

S2: A[i][j] = A[i-1][j];

}

}
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The loop nest can be translated into the following polyhedral model:

2⋃
k=1

LDk := { S1[i] | 1 ≤ i ≤ 4 } ∪ { S2[i, j] | 1 ≤ i, j ≤ 4 } ,

S := { S1[i]→ [i, 0, 0] } ∪ { S2[i, j]→ [i, 1, j] } ,

RA := { S2[i, j]→ A[−1 + i, j] | 1 ≤ i, j ≤ 4 } ∪
{ S1[i]→ A[1 + i, 4] | 1 ≤ i ≤ 4 } ∪
{ S1[i]→ B[1 + i] | 1 ≤ i ≤ 4 } ,

WA := { S2[i, j]→ A[i, j] | 1 ≤ i, j ≤ 4 } ∪ { S1[i]→ B[i] | 1 ≤ i ≤ 4 } .

A data dependence analysis (4) over the access relations reveals the following

data dependences:

2⋃
k=1

2⋃
l=1

Rk,l := { S1[i]→ S1[1 + i] | 1 ≤ i ≤ 3 } ∪

{ S2[i, j]→ S2[1 + i, j] | 1 ≤ i ≤ 3 ∧ 1 ≤ j ≤ 4 } ∪
{ S1[i]→ S2[1 + i, 4] | 1 ≤ i ≤ 3 } .

The data dependences described by relation R can be presented by means of

a directed graph whose edges connect pairs of dependent statement instances repre-

sented by vertices. In particular, there exists an edge between two vertices iff one

defines the source of a dependence and another defines the target of this dependence.

As far as the working example is considered, the corresponding dependence graph is

shown in Figure 1a. It is worth to note that we deal with the two separate iteration

spaces, one for each statement – the labels i(S2) and j(S2) denote the 2-D iteration

space of statement S2, and correspond to iterators i and j, respectively, i.e., for each

statement instance S2[i, j] there exists a corresponding iteration point in that space;

the label i(S1) denotes the 1-D iteration space of iterator i for statement S1.

For the purpose of our demonstration, we use tiles of the size 2 for S1, and of the

size 2× 2 for S2. Based on the working loop nest iteration domain and the tile sizes,

we define the following two parametric sets (2):

TILE1 := [ii]→ {S1[i] | i ≥ 1 + 2ii ∧ ii ≤ 1 ∧ i ≤ 2 + 2ii ∧
ii ≥ 0 ∧ i ≥ 1 ∧ i ≤ 4 } ,

T ILE2 := [ii, jj]→ {S2[i, j] | i ≥ 1 + 2ii ∧ ii ≤ 1 ∧ i ≤ 2 + 2ii ∧
ii ≥ 0 ∧ j ≥ 1 + 2jj ∧ jj ≤ 1 ∧ j ≤ 2 + 2jj ∧
jj ≥ 0 ∧ i ≥ 1 ∧ i ≤ 4 ∧ j ≥ 1 ∧ j ≤ 4 } ,

where ii, jj are parameters defining tile identifiers and the notation [x, y, z, ...] →
{ [...] | constraints } means that [x, y, z, ...] are parametric variables in the constraints
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of a set. For example, set TILE2 for the vector (ii = 0, jj = 1)T contains statement

instances included in the set {S2[1, 3]; S2[1, 4]; S2[2, 3]; S2[2, 4] }. The tiled iteration

spaces for the working example are presented in Figure 1b.

a) b)

j(S2)

i(S2)

i(S1) j(S2)

i(S2)

i(S1)

Figure 1. Dependences and tiles for the working example: a) data dependence graph; b) tiled

loop nest space at time 0.

Applying formula (3) we obtain the following sets II SET i, i = 1, 2, of valid tile

identifiers:

II SET1 := { [ii] | 0 ≤ ii ≤ 1 } ,

II SET2 := { [ii, jj] | 0 ≤ ii ≤ 1 ∧ 0 ≤ jj ≤ 1 } .

Subsequently, we normalize the computed sets and relations by means of applying

the scheduling function S, which yields the normalized structures shown below:

TILE := [ii, kk, jj]→ { [i, 1, j] | kk = 1 ∧ jj ≤ 1 ∧ i ≥ 1 + 2ii ∧ i ≤ 4 ∧ i ≥ 1 ∧
i ≤ 2 + 2ii ∧ j ≥ 1 + 2jj ∧ j ≥ 1 ∧ j ≤ 2 + 2jj } ∪
{ [i, 0, 0] | kk = 0 ∧ jj = 0 ∧ i ≥ 1 + 2ii ∧ i ≤ 4 ∧ i ≥ 1 ∧ i ≤ 2 + 2ii } ,

II SET := { [i, 1, j] | i ≤ 1 ∧ i ≥ 0 ∧ j ≤ 1 ∧ j ≥ 0 } ∪
{ [i, 0, 0] | i ≤ 1 ∧ i ≥ 0 } ,

R := { [i, 1, j]→ [1 + i, 1, j] | i ≤ 3 ∧ i ≥ 1 ∧ j ≤ 4 ∧ j ≥ 1 } ∪
{ [i, 0, 0]→ [1 + i, 1, 4] | i ≤ 3 ∧ i ≥ 1 } ∪
{ [i, 0, 0]→ [1 + i, 0, 0] | i ≤ 3 ∧ i ≥ 1 } .
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As far as the working example is considered, relation R TILE (5), describing

inter-tile dependences, is represented as follows:

R TILE := { [ii, kk, jj]→ [ii′, kk′, jj′] | jj′ ≤ 1− kk + jj ∧
jj′ ≥ −kk + jj + kk′ ∧ jj ≥ 0 ∧ jj ≤ kk ∧ ii ≥ 0 ∧
ii′ ≥ ii ∧ ii′ ≤ 1 ∧ jj′ ≤ jj + kk′ ∧ kk′ ≥ kk ∧
jj′ ≥ ii+ jj ∧ jj′ ≥ 1 + jj − ii′ } .

The input and output tuples of relation R TILE denote normalized identifiers

of tiles. Figure 2 presents the cycle-free inter-tile dependence graph for the working

example. The vertices of the graph represent single tiles and correspond to the tiles

visible in Figure 1b; the edges between the vertices visualize inter-tile dependences

described by R TILE.

Figure 2. Inter-tile dependence graph for the working example.

3.3. Generation of code executing tiles under the free schedule

In this subsection, we show that a given relation R TILE is enough to form the

tile free schedule at run-time. We exploit the following definition of an ultimate

dependence source:

Definition 1. (Ultimate Dependence Source) An ultimate dependence source is

a source that is not a destination of another dependence. Given a dependence re-

lation R, the set SUDS , including all ultimate dependence sources, can be calculated

as (6).

SUDS = domain(R)− range(R) . (6)

According to the definition of the free schedule, set SUDS computed over relation

R TILE includes the tiles that have the timestamp equal to 0, i.e., they have to

be executed first. Because all these tiles are independent, they can be executed

in parallel. Once the computation of all these tiles is finished and all threads are

synchronized, we no longer need to consider the dependences that originate from those

tiles. We remove the associated vertices (along with their outgoing edges) from the

dependence graph, and carry out the above procedure again. From a mathematical

perspective, we have to subtract the elements of set SUDS from both – the domain
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of relation R TILE and from set II SET . Figure 3a shows the modified dependence

graph after applying the aforementioned steps. A newly-computed set SUDS will now

comprise tile identifiers that the free schedule assigns the timestamp equal to 1.

a) b)

j(S2)

i(S2)

i(S1) j(S2)

i(S2)

i(S1)

Figure 3. Tiles under the free schedule for the working example: a) remaining tiles at time 1;

b) remaining tiles at time 2.

The presented procedure is repeated by means of a while loop at run-time, until

the iteratively recomputed set SUDS is empty. Tiles associated with ultimate depen-

dence sources can be executed in parallel for a given while loop iteration. Parallel

flows of execution must be synchronized before subsequent calculations associated

with the next timestamp can be done.

Let us note that when the execution of the while loop finishes, there may still

be statement instances in the entire loop nest iteration domain that have not been

processed yet (see Figure 3b) because their associated tiles do not constitute a source

of any inter-tile dependence. For this reason, each iteration of the while loop updates

set II SET by subtracting the identifiers of the already processed tiles, so that the

remaining elements of a final set II SET can be scheduled for parallel execution at

the very end. To emit serial code enumerating statement instances within a single

parametric tile, we can apply any code generator that is able to generate loops enu-

merating the elements of set TILE in the lexicographical order. By exploiting the

code generation facilities of the Integer Set Library [19], we obtain the following code

for the working example.

if (kk == 1 && jj >= 0 && jj <= 1) {

for (int c0 = max(1, 2 * ii + 1); c0 <= min(4, 2 * ii + 2); c0 += 1)

for (int c2 = 2 * jj + 1; c2 <= 2 * jj + 2; c2 += 1)

A[c0][c2] = A[c0-1][c2];

} else if (kk == 0 && jj == 0)

for (int c0 = max(1, 2 * ii + 1); c0 <= min(4, 2 * ii + 2); c0 += 1)

B[c0] = A[c0+1][4] + B[c0+1];



Dynamic tile free scheduling for code with acyclic inter-tile dependence graphs 207

The statically generated code is common for all tiles. The distinction of which

statement is supposed to be executed is made by the additional if statements, bran-

ching out the execution flow depending on the values of symbolic constants ii, kk, jj.

The code is invoked as many times as there are tile identifiers included in set II SET .

The values of symbolic constants are extracted from this set in the order determined

by the run-time-computed free schedule.

Algorithm 2 lists the steps of code generation that allow for executing tiles at

run-time under the free schedule. One possible implementation of Algorithm 2 is

presented in the next section.

Algorithm 2: Code generation for dynamic tile execution under

the free schedule.
Input: Set II SET comprising all tile identifiers, relation R TILE

describing inter-tile dependences, set TILE describing tiles, original

schedule S.

Output: Code for dynamic free schedule-based execution of tiles.

Emit code that:

(1) fixes the values of symbolic constants of set II SET and relation

R TILE with actual values of loop nest parameters

(2) computes a set of ultimate dependence sources according to the formula

SUDS ← domain(R TILE)− range(R TILE)

(3) includes the following while loop

while SUDS 6= ∅ do

parallel for each II ∈ SUDS do

for each I ∈ TILE(II) under schedule S do

execute(I)

end

end

(4) modifies the sets and relation below

II SET ← II SET − SUDS

R TILE ← R TILE \ II SET
SUDS ← domain(R TILE)− range(R TILE)

end

(5) executes the remaining tiles to be run at the last schedule time

parallel for each II ∈ II SET do

for each I ∈ TILE(II) under schedule S do

execute(I)

end

end
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4. Implementation and experimental study

The approach presented in this paper has been incorporated into the TC optimizing

compiler1 which utilizes the Polyhedral Extraction Tool [22] for extracting a poly-

hedral representation of an input sequence of loops and the Integer Set Library [19]

for performing a dependence analysis, manipulating integer sets and relations, and

generating target code.

For experiments, we have chosen the PolyBench/C 4.1 [18] benchmark suite com-

prising a total of 30 programs, including linear algebra kernels, data mining algo-

rithms, stencil computations, and dynamic-programming-based solvers.

The scope of the applicability of the discussed approach is limited to acyclic

inter-tile dependence graphs. Algorithm 1 finds 13 kernels in PolyBench for which an

inter-tile dependence graph is cycle-free, i.e., 43% kernels in PolyBench can be tiled

by means of the presented approach. The list of names of these kernels is as follows:

2mm, 3mm, atax, bicg, correlation, covariance, gemm, gemver, gesummv, mvt, syr2k,

syrk, trmm. It is worth to note that the technique for recognizing cycle-free graphs

used in Algorithm 1 finds all cycle-free inter-tile dependence graphs associated with

PolyBench benchmarks.

The TC compiler to generate code, executing tiles at run-time, uses the API

of the Integer Set Library [19, 20] by embedding the textual representations of rela-

tion R TILE and set II SET directly in source code, and operating on them using

functions that the library offers; i.e., we used the isl set foreach point function

for scanning the elements of set SUDS as well as other common operations, including

the isl set subtract and isl map restrict domain functions. The distribution of

work among threads is accomplished by means of OpenMP API [13]. In particular,

we have utilized the task construct of the OpenMP 3.0 specification to delegate tile

execution to an available thread, and the taskwait construct to synchronize parallel

execution flows. Below, we present a reference implementation in C of our dynamic

scheduler. The create task function extracts the values of symbolic constants from

a point-type argument and executes the statically generated code of a single tile in

an OpenMP task region.

rtile = isl_map_read_from_str(ctx, /**/);

ii_set = isl_set_read_from_str(ctx, /**/);

uds = isl_set_subtract(isl_map_domain(isl_map_copy(rtile))

, isl_map_range(isl_map_copy(rtile)));

#pragma omp parallel

#pragma omp single

{

while (!isl_set_is_empty(uds)) {

isl_set_foreach_point(uds, &create_task, NULL);

#pragma omp taskwait

1http://tc-optimizer.sourceforge.net
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ii_set = isl_set_subtract(ii_set, uds);

rtile = isl_map_intersect_domain(rtile, isl_set_copy(ii_set));

uds = isl_set_subtract(isl_map_domain(isl_map_copy(rtile))

, isl_map_range(isl_map_copy(rtile)));

}

isl_set_foreach_point(ii_set, &create_task, NULL);

#pragma omp taskwait

}

After incorporating generated code back into a corresponding source file, the

entire test suite was compiled with the GNU Compiler Collection 4.8.3 using the −O3

optimization. The result of each program execution – the content of an array that

a specific kernel computes – was subsequently compared with the values produced by

a corresponding original kernel.

All experiments were carried out on a multi-core, highly parallel architecture.

The hardware and software configurations used to carry out the experiments are

shown in Table 1.

Table 1

Environment used for experiments

Processor Intel Xeon E5-2699 v3

Clock 2.3 GHz

Number of sockets 2

Number of cores / socket 18

Number of threads / socket 36

L1 data cache / core 32 KB

L2 cache / core 256 KB

L3 cache / socket 45 MB

RAM memory 256 GB @ 2133 MHz

Linux kernel 3.10.0 x86 64

Compiler gcc 4.8.3

Compiler flags –O3 –fopenmp

Under experiments, each test was repeated multiple times, using 4, 8, 16, 32, 48

and 64 threads in subsequent runs. Speed-up was computed over the serial execution

time of an untransformed original kernel.

Table 2 presents the problem sizes used for the experiments, as well as the size

of a tile side in each dimension, and the serial execution time of the original kernel

code. For most tests, we used problem sizes classified by PolyBench as extra large

data sets. For some kernels, we needed to use larger values for loop upper bounds

than those defined in benchmarks, in order to divide their iteration spaces into the

sufficient amount of tiles that would allow for positive speed-up. The presented size of
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a tile is the one that performed best out of all tested configurations and indicates the

value applied to each dimension of an iteration vector. For each loop nest, the size of

a single tile needed to be adjusted individually, based on a set of trials. Additionally,

in order to reach positive speed-up, tile sizes needed to be increased to values ranging

from 128 up to 1024. The greater the tile size is, the fewer synchronization events

and run-time schedule computations are required; however, this also results in a lower

parallelism degree and data locality. As a consequence, most of the tested programs

reach their peak performance using fewer than 64 threads, thus leaving some of avai-

lable processing units idle. That is, the size of a single tile determines the overall

number of tiles in an iteration space, and the amount of parallel work in subsequent

timestamps of free-schedule based processing – greater tile sizes reduce the number of

tiles that can be executed in parallel at a given timestamp. At some point, the cost

of spawning and synchronization of additional threads becomes large. This results in

the slowdown of parallel code speed-up.

Table 2

Problem sizes used for experiments; the size of a single tile

Kernel Problem size Tile size Serial time [s]

2mm
NI = 1600, NJ = 1800, NK = 2200,

NL = 2400
256 11.6747

3mm
NI = 1600, NJ = 1800, NK = 2000,

NL = 2200, NM = 2400
256 15.0808

atax M = 15000, N = 15000 1024 0.3646

bicg M = 15000, N = 15000 1024 0.3079

correlation M = 2600, N = 3000 128 48.4425

covariance M = 2600, N = 3000 128 48.3946

gemm NI = 2000, NJ = 2300, NK = 2600 256 8.1275

gemver N = 15000 512 1.1568

gesummv N = 10000 512 0.1849

mvt N = 15000 512 0.8037

syr2k M = 2000, N = 2600 128 98.3569

syrk M = 2000, N = 2600 128 9.9211

trmm M = 2000, N = 2600 256 15.9131

Figures 4 and 5 summarize speed-up and efficiency achieved for each examined

kernel. As mentioned above, the large tile sizes used in our experiments do not allow

to achieve considerable parallel code performance, but the limited cost of dynamic

scheduling overheads leads to visible speed-up. In the case of relatively simple loop

nests like gesummv whose serial execution time is low, the dynamic schedule overheads

result in the slowdown of parallel program speed-up.
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Figure 4. Speed-up and efficiency for parallel tiled code generated by TC.

The code generated by TC for the analyzed loop nests can be found at http:

//tc-optimizer.sourceforge.net in the results directory.

Based on the results obtained, we may conclude that dynamic free scheduling

applied to the PolyBench kernels whose inter-tile dependence graphs are cycle-free,

allows us to achieve significant parallel tiled code speed-up. For all examined ker-

nels, even a small number of threads allows us to reduce the overall execution time.

The experiments carried out prove that the time overhead of run-time computati-

ons required to implement dynamic free scheduling is low and does not prevent us

from achieving considerable speed-up of parallel tiled code for which a corresponding

inter-tile graph is cycle-free.
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Figure 5. Speed-up and efficiency for parallel tiled code generated by TC.

5. Related work

The presented approach is within the data flow computation framework. In data flow,

a computation can be represented by a directed graph. The nodes of the graph are

operators and the arcs represent data paths. An arc into a node is an input operand

path; an arc leaving a node is a result path. Execution of a data flow graph is

based on operand availability at each node. Systolic arrays [8] and Maxeler dataflow
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machines [15] exploit this framework. The main differences between the presented

approach and Systolic arrays and Maxeler dataflow machines are as follows. In the

presented approach, a data flow graph is formed at run-time, while in Systolic arrays

and Maxeler machines, it is formed at compile-time and then it is mapped into low-

level hardware. The presented approach is to be implemented in general-purpose

computer systems, while Systolic arrays and Maxeler machines are problem-specific

ones. To our best knowledge, the MaxCompiler of Maxeler machines does not provide

any loop nest tiling transformation.

Dynamic scheduling has already been recognized as a powerful and scalable al-

ternative to well-known tiling techniques aimed at generation of static code. Most of

common approaches are based on the Affine Transformation Framework. Paper [1]

proposes a priority queue-based task scheduler, with a scheduling strategy governed

by a critical path analysis. The priority metric of each task is computed as a length

of the longest path in an associated inter-tile dependence graph, which starts with

the prioritized vertex and ends with a leaf (a node with no successors). Tasks are

enqueued as soon as their dependences are resolved. Similarly to that approach, our

algorithm requires an inter-tile acyclic dependence graph for finding a legal order of

tiles execution. By contrast, we do not consider any affine transformations for tiled

code generation, an inter-tile dependence graph is formed statically, and we exploit

the free schedule calculated at run-time.

Paper [9] presents DynTile, the system that employs dynamic scheduling for

parallel execution of parametric tiles; i.e., it uses a dynamic scheduler to extract

dependences among tiles whose sizes are run-time parameters. The algorithm discus-

sed in that paper pre-processes the input loop nest to enable tiling and then applies

wavefront processing of the computed rectangular tiles. In contrast to that techni-

que, our approach does not require finding any affine transformation to enable tiling;

instead of wavefronting based on affine transformations, we find and apply the free

schedule at run-time.

Papers [16, 17] introduce tiling methodology for sparse matrix computations.

Effective processing of sparse matrices requires the introduction of a memory-efficient

data structure, compressed sparse row (CSR), which includes only nonzero values from

the corresponding matrix. This entails non-affine loop bounds and indirect memory

references (an index is expressed as a value of another memory location, unknown

until run-time), which inhibits the application of any compile-time transformation ai-

med at data locality enhancement. The algorithm is based on the inspector/executor

framework for performing run-time iteration reordering, i.e., “For sparse tiling, the

inspector examines the non-zero structure of the sparse matrix at run-time, generates

a data reordering and a schedule based on a tiling function, and remaps the sparse

matrix and vectors based on the data reordering. The executor is a transformed ver-

sion of the original code that uses the remapped matrix and vectors and the schedule

created by the inspector” [17].
Free scheduling for arbitrarily nested loops was studied in paper [3]. That techni-

que extracts statically fine-grained parallelism based on calculating the power k of
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a relation representing dependences in a loop nest. In contrary to that approach,

the algorithm introduced in the present paper extracts coarse-grained parallelism and

does not require any representation of the power k of a dependence relation.

Mullapudi and Bondhugula [12] suggested checking whether an inter-tile depen-

dence graph is cycle-free. If not, splitting or merging problematic original tiles can

be applied manually to break cycles and then form a tile schedule dynamically, i.e.,

at run-time. But the authors do not suggest any way allowing for automatic gene-

ration of code implementing dynamic scheduling, the two programs presented were

tiled manually.

The technique of forming and representing tiles by means of a parameterized

set, that the presented approach builds on, was proposed in paper [2]. However,

that paper focuses on statically generated tiled code. The technique was extended

in paper [14] which describes an approach for extracting synchronization-free slices

composed of tiles.

6. Conclusions

In this paper, we have presented a tiling approach for locality enhancement and

extraction of coarse-grained parallelism from arbitrarily nested parameterized affine

loops. The main merit of the introduced approach is that it does not require neither

any affine transformation nor dependence graph transitive closure to find the free sche-

dule at run-time when an inter-tile dependence graph based on original rectangular

tiles is cycle-free.

This considerably reduces the computational complexity of the introduced dyna-

mic tile schedule when compared to that of well-known techniques. As a consequence,

the approach allows for achieving considerable speed-up of parallel codes for tiled loop

nests with cycle-free inter-tile dependence graphs. Techniques aimed at breaking cy-

cles in the original inter-tile dependence graph and then calculating the free schedule

at run-time will be addressed in our future publications.
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