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USING REDIS SUPPORTED BY NVRAM
IN HPC APPLICATIONS

Abstract Nowadays, the efficiency of storage systems is a bottleneck in many modern

HPC clusters. High performance in the traditional approach – processing

using files – is often difficult to obtain because of a model’s complexity and

its read/write patterns. An alternative approach is to apply a key-value da-

tabase, which usually has low latency and scales well. On the other hand,

many key-value stores suffer from a limitation of memory capacity and vulne-

rability to serious failures, which is caused by processing in RAM. Moreover,

some research suggests that scientific data models are not applicable to the

storage structures of key-value databases. In this paper, the author proposes

a resolution to the above-mentioned issues by replacing RAM with NVRAM.

A practical example is based on Redis NoSQL. The article also contains three

domain-specific APIs that show the idea behind transforming from an HPC

data model to Redis structures as well as two micro-benchmarks results.

Keywords high-performance computing, storage systems, NoSQL, NVRAM

Citation Computer Science 18(3) 2017: 287–300

287



288 Artur Malinowski

1. Introduction

The computational power of supercomputers is constantly growing. Today, the most-

powerful machine in the Top500 list (June 2016 edition) is composed of more than

10,000,000 cores and can achieve performance at a level above 90,000 Tflop/s [19].

Unfortunately, increasing the number of operations per second using CPUs and GPUs

is not sufficient for providing a well-prepared environment for high-performance com-

putations (HPC). Other elements that also play a key role in providing system effi-

ciency are, for instance, network, failure prevention strategies, and – especially with

often-data-intensive HPC applications – storage.

In a typical cluster environment, storage is provided by a parallel file system

(PFS); e.g., General Parallel File System (GPFS), Lustre, or OrangeFS. Such a file

system is usually distributed among several server machines to balance the load bet-

ween them. With high-end hardware, a scalable network, and software customization,

modern PFS can reach an aggregated transfer rate of 1Tb/s [16]; however, this still

could be a bottleneck for many applications. Storage systems based on files are con-

venient for cluster administrators – a PFS compatible with POSIX could be mounted

in Unix/Linux as a regular file system and accessed remotely when operating on files

before and after computations. Modern solutions, like VeilFS [4] or OneData [20, 23],

are even able to hide various storage systems located in different locations behind

a common interface. Another advantage of using an PFS is its integration with lib-

raries helpful in application development. Widely used in HPC, Message Passing

Interface (MPI) includes an MPI I/O – parallel input and output API that covers

PFS under the layer of functions that allows for the simultaneous accessing of files

from multiple processes in a cluster [6]. MPI is only an API, but there are several

mature implementations that offers highly optimized MPI I/O.

Many data structures are inefficient when stored in files, and their straightfor-

ward implementation could be the cause of a drop in performance. It is possible to

create a fast implementation of operations, like dynamic changes in graph topology

or adding/removing elements of a list, but this is usually connected with additio-

nal developer effort. An alternative for using files that also allow for sharing data

between many processes on multiple nodes is a key-value store. Typically, this is

a database that is responsible for the management of an associative array. Today,

there are a plenty of implementations, many of which are focused on performance

and ease of use. Although widely used in web applications or big data processing, it

could be also applied in various HPC scenarios.

Some popular key-value stores are well-known for their great performance based

on operating in volatile RAM. However, the capacity of RAM could be insufficient in

many cases. Moreover, with its high possibility of failure occurrence and relatively

high cost of computations, replacement of a file system with an in-memory database in

HPC would introduce an additional risk of losing one’s results. In a typical example,

such a risk could be lowered by periodically saving the application state into persistent

memory (checkpointing). In this situation, the final performance gain from storage
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system replacement would be decreased by costly checkpointing. An ideal solution for

this problem would be basing a key-value database on fast and capacious non-volatile

random-access memory (NVRAM).

This paper aims to propose an alternative for the widely used file based storage

systems in HPC applications. The motivation of searching for such a solution is as

follows:

• storing data in files for more-complicated or dynamic data structures is neither

convenient nor efficient,

• parallel file systems often create a bottleneck in HPC, so it is valuable to verify

a different approach that also focuses on performance and scalability,

• today’s well-known storage solutions are based on fast, volatile, size-limited RAM

and slower block devices like SSDs and HDDs; however, we can expect new

devices that could potentially eliminate some storage system weaknesses in the

immediate future.

The research will cover the justification of using key-value storage in scienti-

fic computing, taking into consideration new system properties related to emerging

memory technologies. The proposed architecture and practical examples will focus

on Redis software supported by NVRAM. According to the author’s knowledge, the

combination of software and hardware components discussed in this paper is novel

for HPC usage (as is its proof-of-concept validation). Finally, the author will prove

that, in many cases, key-value storage is enough for providing a data, performing

computations, and storing a result in HPC.

2. Related work

Key-value databases have recently become very popular; this is connected to the

NoSQL phenomenon triggered primarily by Web 2.0 platforms, cloud computing, and

big data processing [14]. As an alternative to relational database management systems

(RDBMS), NoSQLs do not impose any structure for data and often do not support

ACID (atomic, consistent, isolated, durable) transactions.

As a result, key-value NoSQLs are much more flexible, usually offer higher query

speed, and provide high concurrency [8]. Studies show that combining HPC with

grid and cloud computing is not only feasible [13], but applying NoSQL into an HPC

environment could also be beneficial [9]. Typical examples of such stores are the

Oracle NoSQL Database1 and Redis2.

One of the most-desirable features of the high throughput computing systems

used in science is their scalability; this is meant as the capability of handling an incre-

ased load when providing bigger resources, typically by adding hardware. Practically,

1http://www.oracle.com/technetwork/database/database-technologies/nosqldb/overview/

index.html
2http://redis.io/
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this is often achieved by working in a distributed environment. Key-value stores that

are also distributed are well-known in literature as distributed hash tables (DHT).

Many DHTs have been proposed that have reported good performance. One of these

(Tapestry) focuses on routing messages directly to the closest copy of an object or

service [21, 22]. The system is decentralized, self-organized, and able to recover from

failures by changing the route to the node that contains redundant data. Several

applications use Tapestry (i.e., SpamWatch3, a distributed spam-filtering system, or

OceanStore4, a distributed storage utility), but its use has not been reported in HPC.

Several DHT implementations were designed to fulfill the HPC needs. D1HT,

a solution that opted to trade off latency for bandwidth, has been tested on a large

environment that consists of 200 physical nodes. Results show that D1HT has low

latency, high scalability, and could be used in many applications [15]. On the other

hand, D1HT is not persistent; therefore, the data would be lost in the case of a major

system failure (for instance, a power failure). The Zero hop Distributed Hash Table

(ZHT), another DHT reported to work well with HPC applications, provides an option

to store its state into persistent memory [12]. ZHT offers only four basic operations:

insert(key, value), append(key, value), lookup(key), and remove(key), which

makes the storage of more complex data structures inconvenient.

Some research also includes criticism of applying NoSQLs in HPC. In article

Scientific Computing Doesn’t Need noSQL, D. Buttler justifies the thesis included in

the title by showing that some objects could not be easily transformed into NoSQL

data model [2]. He mentions scalars, vectors, topology, algebra, and calculus operati-

ons as examples. While it is justified when using NoSQL directly, the author believes

that many objects could be stored in such databases in a convenient way by using an

additional layer with the API of a specific domain.

As stated in the introduction, databases operating on RAM could be insufficient

in HPC, so there is a need for better memory technology. A survey prepared by

M.H. Kryder and C.S. Kim suggests that one of the described NVRAM technologies is

likely to succeed in 2020 [11]. Some researchers assumed that, in the immediate future,

the next-generation memory would became phase-change memory (PCM) [7, 18].

Another NVRAM memory technology (3D XPoint, announced by Intel and Micron)

was expected to appear on market in 2016 with much better properties than the

alternatives [5, 10, 17]. So far, the NVRAM devices are still yet to be published.

Performance of currently released devices is comparable more to SSD than to RAM.

In accordance with the previously mentioned predictions, it is a reasonable assumption

that the problem with volatility and limited capacity of RAM will soon be solved.

There are several platforms that provide storage and processing features that

could be potentially extended with NVRAM. The Apache Spark cluster-computing

3http://www.zhoufeng.net/eng/spamwatch/
4https://oceanstore.cs.berkeley.edu/
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framework is an example that has been widely tested in practice (i.e., for matrix

computations [1] or graph processing [3]). A great advantage of Spark is its modular

architecture, which means it contains Spark Core (foundation of the project), Spark

Streaming (event processing that can utilize not only plain TCP/IP but also more-

comprehensive solutions; i.e., ZeroMQ or Apache Kafka), or a distributed storage

system (with the support of many providers like the Hadoop Distributed File System

(HDFS) or Cassandra NoSQL), among others. Multiple layers and various compo-

nents offer the possibility of NVRAM integration – not only with storage, but also

with processing or messaging. Although promising, the framework currently does not

support NVRAM.

Moreover, it is designed to work with modern programming languages like Java,

Python, and Scala, which could be inconvenient for typical HPC applications based

on C/C++ or Fortran with MPI or OpenMP support.

According to the author’s knowledge at the moment of writing the paper, the

only NoSQL database that supports NVRAM features is a special version of Redis5.

Moreover, there have also been several attempts to create a software layer that will co-

ver Redis behind an easy-to-use domain-specific interface like Redis Graph – a module

that implements a graph database on top of Redis6.

3. Proposed architecture

3.1. Software components

In this section, the author proposes the exemplary architecture of an HPC environ-

ment supported by a key-value database. As a key-value store, Redis 3.1.103 enhanced

to use NVRAM is applied. This Redis extension internally uses the libpmemobj li-

brary7 – a solution that turns a file located in an NVRAM device into a persistent

object store. The project is in the initial phase and currently supports only a limited

number of Redis structures. In response to demand for a storage throughput, Redis

can be run as a single instance or in distribution using Redis Cluster8. The exemplary

architecture is illustrated in Figure 1.

The Redis database can be used in many programming languages used in HPC;

e.g., C, C++, Python, and Matlab. For testing purposes, the author uses the C

language along with MPI. Redis access is provided using hiredis client9. Redis storage

is covered by a specific API that is different for each application domain; e.g., graph

processing, natural language processing, particle movement simulation. The whole

technology stack is presented in Figure 2.

5https://github.com/pmem/redis
6https://github.com/swilly22/redis-graph
7http://pmem.io/nvml/libpmemobj/
8http://redis.io/topics/cluster-spec, http://redis.io/topics/cluster-tutorial
9https://github.com/redis/hiredis
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Figure 1. Top view of exemplary architecture with multiple nodes. Dashed rectangles indicate

separate physical machines.

Figure 2. Technology stack used for testing. MPI application calls domain-specific API –

abstract layer that covers Redis. Redis uses NVRAM as its persistent storage.

3.2. Domain-specific APIs – case studies

3.2.1. Graph processing

For directed graph processing In API, each vertex is stored as a set, while the edges

are represented by elements of this set. Basic operations that show the idea behind

this API are as follows:

1. getNeighbors(graph, vertexId)

• returned type: integer[],

• Redis pseudocode: SMEMBERS graph:vertexId,

• complexity: O(n), where n is the number of a vertex’s neighbors;

2. addEdge(graph, srcVertexId, dstVertexId)

• returned type: void,

• Redis pseudocode: SADD graph:srcVertexId dstVertexId,

• complexity: O(1);

3. removeEdge(graph, srcVertexId, dstVertexId)

• returned type: void,

• Redis pseudocode: SREM graph:srcVertexId dstVertexId,

• complexity: O(1);
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4. removeVertex(graph, vertexId)

• returned type: void,

• Redis pseudocode:

for each i in SMEMBERS graph:vertexId

SREM graph:i vertexId

DEL graph:vertexId,

• complexity: O(n), where n is the number of a vertex’s neighbors;

5. isConnected(graph, srcVertexId, dstVertexId)

• returned type: boolean,

• Redis pseudocode: SISMEMBER graph:srcVertexId dstVertexId,

• complexity: O(1).

3.2.2. Counting n-grams

An N-gram is a sequence of n items (e.g., letters, syllables, words) from a particular

text; it is mainly used in natural language processing for predicting the next item in

a sequence. The selected API functions are as follows:

1. incNGramCount(ngram)

• returned type: void,

• Redis pseudocode: INCR ngram,

• complexity: O(1);

2. incNGramCount(ngram, count)

• returned type: void,

• Redis pseudocode: INCR ngram count,

• complexity: O(1);

3. getNGramCount(ngram)

• returned type: integer,

• Redis pseudocode: get ngram,

• complexity: O(1).

3.2.3. Processing vectors

The third API is used for operating on a vector. This implementation is efficient only

for a subset of vector operations, as it uses lists in Redis (accessing the n-th element of

a list has a complexity equal to O(n)). Several selected API functions are as follows:

1. createVector(vector, elements)

• returned type: void,

• Redis pseudocode: RPUSH vector elements,

• complexity: O(n), where n is the number of elements;
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2. getVector(vector)

• returned type: integer[] or float[] or double[] or string[],

• Redis pseudocode: LRANGE vector 0 -1,

• complexity: O(n), where n is the number of elements;

3. getVectorElement(vector, index)

• returned type: integer or float or double or string,

• Redis pseudocode: LINDEX vector index,

• complexity: O(1);

4. setVectorElement(vector, index, element)

• returned type: void,

• Redis pseudocode: LSET vector index element,

• complexity: O(n), where n is the length of the vector.

4. Experiments

Experiments focus on proving that Redis is able to handle requests quickly, even

under a heavy load. For testing purposes, three micro-benchmarks were prepared.

First, the application’s task is distributed n-gram counting. Each process scans the

text, retrieves the n-grams, and increments a global counter stored in Redis. The

text sample for each process contains about 10,000 n-grams (+/−2%). The second

micro-benchmark is a simple directed graph generator.

Each process selects two random vertices (according to uniform distribution) and

then – if it does not exists – adds an edge between them. At the end, a single process

is supposed to generate 50,000 edges. The third application focuses on different sizes

of input/output data. It simply stores and loads the data chunks multiple times.

4.1. Testbed environment

All of the tests were performed using 96 nodes of a K2 cluster, each node equipped with:

• 2 x Intel Xeon E5345 (together 8 physical cores),

• 8GB of RAM,

• 10Gb/s Ethernet connection.

An additional single node with parameters as specified above was dedicated for

the Redis server. As NVRAM devices are not available on the market yet, Redis

operated on RAM. The cluster is managed by Rocks Clusters, and the computing

nodes work under CentOS 6.5. As an MPI implementation, MPICH 3.2 was used.

4.2. Results

4.2.1. Various numbers of processes

Figure 3 presents the results for the n-gram counting micro-benchmark, Figure 4

shows the results for the random graph generator. In both experiments, execution
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time grows linearly according to the number of processes (which proves that about

a hundred nodes, each running eight processes, was not able to overload a single Redis

server). Because of oversubscribing (assigning more processes than physical cores on

a single node), the number of processes was limited to 800, as it caused a performance

drop on the computing nodes.
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Figure 3. Performance results of counting n-grams.
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Figure 4. Performance results of constructing a directed graph model.
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For both experiments, the average handle times of a single request were calcu-

lated. Figure 3 and Figure 4 show that the time of processing a single request was

constant and lower than 10ms. It should be also noted that, on the target environ-

ment, this value would depend on the performance of the NVRAM devices.

4.2.2. Various data sizes

The next two charts show the performance results for an application that loads (Fig. 5)

and stores (Fig. 6) data chunks of different sizes in Redis. The application was

executed on 100 nodes with 800 processes, and each process accessed the data 50,000

times. As illustrated with figures, write accesses up to 128 bytes are served really fast

– the average time of a synchronous store operation for a single data chunk was lower

than 9 ms. The situation is similar with loading the data from Redis – processing

was really efficient for chunks up to 512 bytes, with an average processing time lower

than 9 ms. Further increasing the accessed data size introduces a noticeable delay in

processing; for instance, reading or writing 2kB of data is served within about 14 ms.

On the other hand, request processing time grows logarithmically with a single data

chunk size, which seems to be acceptable for many applications. It should be also

noted that bigger HPC data structures should be decomposed into smaller elements

as shown in exemplary domain-specific APIs. If it is not possible (i.e., when processing

large continuous blocks of data like images or geographic maps), traditional solutions

with processing files are more recommended.
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Figure 5. Performance results of loading data chunks from Redis.
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Figure 6. Performance results of storing data chunks into Redis.

5. Conclusion and future work

In this paper, the author proposed using a key-value database in HPC applications.

The motivation for this was its good performance, low latency, and high scalability

justified with many examples included in related work. The author highlighted the

problem of volatility and capacity limitation of memory usually used in key-value

storage and proposed solving it by using NVRAM, which will be available in the

near future. The research also introduced a basic hardware architecture and required

software components including exemplary domain-specific APIs.

As a key-value store, Redis enhanced to use NVRAM was proposed. Presented

fragments of APIs showed the idea behind transformation from scientific data ob-

jects into data structures available on Redis, but the approach could be extended to

other similar storage platforms. The last part of the paper was dedicated to expe-

riments with two micro-benchmarks that evaluated the performance of the proposed

architecture.

In the near future, the author will focus on the further development of domain-

specific APIs and publishing them under one of the open-source licenses. As NVRAM-

enabled devices are expected to become available soon, the author also plans to in-

corporate the presented approach into real-world HPC applications.
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