COMPUTER SCIENCE e VOL. 8 SPECIAL EDITION e 2007

KAMIL SzZYMANSKI*, GRZEGORZ DOBROWOLSKI*,
JAROSEAW KOZLAK*, ANNA ZYGMUNT*

A PROPOSITION

OF KNOWLEDGE MANAGEMENT METHODOLOGY
FOR THE PURPOSE OF REASONING

WITH THE USE OF AN UPPER-ONTOLOGY

This article describes a proposition of knowledge organization for the purpose of reasoning
using an upper-ontology. It presents a model of integrated ontologies architecture which
consists of a domain ontologies layer with instances, a shared upper-ontology layer with
additional rules and a layer of ontologies mapping concrete domain ontologies with the upper-
ontology. Thanks to the upper-ontology, new facts were concluded from domain ontologies
during the reasoning process. A practical realization proposition is given as well. It is based
on some popular Semantic Web technologies and tools, such as OWL, SWRL, nRQL, Protégé
and Racer.

Keywords: ontology, knowledge management, ontology integration, upper-ontology, reason-
ing

PROPOZYCJA METODOLOGII DO ZARZADZANIA WIEDZA
NA CELE WNIOSKOWANIA
Z WYKORZYSTANIEM ONTOLOGII WYZSZEGO POZIOMU

Artykul przedstawia propozycje organizacji wiedzy na cele wnioskowania z wykorzystaniem
ontologii wyzszego poziomu. Prezentuje model architektury zintegrowanych ontologii, sklada-
jacy sie z ontologii domenowych z instancjami, wspéldzielonej ontologii wyzszego poziomu
z dodatkowymi regutami oraz z warstwy ontologii mapujacych. Dzieki wiedzy wyzszego
poziomu uzyskano nowe fakty podczas wnioskowania. Zaprezentowano réwniez propozycje
praktycznej realizacji omawianego podejscia przy uzyciu popularnych narzedzi i technologii
dla Semantic Web, takich jak OWL, SWRL, nRQL, Protégé i Racer.

Stowa kluczowe: ontologia, zarzadzanie wiedza, integracja ontologii, ontologia wyzszego
poziomu, wnioskowanie

* Institute of Computer Science, AGH University of Science and Technology, Krakéw, Poland,
camel_sz0go2.pl; grzela@agh.edu.pl; kozlak@agh.edu.pl; azygmunt@agh.edu.pl

117

118 Kamil Szymanski, Grzegorz Dobrowolski, Jarostaw Kozlak, Anna Zygmunt

1. Introduction

Ountologies [4] are often used for knowledge representation in the Internet. One
of the most popular ontology description languages is OWL [15] with semantics
based on Description Logic [1]. Integrated ontologies [2, 19] enable us to share
and reuse knowledge from many different sources. One of the integration methods
is mapping [5, 10, 16, 18], which enable us to express equivalence or similarity be-
tween concepts of different ontologies. This way we can connect schemas of different
ontologies, broadening the description range of our ontology.

It is quite probable that once created an ontology needs some revision or extension
a little later. That modification can be caused by changing requirements or new kind
of information, which was not available to us at the time of ontology specification.
We need to integrate our ontology with another one to extend the description range
of our ontology and obtain new information from instances. The latter is possible
when the domains of integrated ontologies are similar or when we are integrating our
ontology with an upper-ontology. The paper focuses on the latter case. The concept of
an upper-ontology and its role in information integration and reuse is under research
of Standard Upper Ontology Working Group [24]. One of the effects of their work is
a general-purpose upper ontology, called SUMO [25, 17], which was successfully re-
used by many ontologies of different domains, like economy, finance, geography and
more [26]. This proved that a properly layered knowledge structure can be beneficial
to many other ontologies in terms of knowledge reuse. Let us use the following medical
example.

Imagine that a certain hospital has a knowledge base in the form of an ontology.
It contains the information about patients and their treatment. After some time, new
diseases are described in some other ontology as well as new symptoms of illnesses
already known. We would like to extend our knowledge base with these new facts.
Of course it is better to reuse the knowledge from the other ontology, if possible,
instead of writing the same from scratch. These two ontologies can be integrated after
mappings between corresponding concepts are created. The ontology of a new disease
will contain for example some rules about diagnosing that illness with methods already
known. The ontology of the new disease should be a part of an upper-ontology, because
there may be other hospitals which can benefit from new information contained in that
ontology. The mapping process, which was mentioned earlier, will be one of the use
cases in our knowledge management system. The second feature of the application
is connected with the use of those integrated ontologies. Doctors are able to query
the extended knowledge base and they can receive information whether their patients
can suffer from the new illness.

One of the goals of Semantic Web [9] is knowledge integration and reuse. When
we have integrated ontologies, we operate on a bigger knowledge. Moreover, new facts
can be inferred during the reasoning phase [1]. Knowledge integration is a complex
task because of the freedom of world modeling and different information range of

A proposition of knowledge management methodology for the purpose (...) 119

used concepts, naming just a few of the potential problems. That is why the process
is believed to give correct results only when performed by a man [19, 20].

The paper focuses on a crucial issue in knowledge management like correct
and clear data organization, which divides information of different kinds into separate
modules. It should support knowledge reuse and inferring new facts during automated
reasoning. A universal model for integrated ontologies is presented in the article. It
consists of a layer of concrete domain ontologies with instances, an upper-ontology
layer with additional rules and ontologies mapping knowledge from domain ontologies
with corresponding upper-ontology concepts. There is obviously an interface layer to
query integrated ontologies as well. Thanks to the ontology integration, new facts
from domain ontologies could be concluded during reasoning. The article also gives
answers to practical engineers’ questions about technology and tools that can be used
for the presented knowledge management methods, along with a short description as
well as pros and cons in using them.

2. The concept of a knowledge management system
operating on integrated ontologies

Several knowledge elements were specified. Each of them has a corresponding user
with a certain role. There are the following layers in the system:

e An upper-ontology. It defines universal rules with the use of which knowl-
edge base queries are performed. The upper-ontology usually contains generalized
domain-specific knowledge. It contains classes, properties and rules needed to ob-
tain answers to predefined question templates. A person called an upper-ontology
expert is associated with this ontology layer. It is a person who defines this on-
tology, namely its classes, properties, rules as well as the mentioned question
templates. Then, the upper-ontology is used during the reasoning process.

¢ A domain ontology. It is an ordinary ontology with instances. This is the lowest
layer which carry basic domain-specific data on which we reason. This ontology
is created by a user called domain expert — a person who knows this domain well.

e A mapping ontology. It is an intermediate layer which binds upper-ontology
with domain ontology. It is usually prepared by a domain expert who knows
domain ontology very well. He obviously has to learn the upper-ontology struc-
ture in order to create correct mappings between proper classes and roles of
both ontologies. He can also create additional mapping rules if roles and class-
es of the domain ontology do not have direct corresponding equivalent elements
in the upper-ontology. This feature considerably extends mapping possibilities
between the different ontologies.

e A query interface layer. It is used by an end-user who chooses upper-ontology
— domain of interest, the user’s question to knowledge base, selected from a list
of predefined templates and concrete domain ontology from which the user wants
to receive the answer.

120 Kamil Szymanski, Grzegorz Dobrowolski, Jarostaw Kozlak, Anna Zygmunt

The interface was mentioned only to give the reader an idea about the system from
the perspective of an end-user. Other system components will not be described in
details as it is beyond the scope of this paper. It concentrates on layered ontology
model and technologies used in knowledge management. The system itself is an in-
terface in the mapping process (which in fact needs to be performed by a domain
expert himself) and in asking queries. It also helps changing query templates to real
questions and covers all data exchange between the system and a reasoning engine.

7
Upper-ontology
—_— production
Upper-ontology
expert /
L
concapts Rues
I
Mapping file production ;
% > pp ru p ELIEI'IES
Ontology
expert T
DOrtology Mzppingfil
% = (Eyy e ey resutt]
User

Fig. 1. System users, ontologies and dependencies

Figure 1 shows the users of the system and their specific roles associated with dif-
ferent ontologies. An upper-ontology expert creates the upper-ontology with question
templates and rules to obtain new facts. A domain ontology expert creates the map-
ping ontology in which he associates proper classes and properties of a domain on-
tology with corresponding classes and properties of an upper-ontology. He can do it
by defining direct equivalence mappings or additional mapping rules. An ordinary
end-user performs questions to knowledge base. He receives information from the
extended knowledge of the integrated ontologies.

3. Elements of implementation

This section is an extension of the presented methodology. It adds concrete technology
and suggestions of tools along with their short description and presents the general
system architecture.

A proposition of knowledge management methodology for the purpose (...) 121

3.1. Knowledge management
3.1.1. RacerPro — renamed abox and concept expression reasoner

Racer [21, 6] was the first reasoning engine with OWL support. It is one of the fastest
reasoners available nowadays. It is based on description logic and can operate on
ontologies. Racer has its own language, similar to LISP [13], which is used for facts
and query definition. It reads OWL ontology and internally Racer sees it as a SHIQ
description logic [1]. The communication with Racer system can be done either us-
ing the TCP or HTTP protocol. There are a few tools that can communicate with
the reasoner, such as JRacer [21], written in Java, or LRacer [21], with LISP APIL.
As for queries to the knowledge base, one can use RICE [23] which has a graphical
interface.

3.1.2. Upper-ontology

An upper-ontology is an OWL ontology whose most important part are rules, thanks
to which new facts can be inferred from the ontology. Rules are written in SWRL [29].
Each rule is an implication whose prerequisite is a conjunction of facts and conclusion
is always formed of one single fact.

Each part of the conjunction in prerequisite can be one of the two following kinds.
The fist one is a statement saying that a certain instance belongs to some class, e.g.
C(?z) — an instance, represented by a x variable, belongs to class C'. The second
possibility is a statement saying that two instances are connected with some role, e.g.
p(?xz,7y) — x and y are connected by a role p. When SWRL rules are used in ontology,
we define some additional conditional relationships between instances, e.g.

hasParent(?z,?y) A hasBrother(?y, ?z) — hasUncle(?z,?z)

which means that if y is a parent of x and z is a brother of y, then z is an uncle
of x. Developers can freely operate on the ontology structure and SWRL rules using
the Protégé API [30, 11]. Expression parser with validation module can be especially
useful during system interface implementation.

As an upper-ontology does not depend on any domain ontology, it must con-
tain its own classes and properties used in rules. These classes and properties are
the elements to which classes and properties of a domain ontology are mapped.

The third element connected with the upper-ontology layer is a set of prepared
questions or templates of them. They can only use elements of the schema contained
in the upper-ontology. Questions to knowledge base are realized using nRQL [28].
The system interface has an editor for easier operations on questions.

nRQL (new Racer Query Language), a query language used in the Racer engine, is
designed to query ontological knowledge bases. Both the language syntax and internal
Racer’s knowledge representation are very similar to LISP language.

122 Kamil Szymanski, Grzegorz Dobrowolski, Jarostaw Kozlak, Anna Zygmunt

Several constructions are of our particular interest:

e Instances retrieval, e.g.
(retrieve (7x) (?x Woman))

which retrieves all women from the ontology.
e Instance type checking, e.g.

(retrieve () (betty Woman))

which gives T if the instance betty is of type Woman and NIL otherwise.
e Retrieval of pairs of instances, connected with a specified role, e.g.

(retrieve (?mother Tchild) (?mother ?child hasChild))

which gives all that instance pairs that the second instance is a child of the first
one.

Several constructions can be combined together forming the question we are
interested to obtain the answer to.

In Figure 2 we can see relationships among upper-ontology elements.

I

Rule Query

0

Upper-object

CCEEEEEERPEEREE

AN

Upper-class Upp er-property

Fig. 2. Upper-ontology elements

In the center there are the abstract entity called the upper-object and its subclass-
es — the upper-class (a class in an upper-ontology) and the upper-property (a property
in an upper-ontology). Each upper-object may have some rules (in the form of SWRL)
of its creation from other upper-objects. Queries, implemented with nRQL, make use
of the upper-objects as well.

A proposition of knowledge management methodology for the purpose (...) 123

3.1.3. Mapping and mapping ontology

A mapping ontology binds a domain ontology with an upper-ontology. It is created
for the domain ontology to map, with equivalence or generalization/specialization,
its concepts and roles with the ones from the upper-ontology. For domain ontologies
and upper-ontologies are considered to be independent and self-contained, any change
in their structures, like adding import statements, is forbidden. That is why mapping
information need to be written in a separate ontology and that ontology can import
the domain ontology and the upper-ontology. Then it can use any ontology elements
from both of the imported ontologies.

-/

Mapping ontolocgy

MappingO bject

wequivalert: «eguivalents
- ~

n

Domain ontoloogy \\&Upper ontalocyy

Object Upper-Object

Fig. 3. Direct mapping structure

Figure 3 shows one of two kinds of possible mappings, namely a direct mapping,
without additional mapping rule. To map an object from domain ontology with corre-
sponding upper-object from an upper-ontology, a mapping object must be created in
the mapping ontology. This object, a class or a property, has equivalence bindings to
both domain ontology class or property and upper-ontology object. We can formalize
it this way ...

D#Classl = M#Classl = U#ClassA
where:
Classl — a class in the domain ontology with namespace D,
Classl — a class in the mapping ontology with namespace M,

ClassA — a class in the upper-ontology (with namespace U) we want to map Classl
to,

— namespace/local name separator.

A formula for properties mapping would look very similar. A generaliza-
tion/specialization relationship can also be applied. In that case one of the relations

124 Kamil Szymanski, Grzegorz Dobrowolski, Jarostaw Kozlak, Anna Zygmunt

would be generalization/specialization. When there is need for more sophisticated
mappings, one can introduce a mapping rule, like in the following SWRL example . ..

M4#trulel : D#rolel(?z,?7y) A D#role2(?y,?z) — U#roleA(?x,?z)

where:

rulel — a definition of a SWRL rule in the mapping ontology with namespace
M,
rolel(?z,7y) — a binary role between instances in the domain ontology (with names-
pace D),

role2(?x,?7y) — a binary role between instances in the domain ontology (with names-
pace D),

roleA(?x,7z) — a reference to the role in the upper-ontology with namespace U,
— namespace/local name separator.

This way the indirect relation between part of the knowledge from domain on-
tology and upper-ontology can be expressed.

3.1.4. Reasoning

In our application a reasoning process is performed by the Racer system [6]. A user
chooses a mapping ontology and a set of domain questions. In fact the whole integrated
ontology is read into the system while picking the mapping ontology because of proper
import statements in it. Applying all rules to knowledge base only once can not be
enough.

RacerPro does not apply SWRL rules for newly inferred facts during execution of
other rules. New statements can be used in other rules, so we must force the reasoner
to repeat the process by sending it the command (reexexute — all — rules).

To be sure that all possible facts are inferred, we apply all rules = times, where
x is the number of rules. For the re-execution of a rule does not apply to the facts
that were previously used by that rule, the processing time does not lengthen so
considerably.

3.2. General Architecture

In Figure 4 the general system architecture and data flow is presented.

A domain ontology and an upper-ontology are integrated by a mapping ontol-
ogy. All is read by Racer which generates new facts about domain ontology while
performing reasoning, for example by applying SWRL rules. A user chooses his ques-
tion associated with the upper-ontology and sends the nRQL query to the reasoner
to get the answer.

A proposition of knowledge management methodology for the purpose (...) 125

teasoting
genetating new facts (ex. 3SWERL)

Domain

ontelogy impotted by

Mapping

ontology Racer

itmpotted by

Ifleta-
ottology

#ROL queries /
=~ tead queries from ALLSWELS

Application

Fig. 4. General system architecture and data flow

4. Tests

To integrate ontologies it is necessary to create mappings between classes, properties
and sometimes even between instances. It is natural that these connections can be
made only when ontology domains are similar. As reasoning rules use both classes
and properties, lack of mappings between properties of mapped classes make the class
mapping useless in term of reasoning on instances of those mapped classes.

In our tests we want to show that integrating domain ontologies with proper
upper-ontology leads to domain knowledge extension. Answers to questions associat-
ed with the upper-ontology can be obtained from domain knowledge. They could not
be received basing only on domain ontology schema. Moreover, the main advantage of
an upper-ontology will be shown in the “shared knowledge of the upper-ontology” sec-
tion, namely that the same upper knowledge can be used in many domain ontologies,
which goes well with the knowledge reuse principle. Thanks to the upper-ontology
and questions concerning it, the same questions can be posted to many ontologies
when these ontologies are supplied with correct mappings. Real existing ontologies
are used in tests to avoid the risk of adapting of the ontologies for the purpose of
methodologies described in the paper. Ontologies of finite state machine and Petri
Net are the subject of our tests, but it is worth mentioning that the methods present-
ed in the article do not depend on any particular domain, so they could be applied
to the medical example from the introduction as well. What is important in the tests
is the fact of extending the knowledge and inferring new information. We would like
to get new facts about cycles from our test ontologies. The interpretation of a cycle
depends on the chosen domain. If we talk about cycles in a road system of a city,
the cycle would be a sequence of roads that allows us to drive in circles. A state

126 Kamil Szymaiiski, Grzegorz Dobrowolski, Jarostaw Kozlak, Anna Zygmunt

machine has a cycle when there is a possibility of repeatedly switching between the
same sequence of states. Information about cycle, its general definition, will be a part
of our upper-ontology. Referring to the medical example, it will be the same kind of
information as new knowledge about lately discovered disease.

4.1. Finite State Machine ontology (FSM)

This ontology (http://www.learninglab.de/~dolog/fsm/fsm.owl) describes the
structure of a finite state machine (Fig. 5) and contains a simple example.

5 Transttion)

— .. | Regon)
T S
(Composte | ——
e AN
/ History |
/.‘ .-’l' ——
gz
- / \
s i
L [\,—G j8g——\ ._an)
(Pseudostate
— A
i t)
_L Simple \ g
\js-a .
== 3 . dunction)
- ~ N
— ~ =
{ Final) N
B Branch

S
N Initial)

(:‘_;‘.w;chState_“)
Fig. 5. FSM ontology

An ontology describing a structure of a simple graph was created (Fig. 6). It only con-
tains concepts like a node, an edge and connection between starting and ending node.

[Upper-classes "iUpper—properti e
gle | e | olo| e | |
(9 owliThing (3 hasBeginode(OF)
@ Loop @ hasEndhode(0P)
© Node i precedes(OF)
1~ (® Edge
A8 Query

Fig. 6. Upper-ontology elements for FSM

A proposition of knowledge management methodology for the purpose (...)

127

Gyt ——
‘_ EZ.Tranﬂtmr.u. : ;ransitinn_EdgE - ___PEI.EI:IQE./J

e — ——lid = ;! e s

(S e [
EPZiStatE_!'{:-___ij_a_ m . iza_ N p3:Node)

e e o ika.-J':-'L"'- ==

- A State_Mode |

Fig. 7. Mappings for FSM

@ rueLoop precedes(?x, ?x) — Loop(?x)
@ ruleprecedingTransition | [precedes(?x, Py) A precedes(?y, 7z) — precedes(?x, ?z)
@ rulePrecedes Edge(?x) hasBeginMode(?x, 7¥) A hasEndNode(?x, 72) — precedes(?y, 72)

Fig. 8. Cycles detection rules

InitialState.

Regions

failSplit

Fig. 9. An example of a state machine

Proper knowledge elements of the upper-ontology were mapped to domain ontol-

ogy concepts and roles (Fig. 7).

Then, several rules detecting cycles in graphs were created in the upper-ontology

basing on classes and properties of that ontology (Fig. 8).

After applying rules during reasoning, new information about cycles in the state

machine from Figure 9 was gained.

128 Kamil Szymaiiski, Grzegorz Dobrowolski, Jaroslaw Kozlak, Anna Zygmunt

Nodes Products, Accounts, AccountNamelndex and AccountIndexName-
AccountDetailSplit were associated with the Loop class (Fig. 10) and we can see that
each of them is indeed part of some loop.

i Integrated Ontology Reasoning K _ﬂlﬂ]ﬂ

Fd= Edt Help

sy I Upper-ottologirontalogy |
| \? ‘ﬁl 0

—uery
Ex|stirg queries: |ge‘u.00ps - |

I{rstriew (73 (7 |Rkbpeffagh.edu. plfior# Loop)]

Result

123
|hittp: et 12 ArMINGlab . def~dologfsmTsm. owliP roducts)
|http: Seeew le arninglab . ded~dologfsmifsm. owl#Accounts|
|http: Aeeenar l2arminglab . ded~dologfsmfsm. owlAccountMameindesx|
|http: Ahweeni l2@rninglab ded~dologifsmism owktAccountindexNameAccountDetailSplit]

Fig. 10. Cycles in the FSM example

4.2. Petri Net ontology

This ontology (http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/BIK/
wi2007/PNOntolgy.owl) describes a Petri Net. It defines a Petri Net structure with
places, transitions, arcs and markers (Fig. 11).

We created an upper-ontology for the Petri Net ontology. There was knowledge
about graphs in the upper-ontology, but what is more important is the ability of
a node to contain a marker now (Fig. 12).

Then, in the upper-ontology, some rules defining active transitions were created

o ActivePlaceRule : hasMarking(?z,?y) A Place(?x) AN Mark(?y) —
ActivePlace(?x)

o ActiveTransitionRule : ActivePlace(?x) A connectsNode(?x, 7y) A Arc(?y) A
hasArc(?z,7y) A Transition(?z) — ActiveTransition(?z)

A proposition of knowledge management methodology for the purpose (...) 129

P) ’_/" e —
(. le:Thing kisa operation)

- J \-.____ e /" _—"‘-._I
B ; "\Tf/'

B ToPiace)
e — _-P/
LognculCunoe_D =
{ Transtt n\\l
e S

o
(IndividualDataltem
\‘“__‘__ i

—

Fig. 11. The Petri Net ontology

(hniiam)
[rnr:/)

1] o~ B : —_— S
S_a‘_T Transition fw“ﬁansiiiur}/}

[-‘—_“'-\.
Plaue /,<}v—'-‘—3—< &ctl\rePIace)
——

Fig. 12. The upper-ontology for the Petri Net ontology

After proper mapping creation (Fig. 13) for ontologies from Figures 11 and 12,
we asked for active transitions in the example net shown in Figure 14. The system
returned transitions T1, T2 and T4, which is correct.

130 Kamil Szymaiiski, Grzegorz Dobrowolski, Jarostlaw Kozlak, Anna Zygmunt

] p2:Place)

A p3Flace M—‘“‘—-%-"ﬁlla:!_Pli:.!'--_ g —
Gl LS l__u_:—)

— __isea. —4 p2: Tmnsmon 3
P :

1 p3 Transition b“‘_ ey Trlnmlun TrirL:ltlnn -l
— e L T .

4 |:|2 In|:||\r|nuaIDnaItem P —
24 oplea > \
53 - l Indl\ﬂﬂuilﬂitiltem Man-: e — ,‘:3 p3:Mak

_ M pIAre k31— e —=

B e > R 1 mePIi:e nr: *1—‘-‘-‘3—1 |J2 FrumPIane

A il g " i S— |_s—:|_.---\ —ira L —

4 TaPlace_Arn ,_- -
= . —

o A p2:ToPlace)

Fig. 13. The mapping ontology for the Petri Net ontology (classes only)

Fig. 14. An example of a Petri Net

To sum up, we gained new knowledge about active transitions from Petri Net
ontology thanks to the upper-ontology and its rules. The Petri Net ontology did not
have an active transition concept, so naturally asking that knowledge base to give us
active transitions would be pointless.

4.3. Shared knowledge of an upper-ontology

The examples described above showed gaining of new information from domain ontol-
ogy using upper-ontology rules. The situation where every domain ontology uses a sep-
arate upper knowledge would not be very interesting. That kind of upper-ontology

A proposition of knowledge management methodology for the purpose (...) 131

would be just a specific ontology extension with new schema or rules. This would
not be real universal knowledge. So now we will use the same upper-ontology for two
previously shown domain ontologies — FSM and Petri Net, because both of them can
have the cycle feature introduced. The knowledge for describing the cycles will be
of course in the upper-ontology (Figs. 6, 8). So we have two domain ontologies and
one common upper-ontology. Now we need to specify mapping ontologies for both do-
main ontologies so that knowledge about cycles could be used in domain ontologies.
A mapping ontology for FSM ontology does not change — it is shown in the Figure 7.
As for Petri Net ontology, the following mappings need to be created ...

e MappingOntology# ArcT o = PetriNet#ToPlace

e MappingOntology# ArcFrom = PetriNet#FromPlace

e MappingOntology#ruleBeginNode : PetriNet#Transition(?z) A
PetriNet#hasArc(?z,7y) A MappingOntology# ArcFrom(?y) A
PetriNet#connectsNode(?y, ?z) — UpperOntology#hasBeginNode(?x,?z)

e MappingOntology#ruleEndNode : PetriN et#Transition(?x) A
PetriNet#hasArc(?z, 7y) A MappingOntology# ArcTo(?y) A
PetriNet#connectsNode(?y, ?z) — UpperOntology#hasEndNode(?xz,?z)

e PetriNet#Transition = MappingOntology#Transition =
UpperOntology# Edge

The first two mappings are just aliases for two Petri Net classes to be used in the
following rules. Third and forth mappings are mapping rules. They describe a begin
node (the starting point for some edge) and an end node (the ending point for some
edge) respectively. The last mapping says that a transition concept from the Petri
Net ontology should be treated like an edge concept from the upper-ontology with
graph and cycle knowledge.

5. Conclusions

The paper presents a multi-layered model of integrated ontologies for the use of rea-
soning and knowledge management methodology, from integration to using. Each
layer has different, specific functions. A domain ontology is the description of some
reality and it is the source of instances on which we want to reason. An upper-ontology
contains more general knowledge, usually from the same domain. A set of question
templates is associated with that ontology to which the answer comes from integrated
domain ontology. There is also a middle layer of a mapping ontology, which integrates
both ontology elements. The mappings may be direct, when there are corresponding
elements in both ontologies, or indirect. The latter case is implemented by additional
mapping of SWRL rules. The upper-ontology can and should be used in many dif-
ferent ontologies so that we can obtain answers to the same questions from different
domain ontologies. That kind of well organized model supports knowledge reuse.

The tests show that it is possible to gain new information from existing knowledge
by integrating it with an upper-ontology. Our system helps in knowledge management

132 Kamil Szymanski, Grzegorz Dobrowolski, Jarostaw Kozlak, Anna Zygmunt

during the integration phase and can be used to query integrated knowledge. It sup-
ports reasoning so it can return inferred facts as well. The application has a couple
of limitations because of some functionality features of Racer. The current version of
the reasoner does not support Datatype Properties and transitive properties. If an
ontology contains one of them, Racer will not be able to perform reasoning on that
ontology.

Acknowledgements

We would like to thank Tomasz Liptak and Szymon Natanek for their help in writing
this paper and system implementation.

References

[1] Baader F. et al.: The Description Logic Handbook. Cambridge University Press,
2003
[2] Euzenat J., Le Bach T., Barrasa J., Bouquet P., De Bo J., Dieng R., Ehrig M.,
Hauswirth M., Jarrar M., Lara R., Maynard D., Napoli A., Stamou G., Stucken-
schmidt H., Shvaiko P., Tessaris S., Van Acker S., Zaihrayeu 1.: State of the art
on ontology alignment. Knowledge Web Deliverable, Technical Report, INRIA,
2004
[3] Fridman N.; Musen M.: SMART: Automated Support for Ontology Merging
and Alignment. Twelth Workshop on Knowledge Acquisition, Modeling and Man-
agement, Banff, Canada, 1999
[4] Gruber T.: What is an Ontology.
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
[5] Haase P., Motik B.: A Mapping System for the Integration of OWL-DL Ontolo-
gies. THIS’05, Bremen, November 2005
[6] Haarslev V., Moller R.: RACER User’s Guide and Reference Manual. 2004
[7] Horridge M., Knublauch H. et al.: A Practical Guide To Building Ontologies Using
The Protege-OWL Plugin and CO-ODE Tools, 1st ed., University of Manchester,
2004
[8] Horrocks 1., van Harmelen F., Patel-Schneider P. et al.: DAML+OIL. http://
www.daml.org/2001/03/daml+oil-index.html, 2001
(9] Hunter J.: The Semantic Web. 2002
[10] Kalfoglou Y., Schorlemmer M.: Ontology Mapping: The State of the Art. The
Knowledge Engineering Review, Vol. 18:1, 2003, 1-31
[11] Knublauch H.: The Protégé-OWL API — Programmer’s Guide. Stanford Medical
Informatics, 2005
[12] Lee T.B., Hendler J., Lassila O.: Semantic Web. 2001
[13] LISP. http://www.lisp.org/alu/home

A proposition of knowledge management methodology for the purpose (...) 133

[14] Luszpaj A., Szymanski K., Zygmunt A., Kozlak J.: The Process of Integrating
Ontologies for Knowledge Base Systems. 7th Software Engineering Conference,
Cracow 2005

[15] McGuinness D.L., van Harmelen F.: OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features/, W3C Recommendation, 2004

[16] Namyoun C., Il-Yeol S., Hyoil H.: A Survey on Ontology Mapping. SIGMOD
Record, Vol. 35, No. 3, Sep. 2006

[17] Niles I., Pease A.: Towards a Standard Upper Ontology. In Proceedings of the 2nd
International Conference on Formal Ontology in Information Systems. FOIS-2001

[18] Pazienza M. T., Stellato A. et al.: Ontology Mapping to support ontology-based
question answering. 4th International Semantic Web Conference (ISWC-2005)
Galway, Ireland, November, 2005

[19] Pinto H.S., Martins J.P.: Ontology Integration — How to perform the process.
Portugal 2001

[20] Pinto H.S., Martins J. P.: Some Issues on Ontology Integration. Portugal 2001

[21] Racer Systems. http://www.racer-systems.com/

[22] Resource Description Framework (RDF). http://www.w3.org/RDF

[23] RICE. http://www.ronaldcornet.nl/rice/

[24] Standard Upper Ontology Working Group (SUO WG). http://suo.ieee.org/
index.html

[25] Standard Upper Ontology Working Group (SUO WG) Suggested Upper Merged
Ontology. http://suo.ieee.org/SU0/SUMO/index.html

[26] SUMO Ontology. http://ontology.teknowledge.com/

[27) Tamma V.: An Ontology Model Supporting Multiple Ontologies for Knowledge
Sharing. Thesis of University of Liverpool, 2001

[28] The New Racer Query Language.
http://www.cs.concordia.ca/“haarslev/racer/racer-queries.pdf

[29] W3C: SWRL — A Semantic Web Rule Language. 2004

[30] Welcome to the Protégé Project. http://protege.stanford.edu/

