COMPUTER SCIENCE e VOL. 8 SPECIAL EDITION e 2007

SEAWOMIR P. MALUDZINSKI*

SOFTWARE CONFIGURATION MANAGEMENT
FOR MULTIPLE RELEASES:
INFLUENCE ON DEVELOPMENT EFFORT

Software Configuration Management (SCM) evolves together with the discipline of software
engineering. Teams working on software products become larger and are geographically dis-
tributed at multiple sites. Collaboration between such groups requires well evaluated SCM
plans and strategies to easy cooperation and decrease software development cost by reducing
time spent on SCM activities — branching and merging, that is effort utilized on creation of
revisions (’serial’ versions) and variants (‘parallel’ versions). This paper suggests that SCM
practices should be combined with modular design and code refactoring to reduce cost re-
lated to maintenance of the same code line. Teams which produce several variants of the
same code line at the same time should use approaches like components, modularization, or
plug-ins over code alternations maintained on version branches. Findings described in this
paper were taken by teams in charge of development of radio communication systems in
Motorola GEMS divisions. Each team collaborating on similar projects used different SCM
strategies to develop parts of this system.

Keywords: software configuration management, scm, multisite, software engineering

ZARZADZANIE KONFIGURACJA OPROGRAMOWANIA
DLA WIELU WERSJI: WPEYW NA KOSZT WYTWARZANIA

Zarzadzanie konfiguracja oprogramowania (SCM) ewoluuje razem z dyscyplina inzynierii
oprogramowania. Zespoly pracujace nad wytwarzaniem oprogramowania staja sie coraz wiek-
sze oraz niejednokrotnie fizycznie znajduja sie w osrodkach polozonych na réznych konty-
nentach. Wspdlpraca pomiedzy takimi zespolami powinna opieraé¢ sie na dobrze przygo-
towanych planach zarzadzania konfiguracja oprogramowania. Niniejszy artykul sugeruje, ze
praktyki zarzadzania konfiguracja oprogramowania powinny byé polaczone z fazami projek-
towania oraz refaktoringiem kodu, tak aby zmniejszy¢ koszt zwiazany z utrzymaniem tej
samej linii kodu. W opinii autora artykutu, kazdy z wariantéw oprogramowania powinien
by¢ wytwarzany przy uzyciu technik innych niz zwiazane z zarzadzaniem konfiguracja. Ze-
spoly pracujace nad kilkoma wariantami tej samej linii kodu powinny przedkladaé¢ biblioteki
i komponenty nad modyfikacje dokonywane i utrzymywane na galeziach wersji. Doswiad-
czenia opisane w artykule zostaly nabyte przez zespoly pracujace w dziale firmy Motorola
zajmujacym si¢ wytwarzaniem oprogramowania dla systemoéw radiokomunikacyjnych.

Stowa kluczowe: zarzadzanie konfiguracja oprogramowania, inzynieria oprogramowania

* email: slawomir.maludzinski@motorola.com

109

110 Stawomir P. Maludziriski

1. Introduction

Astro and Dimetra are respectively American and European variants of public safe-
ty communication system. Both use similar hardware and software for digital radio
communication. Although they implement different communication standards, APCO
and TETRA respectively, many aspects of their functionality are similar. Hardware
and software for mobile infrastructure is developed by many teams in USA, Europe
(Poland, Denmark) and other locations. In this paper we focus on SCM strategies
used by Astro team in Schaumburg (SCH), IL, USA; Dimetra team in Krakow (KRK),
Poland, and Dimetra team in Copenhagen (COP), Denmark. Statistical comparison
with STM team which uses an approach similar to the proposed in this paper is given
to verify finding of the author of this article.

e ‘ \defect_1 ‘ ‘ \dimetra ‘

\int_dimetra \krk_dimetra \cop_dimetra

\% \ié

Fig. 1. Astro Dimetra code development branches

The aforementioned teams use similar SCM [4] plans to develop new features,
resolve defects and release software. Figure 1 presents typical scenario where new
features are developed on separate branches, and when tested and approved, back-
merged to the main development branch. This SCM plan is used by SCH Astro team.
A little more complicated SCM plan is used by KRK and COP Dimetra teams. An
integration branch is created to integrate changes made at these sites. Additional
branch is used as Clear Case imposes development on a branch which pertains to
the same physical site i.e. software engineer must create a separate branch in their
location to make changes. This however, is not relevant to the discussion presented in
this article. After the work is completed, development teams in KRK or COP merge
differences created on development branches to integration branch. This reduces time
spent by release team in charge of system builds. Release team will not have to resolve
any potential conflicts; merge to the release branch should be trivial.

Collaboration between Astro and Dimetra is quite interesting in terms of variants
development of network management (NM) component used to configure radio net-

Software configuration management for multiple releases (...) 111

works. Astro develops major parts of NM software which is then merged by Dimetra.
These are mostly newer features, smaller changes as well as defect fixes. SCH Astro
team changes are very distinct. Their integration with Dimetra branches happens less
often — every half a year on the average. KRK and COP teams, on the other hand, co-
operate very closely. Their branches are constantly integrated and any modifications
are immediately visible and used by teams at both locations.

Fig. 2. Dimetra separate development with infrequent merges from Astro

A typical example of such collaboration is shown in Figure 2. Astro changes are
merged from the \main branch to ...\dimetra branches. Krakow and Copenhagen
work on their development branches to deliver functionality which is Dimetra specific.
An attentive reader will notice that some changes are taken from Astro to Dimetra.
Every change made by Astro team needs to be incorporated properly, built and tested.
Less frequently changes made by Dimetra are “back-merged” to Astro. This causes
that in practice software is developed on several branches. Astro differences between
revisions are constantly selected, copied and pasted into Dimetra’s line of code. The
burden of subsequent operations makes large amount of tasks to be repeated by both
teams. Although in some cases inevitable, such behavior contributes to significant loss
of productivity and elongated development cycle.

To ensure that fixes are properly merged is not a trivial task and also is a very
expensive one. Changes to the other project need to be made manually as many
merge conflicts occur. Next such modification is to be tested and verified which also
consumes human effort.

Similar effects occur in less complicated situations. Figure 3 outlines a situa-
tion when a defect was fixed by KRK Dimetra team. Until it is merged by Astro,
Dimetra will have to deliver subsequent revisions of the file on their own branch ...

112 Stawomir P. Maludziriski

\dimetra. If Astro makes modification it will have to be merged to Dimetra. The pro-
cess of merge, back-merge, build and test will continue on separate code development

branches.

Fig. 3. Defect fixed only at NM Dimetra

2. Branch-merge operations

Article [1] discusses two branching strategies — branch-by-release and branch-by-
purpose. Branch-by-purpose uses an approach where additional branch is created for
tests and builds. Development remains on the main trunk. It has several advantages
over the more “traditional” approach where branches are created for every subsequent
release. For example, development may continue on the main branch which does not
confuse developers and allows system builders prepare next version for testing. Defect
fixes are easily picked up and can be selected for emergency releases. Authors of the
paper also suggest creating additional branches to develop newer features or to correct
defects. This SCM strategy resembles the one used by Astro and Dimetra. However,
after code chill out and freeze — when no newer features are introduced and code
baseline has stabilized — parallel development branches are integrated to the main
branch.

This paper emphasizes that integration to the main line of development is essen-
tial to reduce effort spent on software development in subsequent releases. Obviously
such operation in many cases is not straightforward as it requires code refactoring and
unit tests or even regression tests to be performed. Modules, plug-ins and libraries can
be helpful to select invariants and differences between releases. Next, such functional-
ity can be developed separately without an additional effort spent on branching and
merging. Of course architecture and refactoring needs to be performed by all teams
engaged in product development otherwise some unresolved conflicts may happen.

No matter whether variants of code are developed in closely related projects or
at loosely coupled versions, which often have separate requirements, teams should try
to integrate their work. Although releases start to differ over time, teams developing

Software configuration management for multiple releases (...) 113

them should merge and select common parts, also identify differences and move them
to newer elements (files) which will be maintained on their own. This will later on lead
to saving time spent on the cross release merges and verification. Such code is easily
found by examination of version trees. Frequent long merges and back merges clearly
show that such code should be revised and altered to avoid continuous merging in the
future.

Code refactoring needed to bring the variants together will select code specific to
each release. Starting from this point in time — no or only small amendments will be
needed in the common part. Software modules will be developed separately — avoiding
merges and expensive verifications. After the system is deployed, in an ideal scenario
appropriate code will be customized — that is how version tree structure is helpful to
identify code which is problematic to maintain and causes a lot of burden and hassle.

Merges between releases (variants of code) resemble code copying in many as-
pects. When not back integrated same code needs to be maintained in many copies.
This stands in contradiction to well known good software engineering practice to avoid
code copying.

3. Case study

Similar findings were observed by STM team which develops code for Astro and
Dimetra releases of another network device. Quantitative analysis of code unveiled
that only 3 to 4 per cent of code differs between releases. Engineers were also anx-
ious about work consuming task related to merges of features and defects between
different releases. Also, after the merge operation resulting variants of code were very
similar. This indicated that something can be done to improve efficiency and lessen
development effort.

Teams decided to change their strategy and keep only one line of code for both
releases. This decision was taken to simplify code maintenance by the cost of its
development. Parts of software which were specific to each of releases were executed
conditionally. In the very first versions of their system only two versions had to be
maintained — Astro and Dimetra.

if (Astro)
if (Dimetra)

Soon, as more releases appeared, they needed to be maintained as well. More
conditionals had to be introduced.

if (Astrod.x)
if (Astro5.x)
if (Dimetra)

Things got even worse after several more releases — major and minor version of
the system was distinguished and based on this information appropriate action taken.

114 Stawomir P. Maludziriski

if ((major_ver(Astro) == 6 &&
minor_ver(Astro) <=5) ||
major_ver (Astro < 6)

if (Dimetra)

Of course such approach was not convenient any longer. The watershed in code
maintenance was the decision to create a library which related features to releases. The
library was customized by a configuration file and gave answer to a simple question
if a feature belongs to a given release.

Astrod4.x | Astro5.x | Dimetra

FeatureX | Yes Yes Yes

FeatureY Yes

if (featurelIsOn(FeatureX))

Introduction of guards [Ref. 3] allowed simplifying statements which decided
whether to enable given functionality. General code, not specific to every release
had to be written outside of conditional variables. Features which were added to
specific releases were surrounded by conditional statements. Starting from this point
in time code was executed based on run-time information. It is worth noticing that
no significant reduction in code performance was noticed due to insertion of these
statements.

The obvious drawback of the solution is that conditionals are placed in the code.
In some cases, for example when using binaries or third party products, condition-
al statements are not possible. Configuration files, specific to each release in many
cases cannot be customized. This, however often is not a problem. Prevailing num-
ber of merges of those files is a trivial thanks to their simple syntax. We argue that
this inconvenience is worth paying — it seems that positives are prevailing. Whenever
a defect is fixed it is corrected for every release. Theoretically there is no time spent
on introduction of features to newer releases. Merely appropriate entries in the re-
lease /feature matrix need to be set. Developers need not perform mundane work of
merges between lines of code and configuration management becomes much easier —
code is being maintained on fewer numbers of branches.

4. Statistical information

Team members, who work on newer features and resolution of defects, report time
spent on their activities on a weekly basis. This information is gathered in a special
tool which lets track progress of project activities. Obviously as this data is entered by
engineers manually it is not very precise. However we one may analyze these reports
to get a general feedback about state of a given project.

The Table 1 presents data about defects which were resolved by different teams.
Merges are resolutions of same defects which were ported to other releases which are
begin developed at the same moment.

Software configuration management for multiple releases (...) 115

Table 1
Effort spent to resolve a defect and merges to different releases

effort / #defects effort / #defects effort / # merges
(defect or | + defect [h] merge [h]
merge #merges
total) [h]
NM 14.03 550 - 478 - 72
Astro
NM 20.02 244 + 21.43 204 + 77* | 12.8 40+51%*
Dimetra 128%*
STM 14.60 184 23.75 110 0.99 74
Astro &
Dimetra
*not taken into account

At the time of writing this paper there is no statistical information available
which would distinct Astro defects and merges. Quite interesting is the comparison
of effort spent on merges between NM Dimetra and STM Astro & Dimetra. Statistics
unveil over 10 time’s larger difference between engineers who merge resolutions at
these teams. Certainly this value should be a bit lower as it takes longer to resolve
a defect at NM Dimetra; however a significant amount of effort is saved at STM Astro
& Dimetra. Further factors may also impact this figure, but obviously our findings
have been confirmed in practice.

5. Further work

Quality assurance teams gather data which helps to asses projects based on diverse
types of metrics. Work effort to develop a feature, resolve defect or defect’s cycle
times are measured and can be compared between projects. Such analysis would give
us supplementary information about savings which can be gained using the proposed
methodology. Such data would be helpful to additionally verify arguments of this
paper. Especially, statistics on development of larger units of code, being created by
several software engineers would be useful. Gathering of such information is not a triv-
ial task, though. Small number of features is likely not giving enough material which
can be analyzed statistically. Furthermore, it is not easy to make simple comparisons
between projects as many factors have influence on features’ development time and
effort. Amidst most considerable are variations in software processes, laboratory re-
sources availability or review and test procedures. Detailed study would have to be
made to compare such results.

Giving hints how to refractor code based on version tree structure is very com-
plicated and seems ambiguous. Every situation is different and requires specific anal-
ysis. A lot of depends on code structure, differences, and common parts. Complicated
merges and complex version trees point that code is worth considering to be changed.

116 Stawomir P. Maludziriski

One of future extensions would be survey of most appropriate techniques which can
be utilized in different scenarios.

6. Conclusion

SCM plans used by teams working together at multiple sites are usually very long
and detailed. Variants of code are created and maintained following those guidelines.
Different releases (variants) are created by modifications between branches of code.
Although this is the most straight-forward technique, it should be used in as few cas-
es as possible. Variants of software should rather be delivered by other means than
maintenance on version branches. In the long term this approach will cause an emer-
gence of libraries, components and forms of code which easy customizations. Findings
presented in this paper show that this approach is undoubtedly worth considering.

References

[1] Walrad C., Strom D.: The Importance of Branching Models in SCM, IEEE Com-
puter, 35(9), 2002, p. 31-38

[2] Sommerville I.: Software Engineering, AddisonWesley, Reading, MA, 6th Edition,
2001

[3] Fowler M.: Refactoring: Improving the Design of Existing Programs, Addison-
Wesley, 1999

[4] Conradi R., Westfechtel B.: Version Models for Software Configuration Manage-
ment, ACM Computing Surveys, 30(2), June 1998, p. 232-282

[5] Allen L., Fernandez G., Kane K., Leblang D., Minard D., Posner J.: ClearCase
MultiSite: Supporting geographically-distributed software development. In Jacky Es-
tublier, editor, Software Configuration Management: Selected Papers of the ICSE
SCM-4 and SCM-5 Workshops, number 1005 in Lecture Notes in Computer Sci-
ence, Springer Verlag, October 1995, p. 194-214

