COMPUTER SCIENCE e VOL. 8 SPECIAL EDITION e 2007

PRZEMYSEAW MACIOLEK*, PAWEL KROL**, JAROSLAW KOZLAK***

PROBABILISTIC ANOMALY DETECTION
BASED ON SYSTEM CALLS ANALYSIS

We present an application of probabilistic approach to the anomaly detection (PAD). By
analyzing selected system calls (and their arguments), the chosen applications are monitored
in the Linux environment. This allows us to estimate “(ab)normality” of their behavior (by
comparison to previously collected profiles). We’ve attached results of threat detection in
a typical computer environment.

Keywords: anomaly detection, IDS, system calls, Linux

PROBABILISTYCZNE ROZPOZNAWANIE ANOMALII
BAZUJACE NA ANALIZIE WYWOtAN SYSTEMOWYCH

W artykule przedstawiono zastosowanie propabilistycznego podejscia do rozpoznawania
anomalii (PAD). Poprzez analize wybranych wywolan systemowych (oraz ich argumen-
téw), monitorowane sa aplikacje dzialajace pod kontrola Linux. Pozwala to na oszacowanie
(a)normalnosci ich zachowania (poprzez poréwnanie z poprzednio zebranymi profilami). Za-
taczone sg rezultaty rozpoznawania zagrozen w typowym Srodowisku komputerowym.

Stowa kluczowe: rozpoznawanie anomalii, IDS, wywolania systemowe, Linux

1. Introduction

Today, nobody doubts that the ubiquitous Internet has its “dark” side. Each con-
nected computer can be a target of potential attack. It is impossible to make the
software perfect and immediately fix all the existing “holes”. Even if that would have
been possible, many attacks actually succeed because of inappropriate configuration
of server services (with use of weak passwords for instance).

But when all protections fail, there is still hope left — the Intrusion Detection
Systems (IDS). The IDS’s purpose is to track various aspects of the computer sys-
tem or infrastructure and find any signs of security breaches. Currently they are an
indispensable element of a good security policy.

*Ph.D. Student EATIE, AGH-UST, Krakéw, Poland, pmm@agh.edu.pl
** EALIE, AGH-UST, Krakéw, Poland, paulkrol@gmail.com
**#* Institute of Computer Science, AGH-UST, Krakéw, Poland, kozlak®@agh.edu.pl

93

94 Przemyslaw Maciolek, Pawel Krél, Jaroslaw Kozlak

In this paper, we present an implementation of Host-Based, Anomaly type IDS.
It is based on a fact that when given application (e.g. a server service) is being seized,
it begins to act differently and its behaviour deviates from a specific norm. The
Host-Based IDS (that is operating on a given machine) is tracing the applications,
usually by tracking its system calls (they provide communication between kernel and
processes running in the user space — e.g. if a program wants to read an open file, it
executes a read () system call). Using special algorithms, this information is used to
create an appropriate model, so the current behaviour could be compared to the well-
known (previously collected) “normal” activity. A deviation between them is a sign
of a possible policy violation.

Our goal was to create an IDS system that would achieve high intrusion detection
rate, while maintaining low number of false alerts. We have extended a Probabilistic
Anomaly Detection algorithm [15] with novel use of information carried by system
calls arguments, thus the SysPAD was born. Most of host based anomaly IDS’s use
information related to system calls and their sequence. We have decided to focus on
system calls arguments rather than the sequences, so we could understand not only
what kind of system call has been requested by an application but also where and
how it is going to operate.

Our implementation consists of two main parts — a Linux kernel patch that
provides system calls tracing (we have used custom solution rather than ptrace) and
a program that communicates with kernel and analyzes the data.

The system performance will be evaluated against real-life attacks. We will choose
few commonly used applications with known flaws, observe their behavior during
normal operation and then try to breach the security, using appropriate exploits.
System rating will be estimated on the basis of number of actually detected attack
attempts and number of correct behaviors classified as anomalies. In an ideal situation,
we hope to see all attack attempts detected and no false alarms.

2. State of the arts in Host Based Anomaly IDS systems

A typical Host-Based Anomaly IDS program flow consists of two main phases:

1. Learning of the “normal” program behaviour. This is usually done once for a given
software version.

2. Comparing current system state to previously gathered model of “normal” pro-
gram behaviour.

Creating the “right” model and teaching an appropriate behavior is not an easy
task. On the one hand — all probable behaviors of monitored application must occur
(so we will be able to distinguish the correct events from the bad ones). On the other
hand — improper events must not arise (otherwise an inappropriate behavior will be
considered as a correct one).

Probabilistic anomaly detection based on system calls analysis 95

2.1. Short sequences method — SEQ

Short sequences method [10], created at the New Mexico University in 1996, was one
of the first attempts to create an IDS system leveraging the system call information.
Nowadays, the method is mainly used as a point of reference during examination of
various new anomaly detection projects.

During the learning phase the IDS monitors system calls invoked by a traced
program. Based on them, a database containing all sequences of given length (typically
3 consecutive calls) is built.

During the detection phase, the IDS system that is monitoring the application
traces its system calls and creates sequences of a given length. If a sequence is not
present in a previously created database then it is considered as an anomaly.

2.2. Finite state automata — FSA

The Finite State Automata method — FSA was presented in 2001, during an TEEE
conference [1]. Similarly to the SEQ, application system calls are monitored. Basing on
retrieved information, a finite state automata (that is supposed to reflect the process
behavior) is constructed.

System calls sequences itself does not contain direct information about internal
automata states. Because of that, the PC counter (Program Counter) is addition-
ally used. Data are stored in a graph, in which vertexes are defined by system call
occurrence addresses and curves describing number of a specific system call.

Anomaly detection with this method is similar to the algorithm presented before.
First — the system learns “standard” program behavior. Secondly, the detection phase
starts. It is similar to the learning phase, but this time instead of adding new graph
states, the algorithm verifies if a transition between two given states (going through
specified system call) is allowed.

2.3. Virtual Paths — VtPath

The VtPath [2] method was created at the Universities of Massachusetts and Georgia,
USA. It utilizes not only system call information, but also related function return
addresses. VtPath (through the stack analysis) uses all consecutive function return
addresses, starting from the system call itself.

During the learning phase, a list of all successive function return address-
es is created for observed system calls. The list is in following form: A, =
(ag,ai,...,an—1,0a,), where n is a total number of stack frames and a,, is a return
address from the function that actually made the system call.

There is a number of situations that inform about possible anomalies. For exam-
ple, when it is impossible to retrieve the function return addresses from the stack trace
(what happens during the buffer overflow attacks) or if element a,, in the addresses
list is pointing to other system call.

96 Przemyslaw Maciolek, Pawel Krél, Jarostaw Kozlak

2.4. Critical system elements access analysis, PAD

A slightly different approach to break-ins detection is based on monitoring especially
important (from the security point of view) system elements. In case of MS Windows,
the Registry (where information required by the system and its components is stored)
might be considered as such an element. In case of Unix-like systems, the whole file
system area might be treated as especially important, but practically most important
information is usually stored in the /etc and /var directories.

Papers [7] and [14] present anomaly detection results, where Probabilistic Anoma-
ly Detection (PAD) [15] algorithm was used. It uses a feature vector as a unit of
information, representing single observed event.

3. Theoretic model of the SysPAD system

There are two major groups of IDS systems. The first one tries to analyze the program
flow (i.e. using system calls information) and the latter is looking in other places for
estimating the state of the system.

The first group of systems is supposed to show what program is currently doing.
E.g. open, write, close — for opening a file, writing some data and closing it. However,
we do not actually know what particular file was opened, as such systems do not collect
this information.

On the other hand, the systems such as PAD (see s. 2.4) are not event based, but
rather periodically scan various elements of computer system. Even if they find that
the file was modified, they are not able to tell which application did it and in what
sequence of operations.

We see a solution to these problems — an extensive use of information about
system calls — not only what particular system call was observed and in what sequence,
but rather what were its arguments.

In comparison to previously presented IDS systems, the SysPAD algorithm is
extending the scope of retrieved data. It collects (and to some degree — transforms)
information about the system call arguments. This is in oppose to methods such
as SEQ or VtPath, which use only system call number (and sometimes some other
assistant data — like PC counter or function return address). While those data allowed
to model the traced application program flow, our approach makes it possible to finely
analyze actual program operations.

3.1. Feature Vectors

The IDS, tracing program execution, monitors all induced system calls and represents
them as a list of vectors. Each vector contains a number of selected features and from
the algorithm point of view is considered as a single event — a system call.

Chosen features are listed in Table 1.

Probabilistic anomaly detection based on system calls analysis 97

Table 1
Data model used in the system

No. Feature

process identifier

system call id

first system call argument

second system call argument

U | WIN|

third system call argument

While some system calls take many arguments, it was decided to use at most
only three of them, as the rest was usually too complicated to analyze or wasn’t
contributing useful data from our point of view.

3.2. Consistency Checks

The probabilistic approach to anomaly detection might be reduced to problem of
the density function P(z) calculation (which describes probability of vector features
occurrence) on set of data we are interested in. If we are able to estimate such function
on data representing the process behavior, then we will be able to define untypical
behavior (an anomaly) as an event that occurs with a very small probability.

Density function estimation on such set of data is not an easy task. For practical
reasons, the approach was slightly modified. The gathered data undergo a series of
consistency tests. If at least one of the tests is unsuccessful, the tested information is
considered as an anomaly.

First order consistency checks — the features of observed vectors are checked
for compliance with features in previously collected profiles. In other words — we check
if any single feature from a vector is already known. Probability of observed element
occurrence will be noted as P(X;).

First order consistency checks are able to identify previously unknown calls, pro-
cesses or system call arguments.

Second order consistency checks — the feature vector elements are permuted
into all possible pairs. For each of the pairs we calculate a conditional probability of
one pair element occurrence given the occurrence of other pair element — which is
denoted by P(X;|X;).

Second order consistency checks allow us to detect another class of anomalies, in
which elements already known are used in a previously unknown way. In effect, we
have the information about context of feature vector elements.

For probability calculation, we use a Friedman-Singer estimator [8], that provides
a way to calculate probability for previously known elements:

P(X =i) = o+ N)

= 1
Koo+ N (1)

98 Przemyslaw Maciolek, Pawel Krél, Jaroslaw Kozlak

as well as probability for previously unknown elements:

1

PX=i)=7—%

(1-0) (2)
The symbols and their meaning:

a — a virtual value that increases the number of each feature occurrence (it is used
as a Dirichlet estimator equivalent)

N; — number of given feature appearances

N — number of all observations

k° — number of different feature values observations
L — number of all possible values of a given feature

C — ascaling variable that represents the relation of probability that an already ob-
served element occurs to probability that a previously unknown element occurs.

Calculation of C coefficient is very computationally expensive. We use a heuristic
method [14] which provides following equation:

N

C=NTI % (3)

This estimation has reasonable computational cost while still providing good results.
A computed probabilities are compared to threshold value, calculated during

model creation. If any of the probabilities is smaller than the threshold, then the whole

feature vector is denoted as an anomaly and appropriate information is generated.

3.3. Traced system calls selection

Because not all Linux system calls are interesting from the security point of view,
a list of traced system calls based on [6] was created. Final list of selected system
calls is presented in Table 2 (system call numbers are according to 1386 architecture
in 2.6.x kernels).

Table 2

Observed system calls
Name Number Description
sys_read 3 file read operation
sys_write 4 file write operation
sys_open 5 opens or creates a file
sys_getdents 141 shows directory contents
sys_getdents64 220
sys_socketcall 102 socket operations
sys_query_module 167 loaded modules query

Probabilistic anomaly detection based on system calls analysis 99

Table 2 cont.
sys_setuid 23 UID user identifier operations
sys-getuid 24
sys_execve 11 executes binary file
sys_chdir 12 changes directories
sys_fork 2 creates child processes
sys_clone 120
sys_ioctl 54 devices controlling
sys_kill 37 sends signals
sys_exit 1 exits from current process
sys_close 6 closes a file descriptor
sys_ptrace 26 allows the parent process to trace

and control other processes

sys_setgid 46 GID group identifier operations
sys_getgid 47
sys_chmod 15 changes file or directory attributes
sys_lchown 16 changes owner and group
sys_chown 182 of a given file

Linux source containing list of all system calls and assigned numbers might be
found in the 1linux/include/asm/unistd.h.

4. Implementation

4.1. Architecture

Our IDS system consists of two main parts: the ImSensor which collects system calls
from the kernel and application which collects and analyses information from the
Sensor.

The main duties of the system are:

e tracing processes activities,

e collecting system calls (and their arguments) information,

e constructing knowledge database which describes ”normal” system behaviour,
e evaluation, based on knowledge database, current state of the system.

General diagram of the IDS system has been shown in Figure 1. The system was
called PPIDS. ImSensor collects system calls of traced processes, and puts them into
a memory buffer. A block device /dev/imsensor is used by the application (which
resides in the user space) to read collected system calls and their arguments into
database. Those system calls can be later used for anomaly detection.

We have decided to use custom solution (based on [11, 21]) for tracing the sys-
tem calls rather than ptrace. There are actually two main reasons for taking such
approach. The first one is that such solution allows us to transform system call argu-
ments according to our needs (for example, if process opens a symbolic link then we
convert its name to the file name that it points to).

100 Przemyslaw Maciolek, Pawel Krél, Jaroslaw Kozlak

generation of adequate
information about
anomaly (or about its
absence)

comparison /N
with profile

A
/\

output file(s)
v,

profile in RAM
A/

A

[>| system call execution
\/
request of system A
call execution

ImSensor

Process #01
Process #02

convertion of system

call into feature vector
file with collected
system calls

preliminary system
call analysis

database
with profile

».

syscalls_sensor

\A
J

Fig. 1. General overview of our IDS system

The other reason is that it allows us to trace by default all newly created process
(not only the child ones) from the very first system call (the “early tracing” feature).
The application later might decide if the new process and its system calls are relevant
or not.

Our system can perform many different tasks in which we can distinguish two
main work modes:

1) learn — in which we create basic profile (we assume that this profile contains
only correct behaviours),

2) detect — in this mode we compare previously created (in the learn mode) profile
to the current process behaviour, in order to find anomalies

4.2. Process tracing

While starting PPIDS user defines a list of processes (identified using their names)
which are subject of tracing. System calls are analyzed using ID (PID) and name of
a process which invokes them. The process is qualified for tracing if either its name is
on the list of processes specified for tracing or its PPID (Parent PID) equal to PID
of already traced process.

Some processes have a very short life time. This could cause a process to end
before PPIDS decide that it should actually be traced. To solve this issue we create
a concept of the “early tracing”. By default we trace all newly created processes, and
keep its system calls information in a buffer. We stop tracing newly created process
after 20 seconds or if PPIDS decides that this process should not be traced anymore.

Probabilistic anomaly detection based on system calls analysis 101

4.3. Collecting the system calls

System calls are collected in the kernel. We have implemented (based on
ImSafe[11]/ImSafe2[21]) our own mechanism for collecting system calls (for reasons
mentioned above).
The following parts of the kernel were modified:
e the structure task_struct which contains information about processes —
linux/kernel/sched.c file,
e we have added our function into linux/asm/[i386,...]/entry.S file, before
system call invocation code,
e we have added /dev/imsensor device — file 1inux/kernel/imsensor.c — which
connects kernel sensor with IDS application.

5. Results

5.1. Test environment

To confirm the effectiveness of our approach to anomaly detection, we have created
a special environment inside which all tests took place. It consisted of two PC class
computers, connected by Fast Ethernet network.

The PPIDS system, which was the final version of our IDS, was installed on the
server PC. All efficiency and performance tests were made on this server. The second
computer, which acted as client, was used for connecting to services available on the
server. On the client PC we have installed Perl scripts which simulated typical user
behaviour.

During the test period both computers worked under Linux OS (Kernel 2.6.12/Fe-
dora Core 4).

5.2. Types of attacks

There are many different system (or application) vulnerabilities, that might be used
during an attack. They exists for many reasons, such as programmer’s errors or bad
software design.

Some of the most popular attack types are:

e Buffer Overflow Errors — this attack is using the fact that some widely used
programming languages (such as C or C++) do not fully control the memory
access. A typical attack scenario is following: programmer creates too small array
(or does not control size of the array), so providing the program “special” data
(in command line, during execution, as input data, etc.) causes “moving” outside
the area meant for the data, into the memory area responsible for program flow.
This memory chunk might be accordingly modified and at some point, program
starts to execute code provided by the intruder.

e Denial of Service (DoS) — attacker tries to slow down or even stop given appli-
cation or whole system. It might be accomplished by sending specially prepared

102 Przemyslaw Maciolek, Pawel Krél, Jaroslaw Kozlak

(or sometimes — just large enough) data. The attacked object is unable to process
such amounts of data, in effect the system resources usage enormously increases.

¢ Dictionary attacks — attacker tries to discover the username and password.
The difference between brute-force and dictionary attacks is that dictionary at-
tacks use popular words (and their combinations) rather than random sequences
of chars.

e Viruses and Trojan Horses — these malicious programs try to get into the
machine by presenting themselves as a seemingly harmless application (often sent
by an e-mail). When they are run by an inauspicious user, they often perform
adverse actions, replicate themselves and send copies to other random machines.

e Other — there are many other attack types in existence, which use specific
vulnerabilities of a given system. For example — the “SQL Injections” run
adverse SQL instructions in weakly secured systems communicating with the
SQL database. Or the symbolic-link attacks — which leverage fact that some
applications run with administrator rights and they do not check where the link
points. In effect — a system file might be overwritten by a normal user.

5.3. Tested applications

To check the effectiveness of our approach we have decided to test our system on some
widely used applications, that are prone to different types of attacks. In effect, one
of the most important criteria on which applications were chosen were well known
security bugs (these vulnerabilities were later used to perform the attacks).

5.3.1. Applications portfolio

The actually chosen applications were following:

e Prozilla — version 1.3.6-r2 — popular download accelerator available under
Linux.This application works by downloading different parts of the chosen file in
many threads.

¢ CDRDAO — version 1.1.5-10 — application used for burning audio CDs in
DISC AT ONCE mode. Very often this application has SUID privilege to allow it
access to the burning devices. Also, SUID privilege allows running application
with root user privileges.

e Apache — version 2.0.47 — the world most popular Web server. This is, as well,
the most complicated application we had chosen. During tests Apache served both
static HTML pages, and dynamic pages generated by PHP scripts.

To make good evaluation of SysPAD performance it was important to choose diverse
set of applications, that would have different security flaws, which could be utilized
by attacker in different ways. Some of the applications (Apache) expose network
interface, which actually makes possible for anybody to takeover such system. Some
(such as CDRDAO) depend on a SUID usage, which poses a danger of getting root
privileges by unauthorized user. Finally, some attacks are based on providing malicious

Probabilistic anomaly detection based on system calls analysis 103

files/mails/web addresses that might be opened by an unwary user (e.g. Prozilla is
prone to such security breach).

5.4. Methodology

The first stage of our tests was to collect a set of vectors. In the case of Apache web
server we used scripts which simulated typical users behaviour. All other application
were run many times, with different arguments. The traced processes were started
before the application was run. This allowed us to collect information about applica-
tion start up, which included initialization of all necessary components like Apache
modules. Based on these vectors we created profiles of application-typical behaviour.

The second stage was to collect application behaviour one more time in the same
way as we did in the first stage. Vectors, collected in the second stage, were used
as behaviour for detection of “false positive anomalies”. False positive anomalies are
correct behaviours which were classified as anomalies during detection phase.

Next stage was to test our algorithm against different sizes (number of vectors
which create profile) of profile — from 1000 to 2000 000 system calls. We have examined
creation of the profile and got time of creation as well as diversity of the profile and
numbers of false positives anomalies (Fig. 2).

T T
CDRDAO, SySPAD el]
Apache, SysPAD 8
Prozilla, SySPAD =i
CDRDAO, SEQ —8—
Apache, SEQ ---&----
Prozilla, SEQ —©—

P
e

0.1 f

y——
/

0.01 |- N e —

£

0.001 | 7

Number of anomalies to number of all system calls [%]

1le-04 |

1le-05

0 100000 200000 300000 400000 500000
Profile size [number of collected system calls]

Fig. 2. Number of false anomalies vs. profile size

104 Przemyslaw Maciolek, Pawel Krél, Jaroslaw Kozlak

The last stage of tests was detection of the real anomalies. To achieve this we
performed certain numbers of real attacks against test system, using real exploits. We
have collected application behaviour during this phase. If attack was successful and
the attacker gained access to the system via remote shell, we would perform several
typical actions like: cat /etc/passwd — obtaining the system users list, 1s /proc —
showing contents of the /proc directory, and w — checking list of the logged users.

As it might have been expected the Apache web server had the biggest diversity
from all tested applications (about 1600 assorted elements). For less complex appli-
cations, like Prozilla, CDRDAO or ProFTPd, diversity was much lower (respectively:
250, 400 and 750 assorted elements).

5.5. False positive anomaly detection

False-positive alarms are very dangerous and unwanted events. All methods of anoma-
ly detection, which are based on the process behaviour analysis can generate some
false positive alarms. We cannot assume that profile of application is complete, and
that it contains all possible application behaviours.

As a base method, to which we compare all our results, we chose SEQ method.
For different profile size, which was built from normal application behaviour, we have
analysed different set of vectors. All vectors used in this test contain only correct
application behaviour.

5.6. Real attacks detection

Figures 35 show effectiveness of different kinds of attacks. Each graph shows events
probability (on Y axis) and time (X axis). Events which are below threshold are
classiffied as anomalies. As it might have been expected, the figures show a vast
number of normal events (above the threshold line) and a few “spots” below that are
actually detected anomalies.

As we can see, all attacks were eventually detected. Detailed analyzes showed that
in Prozilla case (figure 3) we observed the creation of a new process using the fork
system call and new (previously unseen) application names which were opened by new
processes. It was also noticed that new files were opened during this attack. Those
new files were not observed during normal application execution. Similar events were
spotted during CDRDAO attack. The sophisticated symbolic link attack made that
application write into /etc/cron.d/cdr file. This was not observed before (during
normal execution) and was classified as anomaly.

During DoS attack for Apache web server, our IDS did not detect any differ-
ent behaviour than in comparison to normal execution, but after system was out of
memory Apache invoked new system calls. Those new system calls were calls to swap
function and previously unobserved types of sockets communication.

Probabilistic anomaly detection based on system calls analysis 105

el D T R e LT EE TEU I] - e w oo e oo 4o . 1
EEL LRER _EE 2 R LRREE RELTES LU 3 - mmahk wd - - L b . e -
LR LY L) A ol bl @ L I " = L bows s -
a.01
P p— - . PR .
o.e0t | H e g H w3 L FHE o G |
[RE INEN B LS I]] B =3 . 2]
z
z - “ e . b -
g te-04 B3 " & ?
84 " P
£ $§i & IS :
3 £ % = b H
=) 4 2 s $:
le-05 | - . b . 4
threshold value
te-DE |
Start of the attack >
te-07 Al B C
A, B, C - anomalies detected
-' dﬁn\‘ﬂn 45000 Sep0e 55000 60ean 65000 Jepog 75000 s00o0 B5000
Systemn time [ms]
Fig. 3. Prozilla — buffer overflow attack
@. -+ . - e—— |
EEEE—— N # | I
b) — | m———
a.01
———
0.201
—
B -y -
8 oo o :
g <3 :
E -
w -1 &
te-05 | = 1
te=E I threshold value
Start of the attack »
=87 A
A - anomalies detected
_— . L L L
” -d.seewnf. 4. 3e+06 4.32e+06 ERETTeT 4.36e+06 4.38e 406 4 e lE PR Er

System time [ms)

Fig. 4. CDRDAO - symbolic link attack

106 Przemyslaw Maciolek, Pawel Krél, Jaroslaw Kozlak

) 008 B 0§ 68 Wb s b 48 e o

Event probability

threshold value

Start of the attack (DoS) |

i

>
i@
o

A, B, C - anomalies detected

Fig. 5. Apache 2 — DoS attack

6. Summary

We have built our IDS system by extending the PAD algorithm [7]. Our new method —
SysPAD uses system calls and their invocation arguments for anomaly detection. The
data model uses a set of vectors containing both system calls and their arguments.
This data model and PAD algorithm were combined together to create a fast and
efficient method allowing effective analysing of application behaviour.

The results show that using SysPAD method is very effective against many differ-
ent attacks. Its high efficiency comes from analysis of system calls argument. Thanks
to this we get a knowledge of not only what a process is doing but also how it is
actually done and in which part of the file system. It can be compared to a situation
where a policeman knows not only what the criminal is going to do, but also where
and how.

Of course it is not possible to build a system without any disadvantages. To al-
low efficient anomaly detection, our system has to create correct application profiles,
which tend to be very complicated in real life programs. We find this as a major dis-
advantage of any Anomaly-type Intrusion Detecion System. However, we have created
some scripts that helped to generate applications behaviour, by calling most of their
functions.

At this point, it is expected that the SysPAD will detect most security breaches
(assuming it has correct and complete application model). It might have problems

Probabilistic anomaly detection based on system calls analysis 107

with detecting attacks that cannot be distinguished from normal behaviour on the
system calls information basis (such as dictionary attacks). Also, some number of false
anomalies might be returned if traced applications are often opening files in random
locations (other than user homes or /tmp directories).

One area where the SysPAD might fail are the kernel security breaches (as the
kernel is not traced). However, it is possible that SysPAD will detect abnormal op-
erations done be previously analyzed application. Thus the attack might be actually
detected.

Currently, the SysPAD is not making thorough analysis of socket operations.
That is, it doesn’t analyze which socket is opened by which service. This is a potential
source of useful information.

References

[1] Sekar E., Bendre M., Dhurjati D., Bollineni P.: A Fast Automaton-Based Method
for Detecting Anomalous Program Behaviors. Proc. of the 2001 IEEE Symposium
on Security and Privacy, 2001
[2] Feng H.H., Kolesnikov O.M., Fogla P., Lee W., Gong W.: Anomaly Detection
Using Call Stack Information. Proc. of the 2003 IEEE Symposium on Security
and Privacy, 2003
[3] Apache webserver 2.0.52 DOS vulnerability — CAN-2004-0942.
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0942
[4] Cdrdao Insecure File Handling.
http://www.securiteam.com/unixfocus/5PPOF1P61I.html
[5] Warrender Ch., Forrest S., Pearlmutter B.: Detecting Intrusions Using System
Calls: Alternative Data Models. Proc. of the 1999 IEEE Symposium on Security
and Privacy, 1999
[6] Burdach M.: Detecting Kernel-level Compromises With gdb.
http://www.securityfocus.com/infocus/1811
[7] Apap F., Honig A., Hershkop S., Eskin E., Stolfo S.: Detecting Malicious Software
by Monitoring Anomalous Windows Registry Access. Proc. of Fifth International
Symposium of Recent Advances in Intrusion Detection (RAID), 2002
[8] Friedman N., Singer Y.: Efficient bayesian parameter estimation in large discrete
domains. Neural Information Processing Systems (NIPS 98), 1998
[9] Hershkop S., Bui L. H., Ferster R., Stolfo S.J.: Host-based Anomaly Detection
Using Wrapping File Systems. Columbia University Tech Report April 2004
[10] Hofmeyera S. A., Forrest S., Somayaji A.: Intrusion Detection using Sequences of
System Calls. Journal of Computer Security, August 18th, 1998
[11] Eschenauer L. et al.: ImSafe — Host Based Anomaly Detection.
http://imsafe.sourceforge.net/
[12] Love R.: Kernel Locking Techniques.
http://www.linuxjournal.com/article/5833

108 Przemyslaw Maciolek, Pawel Krél, Jaroslaw Kozlak

[13] Lee W., Stolfo S.J., Chan P.K.: Learning patterns from UNIX process execu-
tion traces for intrusion detection. AAAI Workshop on Al Approaches to Fraud
Detection and Risk Management, 1997

[14] Heller K. A., Svore K. M., Keromytis A.D., Stolfo S.J.: One Class Support Vec-
tor Machines for Detecting Anomalous Windows Registry Accesses. Proc. of the
ICDM Workshop on Data Mining for Computer Security (DMSEC), 2003

[15] Eskin E.: Probabilistic anomaly detection over discrete records using inconsistency
checks. Columbia University, Computer Science Technical Report, 2002

[16] Prozilla, http://prozilla.genesys.ro/

[17] Akpolat S.: Remote Buffer Overflow in Prozilla.
http://www.securiteam.com/exploits/6WO002ABPM.html, October 25th, 2004

[18] SANS Institute: The Twenty Most Critical Internet Security Vulnerabilities,
http://www.sans.org/top20

[19] Linux Kernel Documentation — SpinLocks. http://kernel.org

[20] SQLite, http://www.sqlite.org

[21] Dabrowski P.: Systemy wykrywajgce naruszenie bezpieczenstwa w systemie op-
eracyjnym w oparciv o analize ciggow odwolarn systemowych. Krakow, Katedra
Informatyki AGH, September 2004

[22] Mitnick K.: The Art of Deception: Controlling the Human Element of Security.
1st edition, John Wiley & Sons, 2001, ISBN 978-0471237129

[23] Bovet D.P., Cesati M.: Understanding the Linuz Kernel. 2nd Edition, O'Reilly
Media, Inc., 2002, ISBN 978-0596002138

