
Michał Korzycki∗

A COMPILE-TIME DEADLOCK DETECTION PATTERN

The paper presents the application of the trait technique in generic programming for compile-
time deadlock detection and prevention in multithreaded applications.

Keywords: generic programming, multithreading, design patterns

WZORZEC CZASU KOMPILACJI DLA DETEKCJI ZAKLESZCZEŃ
W artykule zaprezentowano przykład zastosowania techniki trejtów z C++ do wykrywania
potencjalnych zakleszczeń w programie wielowątkowym.

Słowa kluczowe: programowanie uogólnione, wielowątkowść, wzorce projektowe

1. Introduction

Writing multithreaded programs became an unavoidable neccessity. The reasons for
that are ranging from performance issues to program structure simplification. Not to
mention the simple fact that multi-CPU and multicore-CPUs hardware is much more
available for common usage nowadays than it was a decade ago.
Multithreading introduces a wide new range of technical issues that we must

deal with. Typically those problems are of an order of magnitude harder to track
and eliminate than those typically found in classical sequential programs. It shows
clearly that our focus should be oriented on finding solutions that could prevent those
problems, rather than trying to solve them after that they have occured.
I would like to demonstrate in this article the possibility of using generic pro-

gramming techniques to help building multithreaded code. The non-intrusive pattern
presented permits to restructure some algorithms and detect at compile time po-
tential deadlock points. This pattern bases on one of the basic techniques of C++
metaprogramming: type traits.
The presented pattern does not rely on any specific thread or monitor model. All

thread implementation specific issues are assumed to be hidden in the Mutex1 class,
that provides the interface for a classical readers-writer lock. It and can be easily
replaced to suit any required environment.

∗ Institute of Computer Sciences, AGH University of Science and Technology, Kraków, Poland,
korzycki@agh.edu.pl
1 For the sake of brevity I present here only the key code fragments. The full source code is
available under http://winnie.ics.agh.edu.pl/deadlockdetection/src.tgz

Computer Science • Vol. 8 Special Edition • 2007

85

Listing 1. The Mutex interface

class Mutex {
public:
void readLock();
void writeLock();
void releaseReadLock();
void releaseWriteLock();

};

2. The problem

One of the problems that we must deal with in multithreaded applications are dead-
locks. The algorithms that could suffer from such deficiency are those that deal with
nested critical sections. A deadlock can occur when two threads of execution are sep-
arately inside two critical sections protected by their corresponding locks, and try
simultanously to acquire locks already held by the opposite thread. This nesting of
critical sections leads to the situation when each of the threads waits forever for the
other one to release its first acquired lock. The problem could becomes even more
complicated if many different threads are involved, causing an apperance of a cycle
in the monitor nesting sequence.
One of the solutions usually found is to have a try-and-see approach to locking.

When a certain lock attempt takes too much time – we simply abandon it. That often
is followed by throwing an exception, causing the exception handler to rollback all
acquired locks - possibly releasing the lock cause. That still is a runtime solution. I will
present now an attempt to find a solution for deadlock prevention at compile-time.

3. The solution

We can represent locks as nodes in a directed graph, and the possibility of locking
the monitor, call it A, after having acquired the lock for a different one, call it B – as
an edge going from A to B. Potential deadlocks are corresponding to cycles in such
a graph. Thus, the mentioned graph should be an acyclic directed one. Such graphs
can be represented by means of a relation. Two nodes, A and B, will be in relation if
there is a path in the graph leading from A to B. This relation is of a partial ordering
type, so we can use such terms as “less” and “smaller than” when comparing two
locks in relation. A formal proof of this property is unfortunately beyond the scope
of this article.
If we track all the locks that we have acquired in the current thread, and make

sure that each time that we lock a new one it is always “smaller” than all the others
that we have already locked, we will never encounter a deadlock in my program. This
can be done quite straightforward on run-time. We can create a comparing function
that checks the lock to be acquired. If the check procedure fails, we can abandon the
lock attempt of the monitor avoiding the dreaded deadlock.

86 Michał Korzycki

There is, however, a better way than detecting and solving the problem at run-
time. What if we could use an architecture that simply disallows to create deadlock-
prone code? Here generic programming comes to help. We can represent the mentioned
above relation in C++ terms: the relation between types “being a parent of” is of
a partial ordering type. If the sequentially locked monitors are of different types,
and their ordering breaks the inheritance relation of some related helping classes–
that–in turn–will cause the compilation to fail. We will use for that behaviour for
defining traits for specific monitor types. A trait in generic programming is an exter-
nal, non-intrusive class containing information describing a specific type. Traits are
implemented in C++ usually using template specializations.
Compile-time deals with types and not instances. That restricts at first sight

the described pattern to the cases where sequentially locked monitors are of different
types. We will see that by taking some additional assumptions on the interfaces of the
monitors we are able to lift this restriction, expanding this pattern also to monitors
of the same type.

4. Implementation

We based the implementation on several elements. First, a smart pointer template
LockProxy with a member field being a trait. We use that template to reference all
the resources that we want to lock and protect from deadlocks.
We provide this proxy in two flavors. One gives a read-only access to the protected

object, the other one gives full access to it. Read-only access is easily expressed in
C++ terms through const-correctness, declaring the pointer to the accessed resource
as a pointer to a const. That way only methods declared as const can be called on such
an object. That allows me in turn to take opportunity of the Mutex device that enables
many readers to access the object, but allows only one writer. Such discernation helps
to reduce contention on monitors that are only “read”, and helps to avoid dirty reads
(reading a value while it is being written), which could lead to race conditions.

Listing 2. Differences between the two types of the LockProxy interface

template <class T> class WriteLockProxy : public LockProxyTmpl<T> {
T * resource;

public:
T * operator-> () {
...
return resource;

}
...

};

template <class T> class ReadLockProxy : public LockProxyTmpl<T> {
const T * resource;

public:

A compile-time deadlock detection pattern 87

const T * operator-> () {
...
return resource;

}
...

};

With each resource type we connect a trait being a class whose only characteristic
is its inheritance chain. The user of a specific resource has the responsibility to provide
a specialization of the generic trait (that has no ancestors or inheritants) that inherits
from another specialization.

Listing 3. The LockProxyTrait template, and an example of its specialization

template<class T> class LockProxyTrait {
};

template<> class LockProxyTrait<Node> : public LockProxyTrait<Root>
};

There is a risk that the user may track back on lock ordering and start a new
chain of locks from a point being a predecessor of already held proxies. To avoid
this, the LockProxy has a constructor that requires the passing of a “parent” proxy.
Such parent should possess a unique per-thread token, that in turn is passed to the
created child. The only proxy allowed to be used to create children is the one actually
possessing the lock token. This is always passed down the ordering relation, that
clearly shows that no cyclic locks can occur. In the same constructor we assign the
children trait to the parent trait. If this assignation fails at compile time that shows
that we have taken the wrong order of proxy creation that could lead to deadlocks
and have to restructure my algorithm. The LockProxy is a stack-based, uncoppiable
object. As a result, it cannot be passed between threads. So, its definition guarantees
us that by itself it is thread-safe.

Listing 4. The LockProxy constructor

template<class T> class LockProxy {
protected:
//guarantee that it is stack based and thread-safe
static void * operator new (size_t n){}
LockProxy & operator= (const LockProxy& lp){}
LockProxy (const LockProxy& lp){}

public:
bool per_thread_locktoken;
LockProxyTrait<T> trait;

};

template <class T> class WriteLockProxy : public LockProxy<T> {
...
public:

88 Michał Korzycki

template class <T1> WriteLockProxy (LockProxyTmpl<T1> &parent,
ResourceId id) :
LockProxy<T>(parent,id) {
if(!parent.per_thread_locktoken)
throw new InvalidLockingPathException();
parent.trait = this->trait;// test the relation in compile time
resource=ObjectRepository::getResource(id);
ObjectRepository::writeLockResource(id);
parent.per_thread_locktoken=false;
this->per_thread_locktoken=true;
...

}
};

The specializations inheritance chain starts from a LockProxyTrait<Root> that
keeps the top of the hierarchy. It is a template specialization of a Root class with no
functionality, in order to maintain a consistent notation for all proxies. There is an
issue that we have to deal here with – the fact that the root proxy has no parent
that can provide him a lock token. That issue is solved by a thread-based Singleton
– the RootFactory that is the generator of the unique per thread lock tokens. As the
implementation of such a facility is thread-model specific, I will not present it here.

From this LockProxyTrait<Root> should inherit directly the trait corresponding
to the resource type that ought to be locked first, then from it the next one in locking
sequence, and so on.

We use the LockProxy templates to traverse through the structure of resources.
Listing 5 presents a simple example of traversal of a hierarchy of classes, after declaring
the proper locking order through the LockProxyTrait template specialization.

Listing 5. Traversing a class hierarchy

void traversal() {
...
ReadLockProxy<Root> root;//required to acquire the lock below
ReadLockProxy<Node> (root,nodeid) nodeproxy;
//a~Node has children accessible through getChild(int)
for (int i=0 ; i~< nodeproxy->getChildrenNum() ; i++) {
ReadLockProxy<Leaf> (nodeproxy,nodeproxy->getChild(i)) leafproxy;
...
//do something with leafproxy
cout << leafproxy->getValue() << endl;
//block end causes the release of the ReadLockProxy

}
}

The next element of the implementation is the ResourceRepository. This class
has two purposes. One is Mutex handling, the other one is object referencing by
a unique ID. As the pattern is to be non-intrusive – ResourceRepository is the place
where we connect Mutex-es with specific resources. Each resource that we want to use

A compile-time deadlock detection pattern 89

has to be registered first in the repository. Registration causes a Mutex to be assigned
to a resource. As a result we obtain a unique ResourceId that is used to reference
the objects by the proxies. Adding this facility helps to avoid the cases where we
could access a resource without the intermediary of a LockProxy, or with no Mutex
associated. As a unique ID, we use here for simplicity, a pointer cast to a long. For
a more elaborated application reference counting could be much more appropriate.

Listing 6. ObjectRepository for a non-intrusive Mutex handling

typedef long ResourceId;

class ObjectRepository {
static map< ResourceId , Mutex*> mutexRepository;
static set< ResourceId > repository;

public:
ResourceId getIdForObject(void * p) {
ResourceId id = reinterpret_cast<ResourceId> (p);
if(repository.find(id)==repository.end()) {
repository.insert(id);
mutexRepository[id]=new Mutex();

}

void * getResource() { ... }
void getWriteLock(ResourceId id) {
mutexRepository[id]->getWriteLock();

}
...
}

5. Extensions of the pattern to same type monitors

Till now – the pattern that we have seen controls deadlocks at compile-time only for
monitors of different types. To expand the control to monitors of the same type, we
have to define the locking order and the resulting relation for instances of the same
type. That can be done straightforward as the comparision between corresponding
objects IDs. To use it at compile-time we must be able to obtain from a higher level
type a vector of his children. That way the first created child keeps that vector and
iterates over it – always in the direction of growing ids. Such a LockIterator has
a next() operation causing him to release the current object and lock the next one
following the kept child vector. As we maintain a partial ordering of monitors, we
don’t risk a deadlock. And the sequential access using next() does not allow us to
create a deadlocking code. This Iterator class is strongly dependent on the interface
of the monitors and as such must be a specific specialization of the templates. The
iteration of Listing 5 when based on a LockProxyIterator as described above could
be changed into:

90 Michał Korzycki

Listing 7. Extending the pattern to same type monitors

ReadLockIterator<Leaf> leafproxy (nodeproxy);
while (!leafproxy.end());) {
...
//do something with leafproxy
cout << leafproxy.getValue() << endl;
leafproxy.next();

}

6. Safe places to discard locking

In the special case when for a chosen resource there is always a specific parent mon-
itor that exists on every path of leading to our resource - we can safely relax the
discipline of checking for locking conditions after obtaining a write lock on this par-
ent monitor. A write lock obtained on such a parent guarantees that no other thread
can access the resource that are only accessible through that specific monitor. That
way we can safely use a RandomAccessLockProxy that does not lock any mutexes.
RandomAccessLockIterators can become bidirectional iterators. The order of cre-
ating additional LockProxies can also be simplified – as long as the lock token does
not wander above the mentioned parent in hierarchy. Such a gatekeeper parent that
always can be found is the root LockProxy. Obtaining a write lock on it denies to
any other thread the access to any monitor. As the possibility of having only one way
of accessing a resource is stricly connected with the interfaces of the monitors and
the way we access a specific resource ID, such proxies should be realized by specific
specialization of the templates presented.

7. Usage tips

The first step in using this technique is to plan thoroughly the nesting order that will
be used. As a rule of thumb, the longer we need to keep a lock, the higher in hierarchy
it should be. But this is not an absolute rule as in the case of a breadth-first search
through a structure of monitors. Sometimes we would like to start to lock the search
queue, get a queue entry, lock objects corresponding to the entry, create an entry,
place it on the queue. That describes a cyclic access – or at least a high contention
of the search queue. The solution is to break this cycle by giving a very low rank to
the search queue and a high one to queue entries. That will force us to release the
queue immediatelly after usage. So a proper lock hierarchy, can enforce policies for
lock management in our project.

A place where it is safe to discard this pattern are resources that do not nest
other critical section in their critical sections. That observation is used in the code of
such classes as the RootDirectory or the ResourceRepository. Both have members
that need to be protected from race conditions, and we have achieved that by the

A compile-time deadlock detection pattern 91

usage of mutexes. But as they do not create nested locks of any addtional mutexes,
this is a safe place to avoid the usage of the LockProxy pattern.
The ordering relation is also optimal when it is a strong relation (any two types

are comparable). Optimal in this case means that we have the best coverage of the
resource space, and at each step the amount of locks that we can acquire is as big
as possible. That characteristic translates into the requirement that, if possible, the
relation between traits should be that of a single base inheritance.

8. Final remarks

This pattern can be sometimes cumbersome if the amount of different monitors is low.
In this case a simpler solution based on the observations made in this article could
be an option. The system in which this pattern is used deals with over two dozens
of monitor types, and with very different tasks running simultanously. Any pattern
relieving the programmer from taking directly care of all the issues is of a big help.

References

[1] Stroustrup B.: The C++ Programming Language. 3rd Edition, Addison Wesley
Longman, Inc., 2000

[2] Stroustrup B.: Wrapping C++ Member Function Calls. The C++ Report. Vol
12, No 6, June 2000

[3] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns – Elements of
Reusable Object-Oriented Software. Addison Wesley Longman, Inc. 1994

[4] Karlsson, B.: Beyond the C++ Standard Library: An Introduction to Boost. Ad-
dison Wesley Longman, Inc. 2005

[5] Lea D.: Concurrent Programming in Java. 2nd Edition, The Java Series 1999
[6] Ben-Ari M.: Principles of Concurrent Programming. Prentice-Hall International
1982

92 Michał Korzycki

