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Abstract The main aim of this paper is to present a detailed description of the research

related to the modeling of heat conduction in modern electronic structures, in-

cluding special consideration for numerical aspects of analyzed algorithms. The

motivation to undertake the research as well as some of the most-important re-

sults of the experiments and simulations are also included. Moreover, a numer-

ical approximation of the problem as well as the methodology used and a sam-

ple solution of the mentioned problem are presented. In the main part, the

discretization techniques, Ordinary Differential Equation algorithms, and sim-

ulation results for Runge-Kutta’s and Gear’s algorithms are analyzed and dis-

cussed. Additionally, a new effective approach to the modeling of heat transfer

in electronic nanostructures is demonstrated.
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1. Introduction

The heat transfer problem comprises one of the most-important elements in creating

modern electronic systems. Enhancing the effectiveness of such structures entails

an increase of their operating speed. This fact, in turn, results in increased heat

generation. So, the ability to calculate microchip temperatures is crucial to the proper

functioning of the whole electronic system.

The motivation to undertake this research is related to the proper determina-

tion of generated heat inside modern nanoelectronic structures. Nowadays, because

of customers demands, electronic devices are becoming smaller, thinner, and faster.

This situation causes an increase in heat generation inside these structures and a si-

multaneous increase in their operating frequency. Most of the currently used thermal

simulators are based on the parabolic partial differential equation (with mixed bound-

ary conditions), which is known as the Fourier-Kirchhoff equation [4]. However, for

instance, the modeling of temperature distribution in modern nanotransistors in the

latest integrated circuits using the previously mentioned approach is not correct [8].

Thus, simulation results based on the Fourier-Kirchhoff model may bear significant

errors. Research shows that more than half of electronic failures were caused by a ther-

mal reason [12]. Due to this fact, alternative models are needed that would allow the

consideration of the nanoscale effect in heat conduction. Therefore, the analysis of

heat transfer problems in nanoelectronic systems is currently one of the most impor-

tant research areas. Moreover, research results may contribute to an increase in the

accuracy of electronic system thermal simulation and further optimization.

Thus, the main aim of the research presented in this paper was to model heat dis-

tribution in modern electronics using the newest approaches and advanced numerical

methods. The results were compared with outputs yielded using the classical model

of heat transfer in microsized structures.

2. Selected thermal model overview

This section presents the classical heat transfer theory that was established by Jean-

Baptiste Joseph Fourier in 1822 [4]. This theory was based on a heat conduction law,

which is also called the Fourier’s law. This law can be formulated in the following

mathematical form:

q(x, t) = −k∇T (x, t), for x ∈ R, t ∈ R+ ∪ {0}, (1)

where:

• q means the local heat flux density,

• k means the material conductivity characterized for analyzed material,

• T means the temperature,

• ∇T means the gradient of the temperature,

• x is the location variable,

• t is the time variable.

2017/03/13; 18:16 str. 2/23

72 Tomasz Raszkowski, Agnieszka Samson



The law described above states that the temperature gradient is proportional

to the negative heat flux. It is worth highlighting that the negative sign on the right

side of the equation describing Fourier’s law indicates that the heat propagate from

the warmer areas towards the cooler ones.

Fourier’s law contributed to the formulation of the parabolic partial differential

Fourier-Kirchhoff equation, which is analyzed with mixed boundary conditions. The

differential form of this equation demonstrates that the time derivative of the tem-

perature function is equal to the negative product of the gradient of the heat flux and

the reciprocal of the volumetric heat capacity. This can be expressed in the following

form:

∂T (x, t)

∂t
= − 1

cvs
∇q(x, t), for x ∈ R, t ∈ R+ ∪ {0}, (2)

where cvs means the volumetric heat capacity.

Both the Fourier-Kirchhoff formula and Fourier’s law have had a significant in-

fluence on the classical approach to modeling heat conduction in solid states, because

they have established the classical heat transfer theory. This theory has been applied

to temperature determination for a very long time, since the early twenties of the

19th Century until almost the end of the 20th. The Fourier-Kirchhoff theory has

helped establish a satisfying description of thermal processes occurring in relatively

large structures and when thermal analyses times are relatively long.

Regrettably, the Fourier-Kirchhoff theory imposes few assumptions that are not

in accordance with commonly known and proven physical theories. One of behav-

iors that seems to be non-physical is the infinite speed of the propagation of heat.

Another non-physical presumption concerns the investigated Fourier-Kirchhoff equa-

tion, which states that the heat flux as well as the temperature gradient are able

to instantaneously change, which does not agree with empirical research [5, 6]. In

addition, owing to the miniaturization of many electronic devices and the influential

speed gain of their operation, the Fourier-Kirchhoff model is not apposite for elec-

tronic structures developed in technology nodes smaller than about 200 nm [8]. This

is a very important issue due to the development of the MOSFET manufacturing tech-

nology. These kinds of nanosized transistors are used, for example, in the newest Intel

Broadwell CPUs designed in 14 nm technology node as well as some other smaller

ones such as the prototypical Fin-FET nanotransistors developed in 6 nm technology

node, nanotube, or nanowire manufacturing technology [14].

Consequently, there is a significant need for some other thermal approaches that

are able to include considerations related to the microsized effects in thermal models.

There are some mathematical models that are congruent for heat transfer modeling

in nanosized structures. The most popular of these are listed below:

• Boltzmann Transport Equation model (BTE),

• Molecular Dynamics model (MD),

• Schrödinger Equation model (SE),
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• Ballistic-Diffusive Equation model (BDE),

• Dual-Phase-Lag model (DPL).

The first model, listed above, is the Boltzmann Transport Equation [2].

This model was developed in the 1870s by Ludwig Boltzmann, an Austrian physi-

cist. This model can be applied in realistic electronic structures that are designed in

nanoscale. Their node size can be equal to a few nanometers. The applicability of

the above-mentioned model is also dedicated for much larger structures, even up to

hundreds of nanometers.

The second model, mentioned in the list above, is based on molecular dynamics

research [2]. This can be applied to very tiny structures, even for structures whose

technology node is not much larger than 1 nm. This mathematical model was estab-

lished in the 1950s. Initially, it was designated for biomolecules modeling only; for

example, in chemical physics or some material sciences.

The next model, called the Schrödinger Equation model, is also appropriate

for thermal modeling in nanosized structures. It is based on the Schrödinger Equa-

tion. This model was delivered and announced in the 1920s. Its originator was

Erwin Schrödinger, an Austrian physicist. The equation formulated by Schrödinger

reflects changes that occur in the quantum states of physical systems over time. The

Schrödinger Equation model could also be applied to structures developed in tech-

nology markedly smaller than 1 nm. This makes it possible taking into consideration

structures that are smaller than the parameter of the silicon lattice.

Another model, adequate for thermal modeling in nanometric structures, is the

Ballistic-Diffusive Equation model. The history of this model reaches the begin-

ning of the 21st Century. It was established by G. Chen [3]. Similar to the Boltz-

mann Transport Equation,the investigated model is dedicated to electronic structures

that are manufactured in about the 100 nm technology node.

Despite the fact that all of the mentioned heat transfer models are applicable

in the case of nanometric structures, the simulations that use them are characterized

by huge computational complexity. Thus, the simulations demand plenty of time.

This fact causes many inconveniences in the applicability of each of these models.

Therefore, another mathematical model apposite for the modeling of heat transfer

at the nanoscale will be taken into consideration. This model is called the Dual-

Phase-Lag model; it was delivered in the mid-1990s by Da Yu Tzou [15]. This is a very

useful mathematical model that allows for both the parabolic and the hyberbolic heat

transfer models. Thus, it can be successfully used instead of the Fourier-Kirchhoff

model. Furthermore, the Dual-Phase-Lag model is suitable for the modeling of heat

transfer in many microscopic and nanosized electronic structures, even in those that

are developed in technology nodes smaller than 200 nm and that operate at frequencies

exceeding 6 GHz [17]. Moreover, the empirical confirmation that the heat transfer in

nanosized structures (especially in one-dimensional structures) can be described using

the Dual-Phase-Lag model is presented in [11]. The Dual-Phase-Lag model will be

discussed in detail in the next chapter.
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An approximate scope of the applicability of the heat transfer models mentioned

in this paragraph are marked in Figure 1.

Figure 1. An approximate scope of the applicability of the heat transfer models.

3. Dual-Phase-Lag thermal model

The Dual-Phase-Lag model will be presented in this section. This model was used

to determine temperature distribution in a chosen structure. The Dual-Phase-Lag

model was based on the classical Fourier-Kirchhoff equation, but some very important

modifications were made. These modifications were effectuated in order to adapt

classical theory to the newest technology based on very small transistors that are

produced in technology nodes down to several dozen nanometers and operate at very

high frequencies.
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The principal change is associated with the introduction of two new variables.

Each of them includes the time lag which is observed in the case of heat propagation

as well as the temperature response. These two time lags explain the name of the

investigated model. This thermal model, including the mentioned time lags, can be

expressed (for example) in the form of a system of equations, presented as follows [16]:




∇q(x, t) = −cvs
∂T (x, t)

∂t

k · τT
∂∇T (x, t)

∂t
+ τq

∂q(x, t)

∂t
= −k · ∇T (x, t)− q(x, t)

(3)

where:

x ∈ R, t ∈ R+ ∪ {0}.
Quantities that appear in the bottom equation in the system of equations above

have the following meanings:

• k is the thermal conductivity,

• τq is the time lag of the heat flux,

• τT is the time lag of the temperature.

Quantity k is also known as the measure of the ratio of the heat conduction.

It is worth saying that, in the case of the τT variable being equal to 0, the

described Dual-Phase-Lag model remolds to the Cattaneo-Vernotte model [10]. This

situation indicates the hyperbolic character of the heat transfer equation.

On the other hand, when quantities τq and τT are equal to 0, the Dual-Phase-Lag

model is translated into the original form of the classical Fourier’s law.

Furthermore, when thermal conductivity does not depend on the temperature

(and in the case of a lack of internal heat generation), the Dual-Phase-Lag equation

can be briefly expressed in the following form [10]:

α

(
τT
∂∇2T (x, t)

∂t
+∇2T (x, t)

)
− ∂T (x, t)

∂t
− τq

∂2T

∂t2
= 0. (4)

where:

α =
k

cvs
. (5)

Parameter α in the relation presented above is called the thermal diffusivity.

In contrast to the hyperbolic heat conduction models, the model presented above

contains the mixed space and time derivative of the third order. Moreover, when tem-

perature time lag τT and heat flux time lag τq are equal to 0, the last Dual-Phase-Lag

equation form is reduced to the Fourier-Kirchhoff equation presented in the previous

section of this paper.

4. Methodology and proposed algorithm

One of the first steps in the research was to properly describe the heat flux in selected

structure. A silicon slab with a thickness of 10 nm was chosen. Its lateral dimensions
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were significantly greater than its thickness. One problem concerned the modeling of

the heat flux along the benchmark structure. It was decided that the initial research

would include the one-dimensional case, which pertained the slab thickness only. That

slab was heated from one side and perfectly cooled from the other. Figure 2 presents

the described silicon structure.

Figure 2. The one-dimensional benchmark structure.

The presented approach concerns the Finite Difference Method usage. As men-

tioned earlier, in the case of the nanoscale, the description of the heat transfer behavior

can be obtained using the Dual-Phase-Lag model that was presented in the previous

section. This problem was solved with the following initial conditions:

T (x, t)|t=0 = 0 for x ∈ (0, L), (6)

where L means the thickness of the considered silicon slab. Moreover, the following

boundary conditions have been imposed:

q(x, t)|x=0 = a · 1(t) for t ∈ R+ ∪ {0}, a ∈ R, (7)

and

T (x, t)|x=L = 0 for t ∈ R+ ∪ {0}. (8)

In order to obtain a numerical solution, the Finite Difference Method was used.

The discretization mesh of the considered problem can be performed in graphical

form, as seen in Figure 3.
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Figure 3. The Finite Difference Method discretization mesh.

The analytical form of the presented discretization mesh presents as follows:

Ti = T (x, t)|x=(i+ 1
2 )·∆x for i = 0, 1, 2, . . . , n− 1, (9)

Tn = T (x, t)|x=L (10)

and

qi = q(x, t)|x=i·∆x for i = 0, 1, 2, . . . , n. (11)

The solution was received using the Finite Difference equations presented below:




T ′0
T ′1
T ′2
...

T ′n−2

T ′n−1




=
−1

cvs ·∆x
·




−1 0 0 0 0 0

1 −1 0 0 0 0

0 1 −1 0 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 1 −1 0

0 0 0 0 1 −1



·




q1

q2

q3

...

qn−1

qn




+




q0(t)
cvs·∆x

0

0
...

0

0




(12)
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and




q′1
q′2
q′3
...

q′n−1

q′n




= − 1

τq
·




q1

q2

q3

...

qn−1

qn




+
k

τq ·∆x
·




1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 0 1 −1

0 0 0 0 0 1



·




T0

T1

T2

...

Tn−2

Tn−1




+

+
k · τT
τq ·∆x

·




1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 0 1 −1

0 0 0 0 0 1



·




T ′0
T ′1
T ′2
...

T ′n−2

T ′n−1



, (13)

where variables with apostrophes denote the time derivatives. Moreover:

T ′n = 0 (14)

and

q0(t) = a · 1(t) for a ∈ R. (15)

5. Simulation results

The simulations using the proposed Finite Difference Method were conducted in

the Matlab environment. The solution was obtained by employing an algorithm that

was prepared especially for this reason. Moreover, some numerical methods that allow

us to solve ordinary differential equations have been used. Among others, the Runge-

Kutta formulas and Gear’s method were very helpful. The Runge-Kutta methods

have been chosen for the analyzed stiff problem due to their strong stability-preserving

properties. On the other hand, Gear’s method has been employed because it is char-

acterized by A-stability behavior. Apart from that, the following values of silicon

material parameters were used:

cvs = 1780
kJ

K ·m3
, k = 0.16

kW

K ·m , τq = 3 · 10−12s, L = 10nm.

Simulations were carried out for different number of the discretization mesh nodes

n. Additionally, dimensionless parameter B (defined as ratio
τT

2·τq ) was harnessed.

This parameter allows us to control the transition between various behaviors of heat

conduction. The experiments show that the value of parameter B determines three

cases [1].
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1. The Fourier-Kirchhoff solution when B = 0.5.

Part I: τT = τq = 0. In this case, parameter B is not formally defined as ratio
τT

2·τq . However, assuming that τT = τq = 0, using equations (4) and (5), the

following formula was obtained:

k

cvs
∇2T (x, t) =

∂T (x, t)

∂t
. (16)

Using algebraic transformations, the following equation was written:

−∇ (−k∇T (x, t)) = cvs
∂T (x, t)

∂t
. (17)

Finally, using Fourier’s law, the Fourier-Kirchhoff equation was obtained:

−∇q(x, t) = cvs
∂T (x, t)

∂t
. (18)

Part II: τT = τq = τ, τ > 0. Using equations (4) and (5) and assuming that

τT = τq = τ > 0, the following formula was obtained:

k

cvs

(
τ
∂∇2T (x, t)

∂t
+∇2T (x, t)

)
− ∂T (x, t)

∂t
− τ ∂

2T

∂t2
= 0. (19)

Using basic algebraic transformations, the following expression was fulfilled:

cvs
∂T (x, t)

∂t
= −τ ∂

∂t

(
cvs

∂T (x, t)

∂t

)
+∇ (k∇T (x, t)) +∇

(
kτ
∂∇T (x, t)

∂t

)
. (20)

Knowing that expression (2) is fulfilled, the considered equation (20) was trans-

formed into the following formula:

cvs
∂T (x, t)

∂t
= −τ ∂

∂t
(−∇q(x, t)) +∇ (k∇T (x, t)) +∇

(
kτ
∂∇T (x, t)

∂t

)
. (21)

After some algebraic transformations, the following equation was written:

cvs
∂T (x, t)

∂t
= ∇

(
τ
∂q(x, t)

∂t
+ k∇T (x, t) + kτ

∂∇T (x, t)

∂t

)
. (22)

Using expression (2) again, the formula below was yielded:

−∇q(x, t) = ∇
(
τ
∂q(x, t)

∂t
+ k∇T (x, t) + kτ

∂∇T (x, t)

∂t

)
. (23)

Hence, the succeeding formula was determined:

q(x, t) + τ
∂q(x, t)

∂t
= −k∇T (x, t)− kτ ∂∇T (x, t)

∂t
. (24)
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Using the approximation mentioned in [13], the formula above can be written in

the following form:

q(x, t+ τ) = −k∇T (x, t+ τ). (25)

Substituting s = t+ τ , Fourier’s law was obtained:

q(x, s) = −k∇T (x, s), (26)

which finally leads to the formulation of the Fourier-Kirchhoff equation.

2. The hyperbolic solution when B → 0.

Considering that B = τT
2τq
→ 0, it can be assumed that τT → 0, or that the

value of parameter τT is significantly smaller than the value of parameter τq.

Thus, parameter τT can be neglected. Then, the Dual-Phase-Lag equation can

be written in the form presented below:

−α∇2T (x, t) +
∂T (x, t)

∂t
+ τq

∂2T (x, t)

∂t2
= 0. (27)

However, considering the one-dimensional case, this equation can be rewritten in

the following form:

−α∂
2T (x, t)

∂x2
+
∂T (x, t)

∂t
+ τq

∂2T (x, t)

∂t2
= 0. (28)

Using the classical theory of partial differential equations, the expression above

can be formulated as:

Aµxx +Bµxt + Cµtt +Dµx + Eµt + Fµ = f, (29)

where:

µxx =
∂2T (x, t)

∂x2
, µxt =

∂2T (x, t)

∂x∂t
, µtt =

∂2T (x, t)

∂t2
,

µx =
∂T (x, t)

∂x
, µt =

∂T (x, t)

∂t
, µ = T (x, t),

f = 0 for x ∈ R, t ∈ R+ ∪ {0},

A = −α, B = 0, C = τq, D = 0, E = 1, F = 0.

The simplified form of the previous equation presents as follows:

−αµxx + τqµtt + µt = 0, . (30)

The character of the partial differential equation of the second order presented

above can be determined by calculating the value of the following discriminant:

∆(x, t) = B2 − 4AC, (31)

2017/03/13; 18:16 str. 11/23

Numerical approaches to the heat transfer problem (...) 81



which means that, in the considered case, this value is equal to:

∆(x, t) = 02 − 4 (−α) τq =
4kτq
cvs

> 0. (32)

The positive value of the discriminant above indicates that the analyzed equation

has hyperbolic behavior.

3. The heat transfer that is characteristic, for example, for nanosized

metals, when B � 0.5.

When the value of parameter B is greater than 0.5, the heat diffusion speed is

also greater than the one that is determined by the classical Fourier theory [7]. On

the other hand, when the value of the mentioned parameter B is smaller than 0.5

(hyperbolic case), the generated heat diffuses more slowly than predicted in the case

of the Fourier theory. It is also worth saying that the heat transfer described by the

hyperbolic equation will not be a main research task in the future.

In further analyses, time variables and coordinates will be presented in normalized

forms in order to make mathematical analyses more convenient and allow comparisons

of the different approaches to the heat transfer problem. Normalization formulas were

determined as follows:

xN =
x

L
(33)

and

TN =
T

Tmax
. (34)

Parameter Tmax means maximal steady-state temperature, and it is expressed

in the following form:

Tmax =
q · L
k

. (35)

A brief comparison of the results obtained in the presented way when parameter

B = 0.5 and others that have been yielded using Green’s functions for the Fourier-

Kirchhoff equation and described in [9] is demonstrated in Figure 4.

It is easy to see that, in the foregoing figure, the normalized values of the temper-

ature observed alongside the investigated structure are presented. Each couple of col-

orful and their corresponding black curves demonstrate the distribution of the tem-

perature observed at different time instants. The black curves show the results that

have been obtained based on the Fourier-Kirchhoff equation. On the other hand, the

cyan, magenta, green, and blue curves indicate the outputs yielded using the Dual-

Phase-Lag equation for 4 fs, 40 fs, 400 fs, and 4000 fs, respectively. Moreover, in

order to make the analysis more convenient, the horizontal axis is described using
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a logarithmic scale. As can be seen, each mentioned color and its corresponding black

curve coincide with each other. Hence, both the Fourier-Kirchhoff and Dual-Phase-

Lag (for B = 0.5) methods produce exactly the same results, so this denotes the

correctness of the proposed scheme.

Figure 4. Comparison of the Fourier-Kirchhoff and Dual-Phase-Lag models for B = 0.5.

The temperature solutions yielded using the Fourier-Kirchhoff model or, equiva-

lently, using the Dual-Phase-Lag model when parameter B = 0.5 and solutions based

on the Dual-Phase-Lag model for B = 0.3 are presented in Figure 5. The men-

tioned figure above demonstrates that the temperature solutions received using the

Dual-Phase-Lag model for parameter B = 0.3, representing the hyperbolic model and

marked by dashed curves, overestimates the values of the temperatures in the heat

source and its surroundings. However, a higher value of average surface temperature

is observed using the Fourier-Kirchhoff equation (which is marked by the solid curves).

In Figure 5, the results obtained for different time instants are presented. Time in-

stants are equal to 4 fs, 40 fs, 400 fs, and 4000 fs, respectively. Similar to the previous

figure, the horizontal axis is described using a logarithmic scale.

On the other hand, Figure 6 shows the temperature distribution received using,

again, the Fourier-Kirchhoff model or, equivalently, the Dual-Phase-Lag model when

parameter B = 0.5. Moreover, temperature distribution based on the Dual-Phase-Lag

model when B = 7 is also shown.

In the case when B > 0.5, the speed of heat diffusion is initially larger than the

heat diffusion speed observed using the Fourier-Kirchhoff equation. Similar to Figure

5, the normalized distribution of temperature is presented in Figure 6. The temper-

ature distribution is demonstrated for 4 fs, 40 fs, 400 fs, and 4000 fs, respectively.

Like in the previous cases, the horizontal axis is described using a logarithmic scale

to make the analysis more convenient.

The computational complexity of the investigated algorithm was estimated based

on the temperature distribution yielded for different numbers of nodes in the dis-
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cretization mesh, different values of parameter B, and all numerical methods pre-

sented in the previous section. Moreover, the values of temperature were computed

for several time instants. The chosen simulation environment was Matlab. All sim-

ulations were supported by an Intel R© CoreTM i7 CPU (2.5 GHz, 3.5 GHz in Intel R©

Turbo Boost Technology 2.0) with Hyper-Threading Technology (four cores, eight

threads), 16 GB RAM DDR3, and the Microsoft Windows operating system (ver.

10). Furthermore, sparse matrices were employed in order to reduce RAM memory

and CPU power consumption.

Figure 5. Comparison of temperature solutions for the Fourier-Kirchhoff and Dual-Phase-Lag

models for B = 0.3.

Figure 6. Comparison of temperature solutions for the Fourier-Kirchhoff and Dual-Phase-Lag

models for B = 7.

Then, the duration of each of the simulations was measured. Their results are

clearly visible in Figure 7.

Moreover, the number of temperature function evaluations, multiplication

operations, and summation operations for each employed numerical method were

counted during the simulation. The comparison of the number of temperature
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function evaluations with respect to the number of discretization nodes is presented

in Figure 8.
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Figure 7. Computation time comparison.
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Figure 8. Comparison of the number of temperature function evaluations.

2017/03/13; 18:16 str. 15/23

Numerical approaches to the heat transfer problem (...) 85



In order to make analysis easier, the number of temperature function evaluations

in Gear’s method in relation to the number of the discretization nodes is presented

separately in Figure 9.
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Figure 9. Number of temperature function evaluations in Gear’s method.

On the other hand, Figure 10 presents a comparison of the number of multipli-

cations depending on the number of discretization nodes.
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Figure 10. Comparison of the number of multiplications.
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Similar to the previous case, the number of multiplications in Gear’s method in

relation to the number of discretization nodes is also presented separately in Figure 11.
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Figure 11. Number of multiplications in Gear’s method.

Moreover, the analogous comparison related to the number of summations has

also been prepared and shown in Figure 12.
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Figure 12. Comparison of the number of summations.
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The number of summations in Gear’s method, in turn, is presented in Figure 13.

 

nsum = 8.7618n + 300257
R² = 0.9992

299 000

300 000

301 000

302 000

303 000

304 000

305 000

306 000

307 000

308 000

309 000

310 000

0 200 400 600 800 1000 1200

N
u

m
b

e
r 

o
f 

su
m

m
at

io
n

s 
n
su
m

[-
]

Number of discretization nodes n [-]

Number of summations (Gear)

Gear Reg. (Gear)

Figure 13. Number of summations in Gear’s method.

Analyzing the results presented in the figures above, it is clearly visible that the

algorithms based on the Runge-Kutta formulas, marked as Runge-Kutta 2–3 (formula

of the second and third order) and Runge-Kutta 4–5 (formula of the fourth and fifth

order), are characterized by greater computational complexity than the algorithm us-

ing Gear’s method, marked as Gear. The number of temperature function evaluations

obtained using the Runge-Kutta methods is significantly greater than the analogous

number of temperature function evaluations in Gear’s method. A similar situation

is observed for the number of multiplication and summation operations. In these

cases, Gear’s method demands a considerably smaller number of multiplications and

summations than the Runge-Kutta algorithms. In the case of a medium number of

discretization nodes (about 1000), the Runge-Kutta 2–3 method needs over 150 times

more function evaluations, multiplications, and summations than Gear’s method. On

the other hand, the Runge-Kutta 4–5 method demands almost 300 times more oper-

ations than Gear’s.

In the case of very big computational problems (for example, in the modeling

of temperature distribution in realistic three-dimensional nanoelectronic structures

where the number of discretization nodes exceeds 40 million), these differences are

even more pronounced. This means that, in the case of an increased number of dis-

cretization nodes in the heat transfer problems described using the Dual-Phase-Lag

equation in nanoelectronic structures, Gear’s algorithm allows for the significant ac-

celeration of computations in relation to the Runge-Kutta algorithms. A comparison

of the measured and estimated computation times for all analyzed numerical meth-
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ods for discretization mesh including 200, 1000, and 40 million nodes is presented

in Table 1.

Table 1

Comparison of the estimated computation times for Runge-Kutta’s and Gear’s algorithms.

Method
Estimated computation times [s]

200 nodes 1000 nodes 40,000,000 nodes

Runge-Kutta 2–3 49.0731 2111.8464 ∼ 4.6 · 1012

Runge-Kutta 4–5 80.5080 3209.6471 ∼ 7.0 · 1012

Gear 48.5045 750.3439 ∼ 3.5 · 107

It is clearly visible that, for very big computational problems (40,000,000 nodes),

the computation time in Gear’s method can take about 1.1 year; in the Runge-Kutta

2–3 method – 145 865 years; and in the Runge-Kutta 4–5 method – a full 221,968 years

(using the same computational node as in the presented research). However, three-

dimensional problems may demand more time and a greater number of operations.

This means that, for the analyzed problem, the computation time in the Gear’s algo-

rithm is even 200,000 times shorter than the computation time in the Runge-Kutta

methods. Moreover, based on the data presented in Figures 7–13, it can be assumed

that Gear’s algorithm has time complexity O(n), while the Runge- Kutta algorithms

have time complexity O(n2).

It is also worth saying that, for a small number of discretization nodes, Gear’s

method demands a little bit longer time than the Runge-Kutta 2–3 method does. The

inflection point is observed when the number of nodes is approximately equal to 100

(see Figure 15). This results mainly from the fact that, for a small number of nodes in

Gear’s method, the computational activity related to sparse matrix implementation

is relatively large. With the increase of number of discretization nodes, this activity

decreases in relation to all required computations.

Moreover, the convergence of the proposed algorithm has also been considered.

In order to prove its convergence, relative error ε of the values of temperature was

computed. This was obtained using the following expressions:

εk =
Tk − Tmaxk
Tmaxk

for k = 10, . . . , 1000, (36)

where:

• Tk is the value of the temperature received for k nodes, where k=10, . . . , 1000,

• Tmaxk is the value of the temperature received for the maximum number k

of nodes used in the simulation,

• εk is the value of the simulation error computed for k nodes, where k=10, . . . ,

1000.

Due to the fact that the algorithm based on Gear’s method is characterized by the

least computational complexity (as proven earlier), the relative error was computed
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using the temperature distribution based on Gear’s method. The relative errors for

a chosen time value equal to 500 ps and different numbers of nodes are demonstrated

in Figure 14.

Figure 14. The relative error of the temperature value computation.

It is clearly seen that the relative error of the temperature value computation

is reduced when the number of discretization nodes increases. This situation firmly

indicates that the proposed algorithm based on the Dual- Phase-Lag equation is

convergent. It is also worth saying that the number of the temperature function

evaluation increases fast with a decrease in the relative error of the temperature value

computation using Gear’s method. This dependence is demonstrated in Figure 15.
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relative error of temperature value computation. The red dot indicates the inflection point.
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The accuracy, computation times, number of temperature function evaluations,

number of multiplication and summation operations, and character of the relation

presented in Figure 15 results mainly from the use of the predictor-corrector method

in Gear’s algorithm.

6. Conclusions

In this paper, the Dual-Phase-Lag model was employed to simulate the heat transfer in

a nanosized solid state. The use of the mentioned model is dictated by its correctness

in relation to the structures whose size do not exceed a few hundred nanometres.

In order to solve the Dual-Phase-Lag equation numerically, the Finite Difference

Method was used. Moreover, some numerical methods for solving ordinary differential

equations have been employed. One of the most-effective methods is based on Gear’s

method, and it gives the best results in the context of the lowest computational

complexity problem. Furthermore, the research has shown that the solution using

the proposed Finite Difference scheme is convergent; thus, it can be applied in solving

thermal problems.

The numerical analysis of the computational complexity, presented in Chap-

ter 5, is very important due to the necessity of practical solving of the realistic three-

dimensional problems that may contain over 40 million mesh nodes. The presented

analysis indicates that Gear’s algorithm has linear time complexity while the Runge-

Kutta algorithms have time complexity O(n2).

It is also worth emphasizing that this kind of research is an utterly new approach

in solving the complex thermal problem in solid states.
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