
Michał Radziszewski∗, Witold Alda∗∗

OPTIMIZATION OF FREQUENCY FILTERING
IN RANDOM ACCESS JPEG LIBRARY

In the paper we present a method of direct access to single blocks of JPEG files which
contain textures, with on-the-fly decompression. Anisotropic, adaptive filtering is applied in
order to minimize visual defects appearing mainly on blocks borders. Main purpose of the
method is to enable fast extraction of only these parts of an entire image which are currently
needed and not to keep whole decompressed texture in the main memory. This approach
enables effective usage of high quality textures with low memory consumption. It’s benefits
are mainly demonstrated in rendering complex 3D scenes using nondeterministic ray-tracing
algorithm. The algorithms have been encapsulated into DLL and static library.

Keywords: JPEG, adaptive filtering, textures, 3D scenes

OPTYMALIZACJA FILTRACJI CZĘSTOTLIWOŚCIOWEJ
W BIBLIOTECE JPEG O SWOBODNYM DOSTĘPIE

W artykule przedstawiono metodę swobodnego dostępu do pojedynczych bloków obrazów
JPEG zawierających tekstury, z dekompresją wykonywaną na bieżąco. Zastosowane przy tym
anizotropowe adaptacyjne filtry zostały dobrane pod kątem minimalizacji obserwowanych
zniekształceń, pojawiających się głównie na granicach bloków. Głównym celem zapro-
ponowanej metody jest umożliwienie szybkiego dostępu tylko do tych fragmentów obrazu,
które aktualnie są wymagane, bez konieczności przechowywania całej zdekompresowanej tek-
stury w pamięci komputera. Takie podejście pozwala na efektywne użycie dużych tekstur
o wysokiej rozdzielczości przy oszczędnym wykorzystaniu pamięci. Swoje zalety demonstruje
głównie w renderowaniu scen 3D przy użyciu metody śledzenia promieni. Zaproponowane
algorytmy zostały wbudowane w bibliotekę typu DLL i statyczną.

Słowa kluczowe: JPEG, filtrowanie adaptacyjne, tekstury, sceny 3D

1. Introduction

Texturing objects with high resolution image maps is common method which great-
ly increases rendering quality. Unfortunately these images in uncompressed formats
usually consume huge amount of memory. If a scene contains many objects, which use

∗ PhD Student EAIiE, AGH-UST, mradzisz@student.agh.edu.pl
∗∗ Institute of Computer Science, AGH-UST, alda@agh.edu.pl

Computer Science • Vol. 9 • 2008

109



large quantity of different textures, loading all of them as arrays of pixels could easily
cause an overflow of the computer memory capacity. This effect is much more painful
than appears to be at first glance, because many objects often require more than one
texture (i.e. working in multi texturing mode), when they want to display e.g. diffuse
color texture, glossiness map, bump map or transparency map. With lack of memory,
the only solution is to reduce textures resolution, which obviously leads to drastic
decrease of rendered image quality. However, there exists a much better approach. It
is possible to render directly from compressed textures and decompress only a tiny
portion of it, which is exactly needed at a time. Easily achievable JPEG compression
factor of, e.g. 16:1 is equivalent, in the sense of memory usage, to non-compressed im-
age, downsampled four times. Yet the compressed image quality is much better than
the downsampled one. The usage of compressed image data enables gaining bene-
fits of full resolution textures for all scene objects, which may be very helpful while
rendering, for example, magnifying curved mirrors.

Fig. 1. Example of many textures placed in a single image

For the purpose of scene rendering usually many textures are put into a single
image to avoid many files, as shown in Figure 1. Texture itself has to be rectangu-
lar, so in the case described, it contains some unused blank area, filled with constant
color. The compression allows to store these blank parts with minimal memory us-
age. When thinking of the choice of compression method, we obviously have to use
a lossy compression, because only this scheme allows achieving sufficiently high com-

110 Michał Radziszewski, Witold Alda



pression factor, up to 20:1 or sometimes even larger. Lossless compressed files (such
as PNG) usually are much less compressed and also difficult for direct access to image
fragments.

The JPEG standard is a good candidate for this purpose, since it is comparatively
easy to convert it to direct access file format, and is very popular among variety of 3D
models. The library functions allow to read JPEG files and keep them in memory in
almost original state (from technical point of view, some parameters in conventional
JPEG files stored as values relative to other parts of the image have to be converted
to absolute values for a single fragment). To enable direct access to any part of data,
JPEG blocks are initially indexed. The size of index array needs modest memory
overhead, not decreasing overall JPEG compression factor much.

However, JPEG compression introduces artifacts, visible especially along borders
of 8× 8 pixel blocks as some kind of discontinuities. The filtering included in library
offers solution to this flaw. It can be shown that these artifacts can be diminished
without introducing excessive blur by careful usage of optimized filtering.

The adaptive filters used here, have their ’smoothing strength’ adjusted to both
image compression and sample location in a 8 × 8 block. It appears that heavily
compressed images should be filtered stronger than good quality ones. Also filter
should work with maximum smoothing only on borders of blocks. To achieve best
possible performance, different image frequencies are treated separately, with strongly
anisotropic filter. The compression error has been measured only for grayscale images,
by comparing decoded image with a reference one using L2 norm. Obtained results
have been compared with standard decoder, in our case Windows Graphics Device
Interface Plus (GDI+) used for this purpose, showing the advantage of our approach.

2. Related Work

There has been little work dedicated to rendering with compressed textures. In fact,
we are not aware of any library dedicated to ray tracers. There are a few papers
describing similar approach – for example [3] or [9], but they are designed for the
needs of real time hardware rendering. That technique favors decompression speed
over compression effectiveness, which is not a good choice for off-line ray tracing.
The ray tracing is capable of rendering huge scenes, limited only by memory size,
not necessarily in very short time, thus we believe for this purpose image quality is
significantly more important than a speed. There have been much more work dedicat-
ed to image compression in general, not necessarily texturing. The most useful lossy
compression scheme seems to be standard JPEG [1]. It uses a very efficient algorithm,
and even though it is not new, no significantly better procedures have appeared since.
Two examples of methods that could possibly replace JPEG are the wavelet transform
based JPEG2000 [10], and fractal compression [8], which, according to the authors,
can be used for texturing. However, they have not become as popular as the classic
JPEG standard.

Optimization of Frequency Filtering in Random Access JPEG Library 111



3. JPEG Compression

We describe here only main points of JPEG compression, relevant to our work. De-
tailed reference on JPEG file format can be found in [1]. To compress raw data into
JPEG file, following steps have to be done:
1. For color input, all components of RGB model are separated and converted to
YCrCb (luminance, red chrominance, blue chrominance) color space. This con-
version allows to downsample and/or to quantize chrominance components with
less visual loss of quality compared to simple operating on raw RGB data. In the
case of grayscale input the image remains unchanged.
2. YCrCb components are split into 8× 8 pixel blocks. Discrete Cosine Transform
(DCT) is subsequently calculated on every block.
3. Frequency coefficients in each block are then quantized, resulting that a large
part of them is rounded to zero. This is the main source of compression, but also
of loss of information.
4. Blocks of components in interleaved order form so called Minimum Coded Units
(MCU). Each MCU, which is differential and Huffman or arithmetic encoded, is
placed sequentially in stream. For color images MCU in general is not equal to
three blocks (one for each component), because sampling factors may be different
for each component.
To decompress a JPEG file the above steps must be inverted and done in reverse

order. Namely, they must follow: Huffman or arithmetic decoding, difference decod-
ing, dequantization, inverse DCT, possibly upsampling and optional YCrCb to RGB
color conversion. It is important to notice that JPEG standard has to be strictly pre-
served only until dequantization step, since operations performed here are based on
bits and well defined integer values. Computing inverse DCT and upsampling leaves
some freedom due to continuous values on which these procedures operate. As it ap-
pears later, slight modification of standard decoding, especially along block edges can
improve performance.

4. Library Structure

The library is divided into two parts. In the first one, the input JPEG file is read
with full error checking. The data is indexed to allow efficient direct access to sin-
gle blocks of the image, and in this slightly converted, but still compressed form,
is kept in memory. After that, the library is ready to perform texture sampling in
several subsequent steps with optimal speed. The input single point address (u, v),
normalized to unit square regardless of texture resolution, is converted by requested
addressing mode (clamp, wrap or mirror, as available in DirectX or OpenGL). Next,
the Minimum Coded Units necessary to filter point sample (up to four units, if sam-
ple happens to lie near the block’s corner) are decoded. After that, the filtering is
performed independently for each component in color images, and independently for
frequency groups. Finally the conversion is done for color images, while in grayscale

112 Michał Radziszewski, Witold Alda



data single component is replicated onto all channels. In the current implementation
due to optimization, the steps of the entire process are mixed, merged and executed
in different sequence in order to improve the performance.

4.1. Image blocks indexation

The main difficulty in fast direct access to JPEG data fragments arises from differences
in length of individual MCUs and differential encoding. Using information about
sampling factor of each component and knowing that inverse DCT block is 8x8 pixels
wide, we can easily transform the requested sample coordinates to MCU number, but
we still cannot compute the address of sequence of bits defining the sample value. To
cope with this we introduce an index array with pointers to each MCU, which solves
the problem with different length of MCUs. To eliminate differential encoding we have
to save differences between first inverse DCT coefficients (DC coefficients) at first bits
of each block of new MCU. According to JPEG specification [1], difference must be
coded on 11 bits. The index array uses 32 bit pointers, pointing individual bits, which
gives a limitation on 512MB maximum compressed JPEG size which is far more
than size of even largest textures. We also exploit the fact that Huffman decoding
is typically faster than computing inverse DCT. What more, only even MCUs are
indexed, which at costs of slight loss of speed reduces the memory overhead by half.
Using the ideas mentioned above we managed to reduce the average index size to 2
bytes per MCU plus difference bits, which is acceptable memory overhead (discussed
in 5.2).

4.2. Inverse DCT and Filtering

When using maps for ray tracing instead of standard displaying pixel by pixel, there
is zero probability that a ray hits exactly the well defined integer sample location.
That is, rays always fall between them, and requested color values must be somehow
interpolated. The way of doing it has been described in many papers, e.g. in [5] or
[6]. However, we present here an alternative approach for filtering, dedicated to JPEG
inverse DCT compression scheme, which is more efficient than classic convolution with
filter matrix. There exists a well known Fast Fourier Transform, capable of computing
at once 64 pixel values from 64 coefficients (presented e.g. in [4]), excellent for usage
in sequential approach. However, in direct access, only a single pixel value at a time
is needed. Thus in the latter case naive sum of products seems to be the best option.
What more, no filtering inside block is necessary, since discrete cosine coefficients can
be, without any difficulties, converted to functions defined on real values from [0, 8]
range. Consequently, an extended iDCT algorithm can compute well defined value for
any point from 8× 8 square. Unfortunately, after such extension, values calculated in
neighboring blocks mismatch, what causes visually distracting discontinuities seen as
extra horizontal and vertical lines along the whole image. To cope with these artifacts,
we have extended the iDCT domain further to whole R

2 space, to enable filtering along
borders of individual blocks. The extension of iDCT domain to all real values is done

Optimization of Frequency Filtering in Random Access JPEG Library 113



as follows. In the basic version of the algorithm, values outside the [0, 8] range are
clamped. However, introduction of sharp corners into this function decreases image
quality. It can be shown, that smoothing them with 3rd degree polynomial reduces
the image error. The size of this smoothing depends on the extent of the filter. The
dependence, however, is not very strong and due to this there can be found reasonably
good smoothing coefficient for all image frequencies. This allows substantially optimize
the computation of iDCT and therefore the overall performance of the library. The
extension is presented in Figure 2. Dots show standard iDCT domain. The line which
joins them marks iDCT domain as an extension from discrete points. The curved line
is the final domain of the cosine transfer (in fact no more discrete) as all real values.
Figure 3 shows the filtering effect. Solid lines present the mismatch of neighboring
blocks when iDCT is extended to [0, 8] real interval. Extended cosine transform value
is marked as a dashed line while the dotted line means the final smooth transition
between blocks due to filtering. It shows that the filtering needs to be performed only
on sides of blocks, while applied in the central part causes excessive blur, decreasing
image quality.

0 8

8

Fig. 2. Extension of 1D iDCT domain in 8× 8 block

The filter extent has to be carefully adjusted. In case of low compressed files
it should only mask small discontinuities, whereas in highly compressed ones – the
filter, in addition, is designed to minimize quantization errors. What more, filter ex-
tent should depend on particular frequency component, which it has been applied to.
However, filtering all 64 frequency coefficients separately leads to extremely slow algo-
rithm, and splitting the domain into four 4×4 blocks seems to be enough for achieving
good quality results in reasonable time. This way we use two frequency groups along
each direction, which we call ’low’ and ’high’ frequencies. The actual value of filter
extent for each frequency group is calculated as a value of 5th degree polynomial
approximating real data. Polynomial coefficients were obtained using a set of rep-
resentative test images. For this purpose, several uncompressed photographs with
different number of details were used (e.g. plain sky, forest, etc.). The photographs
were compressed to JPEGs with quantization ranging from 1 to 255.

114 Michał Radziszewski, Witold Alda



Fig. 3. Smoothed 1D iDCT value. Solid line comes from transform on [0,8] interval, dashed
line – from transform extended to entire space; dotted line shows the result of filtering

For each test photograph and for each quantization the filter extent was manually
set in order to minimize the error. The error estimation was guided by comparison
of decoded image with reference bitmap, using L2 norm as well as by the visually
estimated image quality. We have set the parameters to minimize objective error
and then increased the filter extents slightly to improve image smoothness without
introducing too much blur. In Figure 4 and Figure 5 there are presented results of
this procedure. Figure 4 presents the evaluation of filter extent along horizontal axis.
Filter extent along vertical axis uses the same data, but the 2×2 matrix of frequency
blocks is transposed (which results in swapping curve marked by ’×’ with ’+’). Due
to library architecture (output can be filtered from at most two blocks in horizontal
direction and two blocks in vertical direction) the maximum plausible extent is 4 (half
of the block size which is 8). The minimum extent is not specified in advance, but the
value about 0.6 is just enough to ensure visual smoothness between blocks without
introducing excessive blur.

5. Results

5.1. Error Reduction

The tests have been performed on variety of JPEG files, different from those previously
used to adjust filter parameters. As reference images we have used monochromatic
640×480 pixel maps (the results for colour images are very similar and therefore we do
not present them here). First, we introduced some controllable error by compressing
these images using Corel Photo Paint with different compression coefficients. Next
we decoded the compressed images using both our library and Windows GDI+ as
a reference decoder. It seems that it strictly keeps the standard – the error metrics is
almost identical with disabled filtering in our library. Finally we compared resulting
bitmaps with initial reference images using L2 norm for pixels on the edges (28 pixels
out of 64 for each block). The remaining pixels are barely affected by this filtering

Optimization of Frequency Filtering in Random Access JPEG Library 115



50 100 150 200 250
0.5

1

1.5

2

2.5

3

3.5

4

Average quantization of 4x4 subblock

F
ilt

er
 e

xt
en

t a
lo

ng
 u

 a
xi

s

u, v low frequencies

u low, v high frequencies

u high, v low frequencies

u, v high frequencies

Fig. 4. Fitting filter extent to measured data

Fig. 5. Filter extents for different frequencies. The anisotropy of filters follows the average
anisotropy of frequencies

116 Michał Radziszewski, Witold Alda



algorithm. We have observed the tendency that our library is most effective with
images with not too many details. The efficiency is slightly worse on files with lots of
high frequency details. The measured decrease of error is similar for all test files, but
the actual error value is much larger for detailed images, which results in less relative
quality gain. Figures 6 and 7 present the most extreme cases of these tests.

0 50 100 150
0

500

1000

1500

2000

2500

3000

3500

4000

Average quantization

M
ea

su
re

d 
er

ro
r

our library

Windows GDI

Fig. 6. Error comparison for images with high frequancy content

0 50 100 150
200

300

400

500

600

700

800

900

1000

1100

Average quantization

M
ea

su
re

d 
er

ro
r

our library

Windows GDI

Fig. 7. Error comparison for images with low frequancy content

Optimization of Frequency Filtering in Random Access JPEG Library 117



5.2. Compression Efficiency

We have compared our method with uncompressed bitmaps. We present the results
obtained by measuring performance for three different classes of JPEGs. All of them
are decompressed by dedicated functions with different speed. These classes are:

• low compressed RGB data, MCU is 8×8;
• high compressed RGB data, MCU is 16×16;
• grayscale data, MCU is 8×8;

All tests except one are done by randomly accessing to 4 million pixel fragments
from 3000×4000 map. Only the first test high compressed JPEG has been done on
2000×2000 map. Processing speed has been measured on 2.4GHz PIV processor run-
ning under control of Windows XP. Library has been compiled with Intel C++ 8.0
compiler. The tests use typical textures prepared for rendering 3D scenes and models,
which differ from ’ordinary’ (i.e. with single photograph) JPEGs. These maps have
some unused blank area filled with single color. It results in slightly better compres-
sion ratio compared to common JPEGs, however, due to our iDCT implementation
has little impact on speed.

Table 1

Image type Total time/
constructor time Memory

Compression ratio
converted file
(original file)

Overhead

1 2 3 4 5
jpg lo 19s/1.1s 6.4MB 1:5.4 (1:6) 8%

26s/0.09s 559 kB 1:21 (1:22) 8%
jpg hi 24s/0.19s 696 kB 1:49 (1:60) 24%

23s/0.17s 360 kB 1:95 (1:145) 52%
bmp 5.9s/- 34.3MB n/a n/a

jpg gr 7.3s/0.58s 841 kB 1:13 (1:26) 98%
bmp gr 5.6s/- 11.4MB n/a n/a

Results on compression efficiency are summarized in Table 1. Total processing
time per pixel is measured with highest filtering quality enabled. Time taken by
constructor is less then 6% in the worst case. Bitmaps constructor time was less
than measuring error. Memory is the total memory required to store all data of
decompressed file and overhead is computed as (mem – filesize) / filesize. Ratio is
ratio of compression for converted to direct access JPEG data in memory, in brackets
for the original file. It is worth to mention that indexing every even MCU increases
the time only by about 10%, while reducing overhead by half.

118 Michał Radziszewski, Witold Alda



5.3. Limitations

The library cannot use progressive version of JPEG format. We do not consider it as a
major drawback because such files can be converted to sequential format by external
tools without any loss of quality. We also limit the maximum number of components
to 3 (JPEG standard supports 255). For further improvement of performance we have
limited maximum sampling factors to 2 (JPEG specification requires 4). This allows
making multiplication and division operations by shifting bits. We also do not allow
multiscan files. It is unlikely to have one that satisfies all previous restrictions and
has more than one scan.

6. Conclusions

We have plugged our JPEG library in raytracer (our implementation of bidirectional
path tracer). The test was performed on scene that contains architectural model of 30k
triangles, one spherical light source and camera inside. Every triangle has a diffuse
material with color JPEG with 16x16 MCUs. About half of the triangles have an
additional glossiness controlled by grayscale JPEG. Highest quality JPEG filtering
was enabled. The total rendering time was divided in three parts:

1. kd tree traversal + ray-triangle intersection – about 50% of total time,
2. JPEG decompression – about 40%,
3. other operations, e.g. statistical calculations, memory management, frame buffer,
etc. – 10%.

After these tests, we found that modern processors have enough computational
power for accessing JPEG compressed data while rendering. The benefits from us-
ing our library are even greater during parallel rendering, when there is much more
computational power, but no more memory (data have to be replicated on every
machine).

References

[1] Information Technology – Digital Compression and Coding of Continuous-Tone
Still Images – Requirements and Guidelines. Recommendation T. 81. Interna-
tional Telecommunication Union, September 1992

[2] Lane T.G.: Independent JPEG Group software. From: www.ijg.org
[3] Beers A.C., Agrawala M., Chaddha N.: Rendering from Compressed Textures.
[in:] Computer Graphics (SIGGRAPH ’96 Proceedings), vol. 30, pp. 373–378,
August 1996

[4] Loeffler C., Ligtenberg A., Moschytz G. S.: Practical Fast 1-D DCT Algorithms
with 11 Multiplications. [in:] Proc. Int. Conf. on Acoustical and Speech, vol. 2,
pp. 988–991, May 1989

[5] Smith A.R.: A pixel is not a little square. Microsoft technical report, 1995

Optimization of Frequency Filtering in Random Access JPEG Library 119



[6] Mitchell D., Netravali A.: Reconstruction Filters in Computer Graphics. [in:]
Computer Graphics (SIGGRAPH ’88 Proceedings), vol. 24, pp. 221–228, August
1988

[7] Heckbert P.: Fundamentals of Texture Mapping and Image Warping. Master’s
Thesis, University of California, Berkeley 1989

[8] Stachera J., Nikiel S.: Fractal Image Compression for Effective Texture Mapping.
WSCG ’04 Proceedings

[9] van Varen J.: Real-Time DXT Compression. Id Software, inc. 2006
[10] Adams M.D.: The JPEG-2000 Still Image Compression Standard. 2002

120 Michał Radziszewski, Witold Alda


