
Piotr Nawrocki
Miko laj Jakubowski
Tomasz Godzik

NOTIFICATION METHODS
IN WIRELESS SYSTEMS

Abstract Recently, there has been an increasing need for secure, efficient, and simple

notification methods for wireless systems. Such systems are meant to provide

users with precise tools best suited for work or leisure environments, and a lot

of effort has been put into creating a multitude of applications. At the same

time, however, not much research has been made into determining which of the

available protocols are best suited for each individual task. A number of basic

notification methods are presented here, and tests have been performed for the

most-promising ones. An attempt has been made to determine which of the

methods have the best throughput, latency, security, and other characteristics.

A comprehensive comparison is provided, which can be used to select the right

method for each individual project. Finally, conclusions are provided, and the

results from all of the tests conducted are discussed.

Keywords notification methods, wireless systems, energy consumption

Citation

2016/10/16; 13:40 str. 1/21

Computer Science • 17 (4) 2016 http://dx.doi.org/10.7494/csci.2016.17.4.519

Computer Science 17 (4) 2016: 519–539

519

http://journals.agh.edu.pl/csci/


1. Introduction

The purpose of this paper is to analyze and test several selected notification methods

for wireless platforms. This paper is an expanded version of a paper [6] presented

at the Federated Conference on Computer Science and Information Systems, Lodz,

Poland, 2015. The reason for this research is the need to determine the best way of

sending simple as well as more-advanced messages about the events involved in the

operation of grid systems or telemetric networks. This makes it possible to use the

optimal approach in numerous projects that need to inform users about their cur-

rent status. This aspect is currently of the utmost importance for the industry, as

such notification methods enable developers to engage users much more deeply and

keep them in constant contact with their leisure and work interests. These considera-

tions have guided us throughout our research and affected all of our decisions on the

selection and ways of testing the methods in question.

Several protocols and methods were considered based on their purposes and cur-

rent industry standards. The main candidates were:

• CoAP (Constraint Application Protocol);

• Modbus;

• XMPP (Extensible Messaging and Presence Protocol);

• XMPP over SOAP (Simple Object Access Protocol);

• MQTT (Message Queuing Telemetry Transport);

• MQTT-SN (Message Queuing Telemetry Transport for Sensor Networks);

• AMQP (Advanced Message Queuing Protocol);

• Cloud notification systems (Google Cloud Messaging, Urban Airship);

• SMS (Short Message Service);

• Restful HTTP (Hypertext Transfer Protocol);

• SMQ (Simple Message Queries);

• ADM (Amazon Device Messaging);

• SIMPLE (Session Initiation Protocol for Instant Messaging and Presence Lever-

aging Extensions);

• STOMP (Simple (or Streaming) Text Oriented Message Protocol);

• DDS (Data Distribution Service for Real-Time Systems);

• AllJoyn.

Of course, these are not all of the protocols that could have been used for wireless

notifications, but those listed appear to hold the most promise; therefore, the purpose

is to discern their usefulness in the best way possible.

In addition to the protocols and methods listed above, other solutions were in-

vestigated, (such as the Apple push notification or Line application that, for various

reasons, were not considered further). The Apple push notification technology is

a useful technology, but it is proprietary (i.e., limited to Apple devices), so that is

why it was decided to test more-universal solutions first. There are also solutions

(applications) that use their own protocols; a good example is the Line application,

2016/10/16; 13:40 str. 2/21

520 Piotr Nawrocki, Mikołaj Jakubowski, Tomasz Godzik



which uses a proprietary protocol. Testing this solution was considered; however,

there are significant difficulties with accessing the documentation for this protocol.

2. Related Work

Wireless systems are a relatively new field of study, and searching a specific topic

such as comparing available notification methods does not return many related work

results. Some of the protocols have been covered in separate articles; while these took

the sending of notifications into account, tests were not always conducted in wireless

systems.

The one available article [4] that compared notification methods only covered

cloud systems [7] and applications. It discussed the following methods: C2DM

(Google Cloud to Device Messaging the predecessor to GCM), Xtify, XMPP, and

Urban Airship. As that article was relatively new at the time of our research, one

might think that the information contained there would still be relevant, but it turned

out to already be outdated. Meanwhile, Google has redesigned and rebranded its no-

tification system, and Xtify was purchased by IBM. Only Urban Airship is still on

the market in the same configuration as before. The article is more a comparison

of available commercial products than a real-world testing suite. As expected, our

conclusion was that the fastest protocol of the four tested was XMPP, but it had

a characteristic that differed slightly from the others.

Another article [13] only tested the MQTT protocol. The authors believed that

it was the best-possible choice and only aimed to describe its main features and

capabilities. Only a single simple test as well as its averaged results together with

the amount of data transferred and power consumption over a period of time were

provided. In conclusion, the authors described the MQTT protocol as being both

lightweight and perfect for mobile platforms.

In [11], the authors investigated XMPP in the field of collaborative applications.

Its main purpose was to assess the usefulness of XMPP in exchanging location data

between mobile clients and web servers. No testing was conducted, but a thorough

description of XMPP and the Android platform was provided, while also taking into

account the ways of integrating them. The article described XMPP as a general-

purpose messaging protocol that is easily extensible.

In [16], the authors present measures to embed the Modbus protocol into a Zig-

Bee stack. They monitor the real-time information from the ZigBee wireless sensor

network and use some instructions to control the remote device in a friendly interface.

Important aspects in the context of notification methods are SLA parameters

[5] and the power consumption of battery-powered devices. In [12], the authors dis-

cussed the problem of sending notification data using GPRS connectivity from remote

telemetry stations [1]. They proposed the concept of adaptive message aggregation

that extends the MQTT-SN protocol, adjusting its behavior to the GPRS (General

Packet Radio Service) connectivity profile in order to decrease the energy consumption

related to data transmission.

2016/10/16; 13:40 str. 3/21

Notification methods in wireless systems 521



3. Notification methods

The following section generally describes and analyses the possible notification meth-

ods for wireless devices mentioned in the introduction. As a result of this analysis,

it was decided to select some of them in order to perform the thorough tests later

described in this paper.

3.1. SMS

It is possible to use the Short Message Service as a notification mechanism. An

application would have to intercept the SMS messages received by an Android phone

and analyze them to check whether they contain notifications from the system. One

could just use simple text messages without a dedicated client application, but this

would severely limit the functionality available to users.

This approach has several major issues. First, the cost of sending multiple mes-

sages to numerous clients could be immense. Second, it is not guaranteed that the

message will be delivered on time or (sometimes) even the same day. What is more,

all text messages have a maximum undelivered period (which cannot exceed 7 days),

and this means that some notifications would not be delivered at all.

3.2. Google Cloud Messaging

In order to simplify the development of applications and to extend phone battery life,

Google has created a simple built-in notification system for the Android platform,

which only maintains a single connection at any time.

This approach has some obvious drawbacks. First, the number of messages sent

concurrently is limited to four per application, and there is no guarantee that the

message will be delivered (especially while the service is shared). Secondly, there is no

specified maximum delay, which is not acceptable for most modern systems. Moreover,

in posts like [8], it is claimed that the method is not all that well documented, and it is

not easy to make an application work reliably with Google Cloud Messaging (GCM).

Another problem with GCM is that some people do not trust Google to not abuse

its capabilities, citing privacy or security concerns. One must also keep in mind that

GCM can be used by some malware applications, as described in [2].

3.3. Restful HTTP

Another possible solution would be to use a RESTful HTTP service based on a pull

queue model [3]. Such an implementation would have to pull notifications from the

server at certain intervals or when the user turns on the application. Currently, creat-

ing such a service is a very simple process and does not require additional knowledge

from most developers (which is the main advantage of this approach).

However, using this method is very inefficient, as it is not clear at what intervals

such requests should be made. Using too long of an interval between requests may

result in multiple notifications being sent all at once, making the older messages

2016/10/16; 13:40 str. 4/21

522 Piotr Nawrocki, Mikołaj Jakubowski, Tomasz Godzik



meaningless. Conversely, if the intervals were too short, it would use too much of the

device’s resources. Moreover, much of the workload is shifted to the wireless device,

and the amount of data sent between server and client is sometimes doubled.

Some ideas for REST notification systems are discussed in [15]; however, us-

ing a pure REST approach is highly discouraged. Using the AMQP/REST mixed

approach seems much more plausible.

3.4. Modbus

The Modbus protocol was developed in the 1970s by Modicon, Incorporated. It was

created for use with its programmable logic controllers; but since then, it has become

one of the industry standards for connecting industrial electronic devices. It is the

most-mature protocol among all of the solutions selected, and it is the most lightweight

as well.

Modbus works in the master-slave paradigm. There is a single master that can

send queries consisting of sequences of actions to perform. Each action is interpreted

by one of the slaves (sensor, disc, etc.) and can be either a data read or write. Data

comes in two formats: coils and registers. A coil is a simple boolean value, and

a register has the size of 16 bits. If a larger value is needed, it has to be split between

multiple coils or registers. Each coil and each register has its own address, and it is

up to both communicating parties to understand what is stored in each. Please note

that, if both master and slave use the same technology, there are no problems with

endianness, as values on each side will be written and read in the same order.

It is important to note that Modbus is an application-level protocol and only

describes a messaging structure. It supports multiple underlying protocols such as

TCP/IP or serial; however, the former is of most interest for this article, as it is

most-common and battle-tested. Moreover, the TCP/IP protocol lines up perfectly

with the scope of this article.

Requests from the master are sent in data frames whose sizes and fields vary

from one Modbus implementation to another. In TCP/IP, each data packet contains

a data frame that has the MBAP Header and Modbus TCP/IP Protocol Data Unit

fields. The Protocol Data Unit contains a set of instructions to be performed. The

MBAP Header is the exact ID of the device that the request is addressed to, as many

slaves can reside on the same IP address.

3.5. XMPP

XMPP is basically an open technology for real-time communication, using XML (Ex-

tensible Markup Language) as the base format for exchanging information. It was

designed to be easily extensible, and one of its main uses are publish-subscribe sys-

tems. Throughout its history, it was used by companies such as Google (in the Google

Talk communicator), by Microsoft (in Skype), and by Facebook (in WhatsApp Mes-

senger).

2016/10/16; 13:40 str. 5/21

Notification methods in wireless systems 523



The idea behind XMPP is similar to that of e-mail, with a distributed server

network in which each and every server can create its own service. The XMPP

standard enables message encryption, and XML support allows for the use of such

technologies as SOAP or EDI (Electronic Data Interchange).

A standard that is tightly coupled with XMPP is SOAP over XMPP, which can

be tested using the same means, as sending a SOAP message is basically sending some

content over XMPP. This standard provides effective and reliable messaging – both

asynchronous and synchronous.

XMPP is a general-purpose protocol that is easily extensible. It was only designed

to meet mobile platform requirements and was not expected to outperform any other

protocols. However, its flexibility makes it a choice worth considering. In [11], a few

add-ons are mentioned, like group chats or streaming services with a possibility to

transfer files.

3.6. SOAP over HTTP

SOAP is a lightweight protocol for message exchanges that is independent from the

system platform programming language. Its specification does not define a specific

transport layer protocol, but most implementations use HTTP. It is important to

mention, however, that HTTP is of no use for asynchronous messaging; because of

this, SMTP is often used instead. The protocol makes it possible to send many short

messages.

In the discussion on the use of SOAP in notification systems, the following solu-

tions should be considered: polling, both endpoints having their SOA interfaces, using

WS-notification, and using the message-queueing solution encapsulated in HTTP.

All of the solutions above have been analyzed, and none of them are easy to adapt

to the needs of wireless notification systems. The first solution requires the client to

make requests at certain points in time, which generates a lot of unnecessary traffic

and is quite resource-heavy on small devices. The second idea is better but would not

work for most wireless devices, as not all requests would pass from the server to the

device (because such HTTP requests are often blocked). A good solution is to use

WS-notification, but the problem with making requests from the server is still present.

What is more, it is not a standard supported by all web servers. The final solution

uses queueing, but it involves a lot of unnecessary technology, especially given that

there are ready-made queueing mechanisms that do not have to be encapsulated in

HTTP requests.

3.7. MQTT/MQTT-SN

MQTT is a publish-subscribe lightweight messaging protocol based on TCP/IP. It

was designed to be open, simple, lightweight, and easy to implement, since it was

intended to be used in constrained environments with limitations such as expense,

low bandwidth, unreliable network, limited processor, or memory resources.

2016/10/16; 13:40 str. 6/21

524 Piotr Nawrocki, Mikołaj Jakubowski, Tomasz Godzik



The entire protocol is based upon a central message broker, which distributes

messages published on a topic to all of the interested consumers. The “MQ” part of

the name comes from “Message Queueing”; however, this protocol does not support

queuing by default. It has three types of quality of service for message delivery:

“At most once”, “At least once”, and “Exactly once”. It also has a mechanism that

can be used to inform interested parties about an abnormal disconnection using the

“Testament” and “Last Will” features.

What is interesting is the fact that MQTT has already been used in numerous

applications. The first implementation of GCM(C2D)1 used precisely this protocol.

DeltaRail’s latest version of their IECC (Integrated Electronic Control Center) also

uses MQTT for communications within its signaling system (which is covered in [14]).

This standard was created by IBM; because of this fact, the IBM MQTT client

Java library was used for testing, and the Mosquitto open source message broker

was utilized for distributing messages. Mosquitto’s simple construction allowed us to

create a bash script, sending a set number of messages. The Android client connects

to the broker using the IBM library and is fed the messages sent by the script.

MQTT-SN is a variation of MQTT designed to be used in sensor networks. In

particular, it is supposed to be lightweight and easily implementable on small devices

(e.g., in non-TCP/IP2 networks).

3.8. CoAP

CoAP3. is a specialized web transfer protocol for use with constrained nodes and

networks based on UDP (User Datagram Protocol). Its main task is to allow for

communication between small devices such as sensors, switches, etc. It was designed

on the basis of HTTP in order to simplify its architecture and allow for multicast. It

also provides simple mapping between CoAP and HTTP, which can be used to create

RESTful services. The messages are sent in a binary format; their size is limited by

the maximum size of a datagram. Messages can be sent with acknowledgements or

without (depending on the designer’s needs). Although it is a relatively new standard,

it already has some additional features proposed like “Observable”, which makes it

possible to notify all subscribed clients about changes to the resource.

3.9. AMQP

AMQP is an open-standard application layer protocol for message-oriented middle-

ware that uses a binary format to send its messages. It was designed to solve the

problem of interoperability between heterogeneous systems and message brokers. It

was first used in 2006 by JP Morgan. It offers both point-to-point and publish-

subscribe messaging types.

1Android Developer Central – GCM Advanced Topic – http://developer.android.com/google/

gcm/adv.html.
2Transmission Control Protocol/Internet Protocol.
3CoAP RFC 7252 – http://tools.ietf.org/html/rfc7252.

2016/10/16; 13:40 str. 7/21

Notification methods in wireless systems 525



The most important advantage of AMQP is the fact that it is independent of pro-

gramming languages and platforms (unlike most messaging standards); for example,

JMS (Java Message Service) [9]. Moreover, it offers several types of quality of service

in terms of delivery guarantees; these types are “at-most-once”, “at-least-once”, or

“exactly-once” guarantees. It also allows for the encryption of messages, which is

especially important in the case of valuable scientific data. Currently, it is a widely

used standard and has a large number of implementing libraries, like Apache Qpid,

RabbitMQ [10], or StormMQ.

3.10. SMQ

SMQ (Simple Message Queries) is a proprietary Real Time Logic protocol that em-

braces the publish/subscribe broadcast design pattern. The main field for which it

is designed is the IoT (Internet of Things). Its main advantages are said to be that

the requirement for the dynamic creation of topic names and secure design has been

eliminated. Moreover, it is said to be lightweight and fast, which is really important

for the resource-constrained devices of the IoT. For transferring messages between

the browser client and the broker, SMQ uses an http/https connection, which is then

morphed into an HTTP WebSocket. However, for the exchange of data between de-

vices and the broker, the HTTP/HTTPS connection is morphed into a persistent

TCP connection. The main difference between SMQ and such protocols as MQTT

and AMQP is that the SimpleMQ broker translates each topic name into a randomly

created 32-bit number. Real Time Logic provides client libraries for ANSI-C to us

in devices (SMQ client and SharkMQ client) and JavaScript for browsers (SMQ.js).

The protocol supports security features like SSL/TLS.

The protocol was ruled out from our comparison because it has no Java support

(in contrast to most other notification methods). Obviously, Android has native code

support (which may allow to use SMQ); but, to date, no such attempts have been

made (as far as we know).

3.11. ADM

Another protocol that can be used for wireless device notifications is ADM (Amazon

Device Messaging) which allows to send push notifications to all Amazon devices and

to the applications they are running. Its creators describe it as a simple and efficient

protocol for general use. It uses OAuth 2.0 to verify whether a server can send

a notification to a client; when the message is passed to this device, it is encrypted

with SSL. It is important to note that ADM is just a simple transport mechanism

and cannot transform data in any way. All communication must be effected using

JSON objects. One great advantage of ADM is the ability to wake the device when

delivering a message; however, it does not make any guarantees about delivery or

order of messages.

While the Amazon Device Messaging API is a really simple and effective solution,

it is restricted by its lack of QoS as well as the fact that it is restricted almost

2016/10/16; 13:40 str. 8/21

526 Piotr Nawrocki, Mikołaj Jakubowski, Tomasz Godzik



exclusively to Kindle Fire devices (which are not the most popular wireless devices).

Because of these considerations, this notification method was not selected for testing

in this comparison.

3.12. SIMPLE

SIMPLE (Session Initiation Protocol for Instant Messaging and Presence Leveraging

Extensions) is a set of extensions for the Session Initiation Protocol (which is used to

set up, initiate, and manage media sessions). SIMPLE defines additional SIP methods

to handle data transport. Similar to XMPP, it is an open standard and has a very

broad range of uses. The main advantage of this solution is said to be the unification

of voice, video, and data messaging. It can as easily be used as a notification method,

as it allows users to register for presence events and receive notifications when they

occur. SIMPLE uses XML to serialize data and provides encryption for its messages.

While SIMPLE provides much of the needed functionality for notification meth-

ods, it is a much-more-complex solution than necessary. In addition to the above

facts, it is very difficult to find any materials (except for the RFC document and

a brief mention on Wikipedia). Ultimately, because of these two considerations, the

SIMPLE protocol was not included in our comparison.

3.13. STOMP

STOMP (Simple [or Streaming] Text Oriented Message Protocol) is a very simple text-

based protocol for messaging middleware. It provides an interoperable wire format

to allow any client to communicate with any STOMP broker independent of the

programming language or system platform. It was designed to be as simple as possible,

and in many instances, it is very similar to HTTP. In contrast to AMQP or MQTT, it

only covers a small subset of commonly used messaging operations instead of providing

a complete solution. A basic STOMP frame consists of a command, a set of optional

headers, and an optional body. All messages are sent to destinations on STOMP

servers. What those destinations are is dependent on the exact implementation;

however, they most commonly correspond to a topic, an exchange, or a queue. It uses

UTF-8 encoding by default, but it can also be used to carry binary data.

As this protocol is very frequently used in the same way as AMQP or MQTT,

it was decided to not include it in the comparison of notification methods. Perhaps

when further work is necessary, its tests will be also included; however, it is currently

beyond the scope of this paper.

3.14. DDS

DDS (Data Distribution Service for Real-Time Systems) is a middleware specification

created by the Object Management Group that defines an Application Level Interface

and the behavior of a Data-Distribution Service (DDS) that supports Data-Centric

Publish-Subscribe (DCPS) in real-time systems. Its purpose is to enable scalable,

real-time, dependable high-performance and interoperable data exchanges between

2016/10/16; 13:40 str. 9/21

Notification methods in wireless systems 527



publishers and subscribers. This data flow is regulated by QoS contracts established

between both DataWriters and DataReaders. Among the more-important features

of the DDS specification is the presence of a built-in discovery service that makes

it possible to dynamically discover the existence of both publishers and subscribers

(which, in turn, simplifies complex network programming for distributed applications.

As DDS is not a protocol itself, the OMG suggests using the RTPS (Real-Time Publish

Subscribe), which supports all of the requirements of the DDS specification. Among

the available DDS libraries is OpenDDS, which is written in C++; however, Java

and JMS bindings are also provided in order to allow it to be used in the JVM

environment.

The main idea of the DDS specification was to assist the creation of large dis-

tributed applications that could interoperate independently of the platform or pro-

gramming language used. And while this kind of assistance is very useful, the protocol

appears somewhat complex to use in simple wireless notifications (especially since the

DDS specification is intended for more than just wireless systems.

3.15. AllJoyn

AllJoyn is an open-source software framework used for communication between de-

vices and applications in order to enable the Internet of Things. Each AllJoyn appli-

cation can advertise its services using one of two mechanisms: About Annoucements

and Well-Known Name. The former is the recommended mechanism for advertising,

while the latter has more lower-level functionalities and does not provide as much

metadata. The framework also takes care of creating sessions between different ap-

plications, which can be point-to-point or multi-point. The AllJoyn application has

the option of accepting or denying remote connection requests. Moreover, its API

supports all major platforms and several languages: Java, C/C++, and Objective-C.

The research presented in this article is closely related to the IoT, and AllJoyn

appears to provide a comprehensive solution for managing multiple devices and ap-

plications. However, at the time of writing, AllJoyn was still not a widely accepted

framework, and there were several issues with connections over the Internet.

4. Tests

There are currently three main mobile operating systems available on the market

(Android, iOS, and Windows Mobile) as well as numerous devices that support them.

As it would be neither possible nor sensible to test each and every one of them, only

one testing platform and device was chosen.

Google’s Android system was selected as the wireless platform for testing pur-

poses because of the considerable availability and open nature of the solution. All

major protocols and methods selected have working implementations for this system.

As a mobile device, the Nexus 5 (LG D821) was used with Android version

4.4.3 using the standard Dalvik engine. At this point, Android Runtime was already

available, but it did not seem ready for serious testing as of yet.

2016/10/16; 13:40 str. 10/21

528 Piotr Nawrocki, Mikołaj Jakubowski, Tomasz Godzik



In order to conduct all tests, a server platform was needed (which consisted of

an Asus laptop with an Intel i5-3320M processor and 8GB of RAM with Ubuntu

12.04LTS and Oracle Java 1.7.0 60 installed). All data (from a server platform) was

transmitted over the Wi-Fi network using the 802.11g standard (54 Mbps).

For time-related test cases, ClockSync4. was used to synchronize with time

servers on the wireless device. All applications launched their message connectors

in separate threads. Services were not used, so all memory-usage diagrams show the

combined values of the connector and activity screen.

All useful notification methods should meet most of the specifications listed be-

low:

• the financial cost should be low – mostly for open source and university projects;

• it should be possible to transmit more than just simple text – to enable interaction

between the application and the main system;

• energy and memory usage should be minimal – the solution is to be used on

wireless devices;

• message contents should be secure – confidential information could be transmit-

ted;

• minimal message loss – important data could be transmitted;

• minimal delay – fast interaction is sometimes needed.

As a result of analyzing the available notification methods (see Section 3) and

taking the above assumptions into account, it was decided to test the following pro-

tocols: Modbus, XMPP, SOAP, MQTT, CoAP, and AMQP.

In order to conduct testing for each protocol, the following solutions were used:

• XMPP – in order to prepare the XMPP test, the Smack library was used to

implement the mobile client. It has been ported to Android in a version called

Asmack. ejabberd was used as a message broker. The second client, which sent

messages to the mobile client, was implemented in Python using the SleekXMPP

library. The mobile solution was plain and simple, with its task limited to keeping

an open connection to the broker.

• SOAP – an attempt was made to test a basic polling mechanism using a simple

Python SOAP server5. and a basic Android client6. This involved making a num-

ber of requests for stress testing and a single request to measure single-message

performance. After obtaining the initial results, this method was discarded, as

it was more than ten times slower than any other method and used a lot of re-

sources for polling (which is unacceptable for wireless devices). It was decided

to concentrate efforts on other solutions specifically intended for such devices.

The results collected are shown along with the other protocols tested but are not

4ClockSync – http://amip.tools-for.net/wiki/android/clocksync.
5Python simple and lightweight SOAP Library (A.K.A. soap2py) – https://code.google.com/

p/pysimplesoap/wiki/SoapServer.
6A simple SOAP client for Android – https://code.google.com/p/droidsoapclient.

2016/10/16; 13:40 str. 11/21

Notification methods in wireless systems 529



included in graph comparisons (in Figure 1), as they were much worse than for

any other test conducted.

• MQTT/MQTT-SN – a broker that works with the MQTT/MQTT-SN protocol

is the RSMB (Really Small Message Broker) from IBM; and while it is quite

easy to find, locating an appropriate client library (especially for MQTT-SN) is

much more difficult. The one that is available for MQTT-SN7. is written in the

C programming language, so it was of no use whatsoever for Android devices.

The project also appeared to have been abandoned (no recent contributions).

A further search led to a library written in Python8, which was then used to

implement a client that would be run using the QPython interpreter. After

a certain amount of research and testing, a stage was reached where messages

were delivered from the broker to the device (but never reliably). Attempts to

change QoS settings failed, as it appeared that the client-library implementation

was not complete as of yet. For these reasons, MQTT-SN was excluded from

testing, and only MQTT was tested. It appears that the protocol is not yet

mature enough to be used on a larger scale and that it has no reliable or finished

implementations.

• CoAP – there are a limited number of implementations. The main Java libraries

are jCoAP and nCoAP. jCoAP is not up to date with the RFC (Requests for

Comments) 7252, so nCoAP was therefore used (which additionally implements

the “Observable” feature). To test the protocol, a simple server was created with

a time service and a mobile client that was sending GET requests to the server.

At first, it was intended to use the “Observable” feature; but during stress testing,

it turned out that messages cannot be sent too often using this implementation

due to errors. Although “Observable” can be quite useful (especially in wireless

systems), it was consequentially decided to have each notification sent as an

answer to a separate GET request.

• AMQP – RabbitMQ was selected, which is one of the best-documented and most-

popular libraries. For testing purposes, a simple Python script was developed that

can send a set number of simple messages containing timestamps and an Android

client application. The client connects to the RabbitMQ message broker, and the

Python script is then used to send messages.

• Modbus – for testing purposes, the j2mod library was chosen (which is a still-

maintained fork of the well-known jamod library). Both the master and slave

were implemented using the same technology (although the server was written

in Scala instead of Java). It is important to note that it is not just a one-way

protocol in contrast to RabbitMQ, for instance. As an additional requirement,

data had to be buffered in registers in order to make sure that nothing was lost

and the response was correct.

7MQTT-SN client in C – https://github.com/njh/mqtt-sn-tools.
8MQTT-SN client in Python – http://git.eclipse.org/c/mosquitto/org.eclipse.

mosquitto.rsmb.git/tree/rsmb/src/MQTTSClient/Python.

2016/10/16; 13:40 str. 12/21

530 Piotr Nawrocki, Mikołaj Jakubowski, Tomasz Godzik



To assess the efficiency and usefulness of the notification methods selected, several

test cases were created and run for each protocol.

4.1. Time per message

Each of the six applications designed to check how much time it takes to process

a single message while stress testing was used with different numbers of concurrent

messages sent. Set sizes of 10, 50, 100, 200, 300, 400, and 500 messages were chosen.

Each message contained its timestamp in order to enable the calculation of the exact

delay. Figures 1 (nCoAP), 2 (MQTT), 3 (RabbitMQ), 4 (XMPP), 5 (SOAP over

HTTP) and 6 (Modbus) show how much time it took to process a single message for

different stress test set sizes.

Figure 1. nCoAP

Figure 2. MQTT

Based on the graphs generated, it can be stated that Modbus is the fastest in

terms of performance (probably because it is the simplest protocol in this compari-

2016/10/16; 13:40 str. 13/21

Notification methods in wireless systems 531



Figure 3. RabbitMQ

Figure 4. XMPP

Figure 5. SOAP over HTTP

2016/10/16; 13:40 str. 14/21

532 Piotr Nawrocki, Mikołaj Jakubowski, Tomasz Godzik



Figure 6. Modbus

son). Its results remain steady irrespective of the number of messages sent at once.

RabbitMQ is similarly very fast, and its performance actually improves as more mes-

sages are sent at the same time; however, it does not wait for a response (in contrast

to Modbus). The nCoAP solution was also quite effective; however, keep in mind

that each message was sent in response to a GET request, so it could be faster still.

Both MQTT and XMPP exhibit quite long sending times for larger numbers of mes-

sages. The SOAP over HTTP protocol is definitely the slowest solution. In this test,

Modbus and RabbitMQ stand out as the leaders in the group.

4.2. Resource usage

After performance, the second-most-important criterion was resource usage. It is

crucial to use as few device resources as possible on a wireless platform in order to

consume less power and allow for greater efficiency. In this section, peak memory

usage (shown in Table 1 – “RAM (Random Access Memory) usage peak”) and CPU

(Central Processing Unit) power consumption (by using PowerTutor tool [17]) were

measured, as presented in Figures 7 (nCoAP), 8 (MQTT), 9 (RabbitMQ), 10 (XMPP),

11 (SOAP over HTTP) and 12 (Modbus), while sending 1000 messages concurrently

to be processed by each of the mobile clients developed.

It is clearly visible that nearly all protocols used similar amounts of memory,

with the outliers (MQTT and Modbus) exhibiting 10-MB-lower RAM usage than the

others. It is clear that Modbus again outperforms the rest, probably because it is the

simplest protocol of all compared.

A much larger difference can be seen in power consumption levels. These seem to

be strongly correlated with each individual protocol’s processing time. nCoAP and

RabbitMQ consumed the least power; Modbus does not appear to fall far behind.

About twice the power was consumed by XMPP and SOAP over HTTP. The worst

result was achieved by the MQTT protocol.

2016/10/16; 13:40 str. 15/21

Notification methods in wireless systems 533



Figure 7. nCoAP (2 consecutive runs shown).

Figure 8. MQTT

Figure 9. RabbitMQ (3 consecutive runs shown).

2016/10/16; 13:40 str. 16/21

534 Piotr Nawrocki, Mikołaj Jakubowski, Tomasz Godzik



Figure 10. XMPP

Figure 11. SOAP over HTTP

Figure 12. Modbus

2016/10/16; 13:40 str. 17/21

Notification methods in wireless systems 535



4.3. Reliability

Message-sending reliability was also tested, as it is among the most important issues

to be tackled in wireless notification applications. Especially important is the issue

of what happens to messages in a queue when the connection to the client is lost.

This was simulated by reconnecting to a Wi-Fi network while sending a set of 1000

messages. All protocols were tested using default settings. It turned out that nCoAP

and Modbus were the only ones not to deliver all of their messages. These two do

not provide any recovery mechanisms by default, because all messages are sent on

a request-response basis. Developers must be sure to use the correct settings for each

protocol, as QoS is not usually switched on by default.

4.4. Ordering

This test case was meant to show whether protocols deliver messages in the same

order in which they are sent. Similar to the first test, a set of messages containing

timestamps was sent, and the comparison of arrival times of successive messages

made it possible to determine whether they were correctly ordered. Only nCoAP

changed the order of messages, which is most probably caused by using UDP. All

other protocols delivered messages in the correct order, even during high load.

4.5. Average delay

The final test case was used to calculate the average delay when sending a single

isolated message using each of the five protocols (Table 1 – “Average delay”). It

turns out that nCoAP is the fastest when it comes to sending individual messages,

and SOAP over HTTP is the slowest among all of the protocols tested.

5. Conclusions

The results shown in Figure 13 clearly demonstrate that, in terms of the maximum

number of messages delivered per second, RabbitMQ and Modbus are the leaders;

however, when it comes to minimal delay, nCoAP tends to be able to deliver single

messages much quicker. This means that, if large numbers of notifications are to be

sent, RabbitMQ could be used; while in a sparse notification system, Modbus should

perhaps be recommended. In the power consumption test, the best results were also

achieved by RabbitMQ and nCoAP (with Modbus not far behind).

It should also be noted that not all protocols are able to easily pass through

firewalls and NATs like XMPP (which is the most complete of all of the protocols

tested). When it comes to RAM usage, MQTT turned out to require the least amount

of megabytes, which can be of great importance on wireless devices. A summary of

test results is shown in Table 1.

In conclusion, the most-promising solution seems to be RabbitMQ; however,

none of the protocols proposed clearly outperformed all of the others in all test cases.

Modbus seems to be as fast as RabbitMQ, but it does not provide any reliability of

2016/10/16; 13:40 str. 18/21

536 Piotr Nawrocki, Mikołaj Jakubowski, Tomasz Godzik



Figure 13. Comparison of protocols.

notification delivery (which is a huge drawback). This test suite only demonstrates

the performance of some implementations currently available, and the results might

change for future releases, different platforms, and/or different devices. Before any

protocol is selected, it is important to specify the needs of the project in question and

then compare the protocols to determine which one best suits these needs.

As this article only used the Android system, more research could be carried out

using different platforms (such as Windows Mobile or iOS) in order to confirm how

much the results depended on using a specific solution. Moreover, using other wireless

standards like LTE would help to improve the quality and usefulness of research in

regards to possible throughput and delay.

Table 1

Overview of protocol properties

nCoAP RabbitMQ MQTT XMPP SOAP Modbus

RAM usage peak [MB] 47 44 35 46 38 37
Average delay [ms] 91 185.5 339.6 192.3 972.2 308.1
Ordered no yes yes yes yes yes
Reliable no yes yes yes yes no
Content binary binary binary text text binary
Based on UDP TCP TCP TCP TCP TCP
SSL support no yes yes soon yes no

Acknowledgements

The research presented in this paper was partially supported by the National Center

for Research and Development (NCBiR) under Grant No. PBS1/B9/18/2013 and

by the Polish Ministry of Science and Higher Education under AGH University of

Science and Technology Grant 11.11.230.124 (statutory project).

2016/10/16; 13:40 str. 19/21

Notification methods in wireless systems 537



References

[1] Brzoza-Woch R., Konieczny M., Kwolek B., Nawrocki P., Szydlo T., Zielinski K.:

Holistic Approach to Urgent Computing for Flood Decision Support. Procedia

Computer Science, vol. 51(0), pp. 2387–2396, 2015, ISSN 1877-0509, international

Conference On Computational Science, ICCS 2015 Computational Science at the

Gates of Nature.

[2] Duckett C.: Android malware utilising Google Cloud Messaging service.

http://www.zdnet.com/android-malware-utilising-google-cloud-

messaging-service-7000019427/, 2013.

[3] Ghinamo G., Vadala F., Corbi C., Bettassa P., Risso F., Sisto R.: Vehicle naviga-

tion service based on real-time traffic information: A RESTful NetAPI solution

with long polling notification. Ubiquitous Positioning, Indoor Navigation, and

Location Based Service (UPINLBS), 2012, pp. 1–8, 2012.

[4] Hansen J., Grønli T.M., Ghinea G.: Towards cloud to device push messaging

on Android: Technologies, possibilities and challenges. International Journal of

Communications, Network and System Sciences, vol. 5(12), pp. 839–849, 2012.

[5] Kosinski J., Nawrocki P., Radziszowski D., Zielinski K., Zielinski S., Przybylski

G., Wnek P.: SLA Monitoring and Management Framework for Telecommunica-

tion Services. Fourth International Conference on Networking and Services, ICNS

2008., pp. 170–175, 2008.

[6] Nawrocki P., Jakubowski M., Godzik T.: Analysis of notification methods with

respect to mobile system characteristics. M. Ganzha, L. Maciaszek, P. M., eds.,

Proceedings of the 2015 Federated Conference on Computer Science and Infor-

mation Systems, Annals of Computer Science and Information Systems, vol. 5,

pp. 1183–1189, IEEE, 2015, http://dx.doi.org/10.15439/2015F6.

[7] Nawrocki P., Soboń M.: Public cloud computing for Software as a Service plat-

forms. Computer Science, vol. 15(1), 2014, ISSN 2300-7036, http://journals.

agh.edu.pl/csci/article/view/519.

[8] Oldenburg R.: Keeping Google Cloud Messaging For Android Working Reli-

ably [Technical Post]. http://blog.pushbullet.com/2014/02/12/keeping-

google-cloud-messaging-for-android-working-reliably-techincal-

post, 2014.

[9] Richards M.: Understanding the Difference Between AMQP and JMS. NFJS

Magazine, 2011.

[10] Rostanski M., Grochla K., Seman A.: Evaluation of highly available and fault-

tolerant middleware clustered architectures using RabbitMQ. M.P. M. Ganzha

L. Maciaszek, ed., Proceedings of the 2014 Federated Conference on Computer Sci-

ence and Information Systems, Annals of Computer Science and Information Sys-

tems, vol. 2, pp. 879–884, IEEE, 2014, http://dx.doi.org/10.15439/2014F48.

[11] Schuster D., Koren I., Springer T., Hering D., Söllner B., Endler M., Schill A.:

Creating Applications for Real-Time Collaboration with XMPP and Android on

2016/10/16; 13:40 str. 20/21

538 Piotr Nawrocki, Mikołaj Jakubowski, Tomasz Godzik



Mobile Devices. Handbook of Research on Mobile Software Engineering: Design,

Implementation and Emergent Applications, IGI Global, 2012.

[12] Szydlo T., Nawrocki P., Brzoza-Woch R., Zielinski K.: Power aware MOM for

telemetry-oriented applications using GPRS-enabled embedded devices – levee

monitoring use case. M.P. M. Ganzha L. Maciaszek, ed., Proceedings of the 2014

Federated Conference on Computer Science and Information Systems, Annals of

Computer Science and Information Systems, vol. 2, pp. 1059–1064, IEEE, 2014,

http://dx.doi.org/10.15439/2014F252.

[13] Tang K., Wang Y., Liu H., Sheng Y., Wang X., Wei Z.: Design and Implemen-

tation of Push Notification System Based on the MQTT Protocol. 2013 Inter-

national Conference on Information Science and Computer Applications (ISCA

2013), Atlantis Press, 2013.

[14] Wood D., Robson D.: Message broker technology for flexible signalling control.

Proc. ASPECT 2012 Conference, 2012.

[15] Wylie K.: REST Requires Asynchronous Notification. http://kirkwylie.

blogspot.com/2008/12/rest-requires-asynchronous-notification.html,

2008.

[16] Yanfei L., Cheng W., Chengbo Y., Xiaojun Q.: Research on ZigBee Wireless

Sensors Network Based on ModBus Protocol. IFITA ’09, International Forum

on Information Technology and Applications, vol. 1, pp. 487–490, 2009.

[17] Zhang L., Tiwana B., Qian Z., Wang Z., Dick R.P., Mao Z.M., Yang L.: Ac-

curate Online Power Estimation and Automatic Battery Behavior Based Power

Model Generation for Smartphones. Proceedings of the Eighth IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and System Synthesis,

CODES/ISSS ’10, pp. 105–114, ACM, New York, NY, USA, 2010, ISBN 978-1-

60558-905-3, http://doi.acm.org/10.1145/1878961.1878982.

Affiliations

Piotr Nawrocki
AGH University of Science and Technology, piotr.nawrocki@agh.edu.pl

Miko laj Jakubowski
AGH University of Science and Technology, mkl.jakubowski@gmail.com

Tomasz Godzik
AGH University of Science and Technology, tomek.godzik@gmail.com

Received: 14.02.2016

Revised: 4.05.2016

Accepted: 12.05.2016

2016/10/16; 13:40 str. 21/21

Notification methods in wireless systems 539


