
Computer Science • 18(2) 2017 http://dx.doi.org/10.7494/csci.2017.18.2.145

Dominik Adamski
Grzegorz Jab loński

HARDWARE-AWARE TILING OPTIMIZATION
FOR MULTI-CORE SYSTEMS

Abstract This paper presents a proposal for a new tool that improves tiling efficiency

for a given hardware architecture. This article also describes the correlation

between the changing hardware architecture and methods of software optimi-

zation. The first chapter includes a short description of the change in hardware

architecture that has occurred over the past ten years. The second chapter

provides an overview of the tools that will be used in further research. The

subsequent sections contain a description of the proposed hardware-aware tool

for optimal tiling.

Keywords LLVM, tiling, data locality, polyhedral model

Citation Computer Science 18(2) 2017: 145–162

145



146 Dominik Adamski, Grzegorz Jab loński

1. Introduction

For many decades, the speedup of program execution has been achieved through the

speedup of processor clocks. The rapid growth of processor clock frequencies caused

a relatively small change in the architecture of processors. Rapid growth of processor

frequency stopped in 2005 due to heat dissipation issues. Since that time, hardware

manufacturers have shifted towards multi-core architectures. They introduced advan-

ced multi-level cache memory systems and multiplied the number of processor cores

in a single CPU unit. These changes are reflected in a more-sophisticated processor

architecture and increasing number of transistors used inside a single CPU.

Unfortunately, the shift in hardware architecture does not provide an automatic

speedup of software that has been optimized for sequential processing. Consequently,

any new optimization method should take into account the new target hardware

architectures. Modern compilers should support parallel task execution, and they

should provide new optimization methods that would automatically detect parallel

regions and optimize them in order to fully utilize the hardware resources. There is

a strong need to develop such techniques of code optimization that could be easily

deployed on various hardware architectures on one hand and take into account the

many specific hardware features that are different for every target platform on the

other. Optimization methods that meet these goals can be easily deployed in various

areas of the computer industry. They can be applied to mobile devices, where they

can reduce power consumption and prolong battery life. More-effective software for

data centers can reduce the cost of energy while also decreasing data-access time.

1.1. Memory optimization

The rapid increase of processor computation power has not been followed by a pro-

portional memory speedup. As a consequence, the overall speed of program execution

is limited by the memory latency [2]. Multilevel memory organization allows us to

reduce the gap between memory and processor performance. Modern processors are

equipped with a small amount of quick cache memory placed near the processor core

and larger amount of slower cache shared by the many cores.

Unfortunately, no general model for cache memory organization has come along

with the increased variety of processor architectures. GPU processors are characteri-

zed by multiple cores with a small amount of shared cache memory and a distributed

memory model, while CPU processors use a uniform memory model with a large

amount of multilevel cache memory. In general, memory usage optimization should

aim to exploit the internal cache memory instead of calling data from the slow exter-

nal RAM memory. The number of cache misses should be minimized as well as the

number of memory transfesr between the respective memory units.



Hardware-aware tiling optimization for multi-core systems 147

1.2. Data locality

Designers of processing units have introduced a multilevel system of memory orga-

nization to improve memory efficiency [10]. They decided to equip processing units

with a small amount of fast cache memory. In modern CPUs, there are multiple levels

of cache memory characterized by different sizes and speeds. The lower tiers of cache

are the fastest, but their sizes are the smallest. Usually, they cooperate with only one

core. The higher tiers of cache are often shared between multiple cores. Their sizes

are bigger, but they are slower than the cache from the lower tier. If a given variable

is used many times by a processor, it is placed in the lower cache. In such a case, the

waiting time for data is reduced, allowing the processor to perform faster calculations.

If the processor requests data that is not inside the cache memory, then a cache-miss

event occurs. In such a case, the processor should wait until the data is transported

from the RAM memory. This situation substantially reduces the performance of the

processing units.

1.3. Tiling

One of the available techniques for improving memory performance is tiling [19].

The main aim of this optimization is to maximally reuse the fastest cache memory.

This goal can be achieved by the division of large loop iteration space into smaller

rectangular parts (tiles). Listing 1 illustrates this tiling optimization. The size of the

tiles should be chosen in such a way that cache misses are minimized. It has been

proven that tile size should be chosen in such a way that the number of cache misses

is minimized for all levels of cache memory.

1 //input source code

2 for (int i = 0; i < N; ++i)

3 for (int j = 0; j < N; ++j)

4 A[i][j] = B[i][j] + C[i][j];

5

6 //optimized source code

7 for (int i =0; i < N; i+=T1)

8 for (int j = 0; j< N; j+=T2)

9 for (int ii = i; ii < min(i+T1,N); ++ii)

10 for (int jj = j; jj < min (j+T2,N); ++jj)

11 A[ii][jj] = B[ii][jj] + C[ii][jj];

There are many factors that should be taken into account while choosing the

optimal tile size. This is largely dependent on the target hardware platform. A given

tile size can provide a speedup of calculations for one target while the same tiling

configuration can cause a significant slowdown for another target platform. On the

other hand, the optimal tile size depends on the iteration space and memory access

patterns that are defined by the developer. In the authors’ opinion, it is also not pos-

sible to determine an accurate analytical model for optimal tiling prediction because

of the complexity of hardware systems and the difficulties with the static analysis of

input source code that should be optimized.



148 Dominik Adamski, Grzegorz Jab loński

2. State of the art

Currently, code optimization for multicore architectures is at the center of interest for

many research teams and large companies. They try to develop tools that would fully

utilize the computational power of their multicore systems. Their research effort is

focused on tools for input code analysis. They have also proposed new techniques for

code optimization. These techniques include the automatic parallelization of input

code and a reduction in cache misses.

2.1. Polyhedral model

Nowadays, major compilers like GCC, LLVM, ICC, and MSVC are equipped with

tools for detection loops that can be parallelized. ICC and MSVC compilers are com-

mercial products, and their sources are not publicly available. For this reason, it is

not possible to accurately assess the advantages and drawbacks of algorithms imple-

mented in these products. GCC and LLVM compilers are open-source, and there are

some projects (like Graphite for GCC and Polly for LLVM) that use a mathematical

concept – polyhedrons for detecting parallel regions of input code.

The main idea of the polyhedral model is to describe loops and loop bodies in

terms of mathematical equations [1, 20]. Loop boundary conditions are modeled as

linear functions that limit iteration space. The dimension of iteration space is equal

to the number of nested loops. All data accesses inside of a loop body are described in

terms of iteration space coordinates. This mathematical model is used by optimizers

who are trying to find the best schedule for a given loop.

Tools for automatic code parallelization provide analytical methods for detecting

whether a given set of loops can be executed in parallel. This information is impor-

tant for finding an optimal loop tiling schedule through a broadening of the search

space. It is possible to reorder loops in a parallel region to increase data locality.

Such a transformation can simplify tiling analysis; as a consequence, the most ap-

propriate tiling size can be found faster. The Polly compiler is one of the tools for

automatic parallelization that can reorder a sequence of parallel loops for improved

data locality [8]. It also supports fixed tile size optimization, but such an optimiza-

tion is not always profitable. Unfortunately, Polly optimizations do not always lead

to more-effective software. For some cases, tiling optimization decreases the speed of

execution of the programs [6].

2.2. Analytical approach

The analytical approach for finding optimal tile size is based on analysis of the input

source code and target hardware. Section B of Figure 1 illustrates this method of

optimization. During the compilation process, the compiler should decide how to tile

the loops so that the number of cache misses is minimized. The problem of analytically

finding the best partition of data in the general case for a multilevel system of cache

memory is classified as NP hard [19]. It is not possible to determine in finite time



Hardware-aware tiling optimization for multi-core systems 149

how to place program data into the computer memory so that the time necessary for

data transport is minimal. The main difficulty lies in number of combinations that

should be analyzed. Therefore, analytical models only cover some special cases for

which it is possible to determine the optimal data schedule.

Insert runtime 
callbacks & 

compile

Execute
application

Analyze &
optimize in 

runtime

 Input
source code

Binary
code

Performance
data

Optimized
code

Optimize &
compile

Execute
application

 Input
source code

Binary
code

A

B

Figure 1. Scheme of statistical (A) and analytical approach of optimization (B).

Analytical models can be divided into two subcategories. The first subcategory

contains all models that predict optimal tile size for strictly defined input source code

patterns. They try to match the input code with those given loop patterns for which

it is possible to find an optimal tile size [5]. The second category is based on some

heuristic simplification. The hardware is modeled in a simplified way. Such simplifi-

cation allows us to find the suboptimal tile size. The range of simplification is strictly

combined with the quality of optimization. More-general models find suboptimal tile

results faster. For these models, there is a large risk of obtaining poor optimization

results. On the other hand, more-sophisticated models require increased computation,

and the time for finding suboptimal results may be unacceptably long.

2.3. Statistical approach

Statistic methods for finding suboptimal tile sizes have also been proposed [15, 17].

They try to predict the optimal tile size on the basis of previous results of execution of

an optimized loop. Section A of Figure 1 illustrates this approach. This proposition

requires a special runtime that gathers information about previous tile sizes and

their corresponding execution times. Every time an optimized loop is executed, the

runtime tries to provide the most-effective tile size. This approach does not include

any theoretical models, and it may require many invocations of tiled loops to find the

optimal tile size.

2.4. Other approaches

Some researchers propose shapes of tiling other than rectangular. Grosser et al. pro-

posed a hexagonal shape of tiles for GPU code [7]. Another approach was introduced



150 Dominik Adamski, Grzegorz Jab loński

by Kong et al; they proposed that the minimization of cache misses can be achieved

not by data tiling but by dynamic dataflow parallelization [12].

3. Base tools for hardware-aware tiling

As mentioned in the previous section, there are already some tools that try to optimize

the data locality in loops. They exist as separate tools, and each of these tools has

its strong and weak points. In the authors’ opinion, it is worth combining all of

these methods into one tool. This new tool should be based on a Polly compiler, its

runtime should measure cache misses by the PAPI library, and it should be tested on

the Polybench benchmark.

3.1. LLVM framework

The LLVM project was started as an academic tool for multi-stage optimization [14].

Nowadays, it is one of the leading open-source compiler projects. It is entirely written

in C++ and characterized by a modular design. It also provides a well-documented

API. These features have made LLVM an oft-chosen framework for many compiler

projects. Figure 2 presents the internal relationship between LLVM modules.

C Frontend

Ada Frontend

Fortran Frontend

X86 Backend

ARM Backend

PowerPC
Backend

Common
Optimizer

C

Ada

Fortran

ARM

PowerPC

X86

Figure 2. LLVM architecture [13].

Front-end modules are responsible for converting input source code into a simpler

form for analysis intermediate (IR) code. IR code is independent from high-level input

language. The simplified syntax of IR code helps make data and control flow analysis

easier as compared to source code analysis. It is used for hardware independent

optimization. All types of IR optimization are executed sequentially. The order of

execution is determined by Pass Manager, which analyzes the dependencies between

passes. Optimized IR code is transferred to backend modules that generate target-

specific binary code.



Hardware-aware tiling optimization for multi-core systems 151

3.2. Polly compiler

The Polly compiler is a project based on the LLVM framework. This compiler descri-

bes loops in terms of mathematical equations; if it detects that some part of the code

can be parallelized, then it uses the simplex method for finding the best schedule and

then generates a parallelized code [8].

The Polly compiler automatically detects regions of IR code that can be paralle-

lized. The code that is ready for parallelization must satisfy the following conditions:

• The number of loop iterations can be calculated during compilation.

• The result of calculations is independent from the order of loop execution.

• There should be no side-effects inside the input code.

These conditions allow the compiler to freely rearrange the order of statement

execution. Such a rearrangement is necessary for tiling optimization. If a loop is

parallelizable, then loop tiling optimization can be safely performed.

Each detected parallel region is described by the Static Control Part (SCoP)

object in Polly. These objects define the iteration space of parallel loops, memory

access patterns inside the loops, and data dependency between elements of the loops.

This information is used as the input for polyhedral optimizers that calculate an

optimal schedule for a given SCoP. Figure 3 presents the described architecture of

Polly.

LLVM Polly LLVM IR

SCoP detection 
& LLVM to Polly

Transformations

*Traditional loop optimizations (Blocking, Interchange, Splitting, …)

*Array constant propagation

*Memory space optimizations

*Expose parallelism for vectorizer and OpenMP 

Scoplib Import/Export

LLVM IR
Code generation

Vectorizer Backend

OpenMP parallel backend

Figure 3. Architecture of Polly compiler [9].



152 Dominik Adamski, Grzegorz Jab loński

3.3. PAPI library

The PAPI library provides tools for the accurate measurement of optimized loops [4].

It provides an interface for gathering information about the actual number of cache

misses and time of loop execution. This data plays an important role in the assessment

of the quality of optimized loops. If the tile size is badly chosen, then the number of

cache misses will be high.

3.4. Polybench

Polybench is a set of benchmarks with parallel kernels [16]. These kernels correspond

to popular matrix operations like matrix multiplication, the Fourier transform, matrix

correlation, or decomposition. Polybench source code will be used as the reference

benchmark for the proposed approach for finding optimal tile sizes.

4. Proposed solution

It should be noticed that both the statistical and analytical approaches have some

drawbacks. Theoretical considerations about optimal tile size cannot give an exact

answer on which tile size is the best, and the statistical approach requires multiple

execution of an optimized loop, and this method does not always provide a speedup

in loop execution. On the other hand, the polyhedral analysis used for finding an

optimal loop schedule for the Polly compiler can be time- and memory-consuming,

and it does not always provide the best result.

In the authors’ opinion, it is worth combining the tools from static loop optimi-

zation with those from dynamic tile selection. The Polly compiler will be used for

the static analysis of input source code. It will detect the ready-for-parallelization

regions of the IR code, and it can propose a new schedule of loop statements. All

optimizations made by Polly are described by the SCoP object, which contains im-

portant data about memory access patterns, iteration space, data dependency, and

the proposed loop schedule. This information will be saved in output binary code

and will be read by runtime functions that are responsible for choosing the proper tile

size. The choice of optimal tile size should be based on the heuristic data gathered

from previous executions and analytical data from the static code analysis. Figure 4

illustrates the proposed solution.

The main aim of such an approach is to provide more data to the tile selection

mechanism. In the authors’ opinion, it is the only way to combine static and dynamic

analysis results. It is expected that such a combination will give a more-accurate

model that will properly estimate the optimal size of the loop tiling. The proposed

tile-size-prediction-method algorithm will not limit any other polyhedral optimization.

Tiled code can be still parallelized or vectorized. The described optimization method

works on IR code so it can be combined with the machine-specific optimization made

by the target specific compiler backend.



Hardware-aware tiling optimization for multi-core systems 153

Runtime

SCoP
Instrumen-

tation
Pass

Input 
Source
Code

Program
output

Current settings,
SCoP information

Polyhedral
Analysis

Binary
Program

New tile size

Instru-
mented
SCoP

Dete-
cted

SCoP

Figure 4. Architecture of proposed solution.

The runtime algorithm used to calculate the optimal tile size has not been spe-

cified. In the authors’ opinion, it should be done in the last phase of research. First,

the mechanism for saving static analysis results in the output binary code should be

implemented. Without this mechanism, it is not possible to check which artificial

intelligence algorithm predicts the optimal tile size in the best way.

The proposed approach allows us to shorten selection time by adding the more-

detailed code description obtained by the polyhedral analysis into the dynamic run-

time selection algorithm. It is expected that the compile time will be remain the same

as for the standard polyhedral optimization. Runtime overhead can increase during

program execution (as compared to simple heuristic models) because more analysis

should be done for choosing the best tile size. On the other hand, a more-sophisticated

method of finding the best tile size could reduce the number of code executions needed

to find the optimal tile size.

This project also requires some changes in the LLVM code. A new pass should be

added that will automatically insert runtime callbacks into the optimized loops. These

callbacks should automatically adjust the tile size based on the previous optimization

results and information about the hardware.

4.1. Target platforms

Today, hardware manufacturers offer multiple solutions for calculation acceleration.

Their architecture is different, and it is worth providing a general approach for finding

the approximate optimal tile size. Currently, there are three main trends in the design

of computing efficient systems. Each of them is different, and runtime should ask for

specific values of parameters for each platform separately.

Intel has proposed a new concept of processor architecture; it is called the Many

Integrated Core (MIC) architecture. This is characterized by multiple general-purpose

processors that share cache memory. In comparison to Haswell, some cores play the

role of coprocessor. Their role is flexible and can work in many configurations [11].

The type of operation mode depends on the type of processed algorithm. If the al-

gorithm is easily parallelizable, then the host processors can offload a portion of the



154 Dominik Adamski, Grzegorz Jab loński

calculations to the coprocessors. If the code cannot be executed concurrently, then

only one host processor should work. Tiling runtime should take into account how

many coprocessors are available, how the workload should be divided by the cores,

and which mode of of operation is most-suitable.

GPU systems are characterized by distributed memory systems. The host pro-

cessor can offload calculations to the GPU. The offloading procedure requires a data

transfer between the CPU and GPU memory. This transfer strongly affects the speed

of the calculations. Moreover, the processing units on the GPU are optimized for

stream processing. As a consequence, the execution of the branch instruction takes

more time than for the CPU. The tiling runtime should take into account the number

of threads available on the target GPU. The best tile size should effectively minimize

the number of branches, and it should allow as many threads as possible to execute

the calculations in parallel.

The third target platform is the combination of a traditional CPU processor

with a Field Programmable Gate Array (FPGA) device such as Xilinx ZynQ. This

approach allows us to offload calculations to a device that can be easily tailored to

the end user’s computational needs. Recent research shows that tiling can improve

usage of the available hardware [3]. The runtime selecting the best tile size for the

FPGA device should take into account not only the results of code analysis but

also the available resources (number of available gates, memory space, and memory

bandwidth). Due to the long time necessary to program an FPGA device, it would

probably be impossible to tune the tile size during runtime. For this platform, runtime

can only gather execution data (like the size of the used resources or time of kernel

execution), and it should propose the best tile size when the kernel code is once again

recompiled to bitstream code and then loaded into the FPGA device.

5. Proof of concept

This section presents the proof of concept results. The methodology was as follows:

a function (presented in the listing below) was manually tiled. For each tested tile

size, the time of function execution and number of data cache misses was recorded

by the PAPI functions. They were inserted into the beginning and at the end of the

test function code.

1 void test_function (int *x1, int *x2,

2 int *A[], int *y1, int *y2, int _PB_N) {

3 for (i = 0; i < _PB_N; i++)

4 for (j = 0; j < _PB_N; j++)

5 x1[i] = x1[i] + A[j][i] * y_1[j];

6

7 for (i = 0; i < _PB_N; i++)

8 for (j = 0; j < _PB_N; j++)

9 x2[i] = x2[i] + A[j][i] * y_2[j];

10 }



Hardware-aware tiling optimization for multi-core systems 155

The Polly compiler detects that both loops can be described as one SCoP. As

a consequence, it is possible to freely interchange the loop order. There are two

variants of tiling optimization examined; the first concerns the tiling of each loop

separately:

1 void test_function (int *x1, int *x2,

2 int *A[], int *y_1, int *y_2,

3 int _PB_N, int _TILE_I, int _TILE_J) {

4

5 // _TILE_I and _TILE_J define tile size

6 for (i = 0; i < _PB_N; i+=_TILE_I)

7 for (j = 0; j < _PB_N; j+=_TILE_J)

8 for (ii=i; ii < MIN(i+_TILE_I, _PB_N);ii++)

9 for (jj = j; jj < MIN(j + _TILE_J, _PB_N); jj++)

10 x1[ii] = x1[ii] + A[ii][jj] * y_1[jj];

11

12 for (i = 0; i < _PB_N; i+=_TILE_I)

13 for (j = 0; j < _PB_N; j+=_TILE_J)

14 for (ii=i; ii < MIN(i+_TILE_I, _PB_N);ii++)

15 for (jj = j; jj < MIN(j + _TILE_J, _PB_N); jj++)

16 x2[ii] = x2[ii] + A[ii][jj] * y_2[jj];

17 }

The Polly compiler can propose that these statements:

1 x1[ii] = x1[ii] + A[ii][jj] * y_1[jj];

and

1 x2[ii] = x2[ii] + A[ii][jj] * y_2[jj];

can be combined into one loop. For this reason, the following tiling schedule was also

analyzed:

1 void test_function (int *x1, int *x2,

2 int *A[], int *y_1, int *y_2,

3 int _PB_N, int _TILE_I, int _TILE_J) {

4

5 // _TILE_I and _TILE_J define tile size

6 for (i = 0; i < _PB_N; i+=_TILE_I)

7 for (j = 0; j < _PB_N; j+=_TILE_J)

8 for (ii=i; ii < MIN(i+_TILE_I, _PB_N);ii++)

9 for (jj = j; jj < MIN(j + _TILE_J, _PB_N); jj++) {

10 x1[ii] = x1[ii] + A[ii][jj] * y_1[jj];

11 x2[ii] = x2[ii] + A[ii][jj] * y_2[jj];

12 }

13 }



156 Dominik Adamski, Grzegorz Jab loński

5.1. Hardware platforms

The code was compiled by gcc 4.8 and executed without any parallel optimization on

two platforms. The first one was an Intel i7-2600K. This CPU has 8 MB of 3-level data

cache. This PC is equipped with 8 GB of DDR3 RAM memory. The last level cache

memory is shared between four cores. The first and second levels of cache memory

are dedicated to one core. The second platform was an Intel Core 2 Duo t5500 with

2 GB of DDR2 RAM memory. This is a processor that was designed in 2007 for

notebooks. It is equipped with 2 level 2 MB data cache memory. Both platforms run

on Ubuntu 14.04.

5.2. Empirical results

This section includes the empirical results of tiling efficiency. The first group of plots

shows the dependencies between data cache misses and tile size. The second group of

plots shows the dependencies between time of kernel execution and tile size.

The performed tests show that tiling optimization is hardware dependent. Figu-

res 6, 8, 10, and 12 show that there is wide range of tile sizes for which the time of

execution is close to minimal. This can be explained by the fact that the number of

cache misses is comparable for most tile sizes (Figures 5, 7, 9, 11).

Time of execution for Intel Core 2 Duo processor deteriorates when tile j is

equal to 2. For this case, the processor executes many branch instructions that cause

a significant slowdown. If tile i is equal to 2, then the number of cache misses is

considerably high. This situation can be explained by the fact that chunks of arrays

x1 and x2 cannot be correctly optimized.

The i7 processor better utilizes hardware resources. Figures 14, 16, 18, and 20

indicate that this processor can execute a kernel function in a smaller number of

clock cycles. The higher performance and efficient cache memory cause that tiling

optimization can significantly change the time of kernel execution. Comparison of

the same kernels for the same problem size (for example, Figures 8 and 16) reveals

that the number of cache misses is lower for the i7 processor. As a consequence, even

a small increase in memory cache misses can cause a performance drop (see Figures

13, 15, 17, 19).

A comparison of two cases with the same memory access pattern that are execu-

ted on the same hardware (for example, fissioned kernel executed on the i7 processor:

Figures 18 and 20) reveals that optimal tile size is more dependent on the memory

access pattern than on the problem size. For both cases, the minimal time of execu-

tion is if tile j is within range <4,32 >and tile i is within range <4,32 >. Figures 21

and 22 indicate that, for these tile sizes, the number of L1 and L2 is minimal. This

fact can be explained by an analysis of memory access patterns. Data access for

the x1 and x2 arrays is optimized by tile i. Meanwhile, the y1 and y2 arrays are

optimized by tile j. Array A is two-dimensional, and it is optimized by tile i and

tile j. The presented figures indicate that the optimal tile size lies within the region

where accesses for all arrays are optimized.



Hardware-aware tiling optimization for multi-core systems 157

20

40

TILE_ J 60

80

100

0

0

1e+06

1.1e+06

1.2e+06

1.3e+06

1.4e+06

1.5e+06

1.3e+06

1.4e+06

1.5e+06

1.6e+06

1.1e+06

1.2e+06

Dependence between tile size and total number of data cache misses

TILE_ I

20

40

60

80

100

Figure 5. Data cache misses for L1 and L2 for

Intel Core 2 Duo t5500 with PB N = 2000

and fused loops.

40

TILE_ J 60

80

100

20

0

0

4e+07

5e+07

6e+07

7e+07

8e+07

7e+07

8e+07

9e+07

5e+07

6e+07

TILE_ I

Dependence between tile size and kernel execution time in CPU clock cycles

20

40

60

80

100

Figure 6. Time of kernel execution for Intel

Core 2 Duo t5500 with PB N = 2000 and

fused loops.

40

TILE_ J 60

80

100

20

0

0

2e+07

2.6e+07

2.8e+07

3e+07

3.2e+07

3.4e+07

3.6e+07

3.8e+07

3.5e+07

4e+07

2.5e+07

3e+07

TILE_ I

Dependence between tile size and total number of data cache misses

20

40

60

80

100

Figure 7. Data cache misses for L1 and L2 for

Intel Core 2 Duo t5500 with PB N = 10,000

and fused loops.

40

TILE_ J
60

80
100

20
0

0

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

2e+09

TILE_ I

20

40

Dependence between tile size and kernel execution time in CPU clock cycles

80

100

60

Figure 8. Time of kernel execution for Intel

Core 2 Duo t5500 with PB N = 10000 and

fused loops.

20

40

TILE_ J 60

80

100

0

0

2e+06 2.2e+06

2.4e+06

2.6e+06

2.2e+06

2.4e+06

2.6e+06

2.8e+06

Dependence between tile size and total number of data cache misses

TILE_ I

20

40

60

80

100

Figure 9. Data cache misses for L1 and L2 for

Intel Core 2 Duo t5500 with PB N = 2000

and fissioned loops.

20

40

TILE_ J 60

80

100

0

0

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

TILE_ I

Dependence between tile size and kernel execution time in CPU clock cycles

20

40

60

80

100

Figure 10. Time of kernel execution for Intel

Core 2 Duo t5500 with PB N = 2000 and

fissioned loops.



158 Dominik Adamski, Grzegorz Jab loński

40

TILE_ J 60

80

100

20

0

0

5e+07

6e+07

6.5e+07

7e+07

5.5e+07

5.2e+07

5.4e+07

5.6e+07

5.8e+07

6e+07

6.2e+07

6.4e+07

6.6e+07

Dependence between tile size and total number of data cache misses

TILE_ I

100

80

40

60

20

Figure 11. Data cache misses for L1 and

L2 for Intel Core 2 Duo t5500 with

PB N = 10,000 and fissioned loops.

20
40

TILE_ J
60

80
100

0

0

1e+09
1.5e+09

2e+09

2.5e+09

1.5e+09

2e+09

2.5e+09

3e+09

TILE_ I

Dependence between tile size and kernel execution time in CPU clock cycles

20

40

60

80

100

Figure 12. Time of kernel execution for Intel

Core 2 Duo t5500 with PB N = 10,000 and

fissioned loops.

20

40

TILE_ J 60

80

100

0

0

1e+06

1.5e+06

2e+06

2.5e+06

TILE_ I

1.5e+06

2e+06

2.5e+06

3e+06

Dependence between tile size and total number of data cache misses

40

60

80

100

20

Figure 13. Data cache misses for L1 and L2

for Intel i7-2600K with PB N = 2000 and

fused loops.

20

40

TILE_ J 60

80

100

0

0

4e+07

5e+07

6e+07

7e+07

8e+07

5e+07

6e+07

7e+07

8e+07

9e+07

TILE_ I

Dependence between tile size and kernel execution time in CPU clock cycles

60

80

100

20

40

Figure 14. Time of kernel execution for In-

tel i7-2600K with PB N = 2000 and fused

loops.

20

40

TILE_ J 60

80

100

0

0

1.5e+07
2e+07

2.5e+07

3e+07

3.5e+07

2.5e+07

3e+07

3.5e+07

4e+07

2e+07

Dependence between tile size and total number of data cache misses

TILE_ I

80

100

60

40

20

Figure 15. Data cache misses for L1 and L2

for Intel i7-2600K with PB N = 10,000 and

fused loops.

20
40

TILE_ J
60

80
100

0

0

6e+08

7e+08

8e+08

9e+08

1e+09

1.1e+09

1.2e+09

1.3e+09

7e+08

8e+08

9e+08

1e+09

1.1e+09

1.2e+09

TILE_ I

Dependence between tile size and kernel execution time in CPU clock cycles

20

40

60

80

100

Figure 16. Time of kernel execution for In-

tel i7-2600K with PB N = 10,000 and fused

loops.



Hardware-aware tiling optimization for multi-core systems 159

20

40

TILE_ J 60

80

100

0

0

1e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

2.2e+06

2.4e+06

2.6e+06

2.8e+06

1.5e+06

2e+06

2.5e+06

3e+06

TILE_ I

Dependence between tile size and total number of data cache misses

40

60

80

100

20

Figure 17. Data cache misses for L1 and L2

for Intel i7-2600K with PB N = 2000 and

fissioned loops.

20
40

TILE_ J
60

80
100

0

0

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

TILE_ I

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

60

80

100

40

Dependence between tile size and kernel execution time in CPU clock cycles

20

Figure 18. Time of kernel execution for Intel

i7-2600K with PB N = 2000 and fissioned

loops.

20

40

TILE_ J 60

80

100

0

0

2e+07

3e+07

4e+07

5e+07

6e+07

3e+07

4e+07

5e+07

6e+07

7e+07

TILE_ I

Dependence between tile size and total number of data cache misses

60

80

100

40

20

Figure 19. Data cache misses for L1 and L2

for Intel i7-2600K with PB N = 10,000 and

fissioned loops.

20

40

TILE_ J
60

80

100

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

TILE_ I

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

2e+09

Dependence between tile size and kernel execution time in CPU clock cycles

60

80

0

40

20

Figure 20. Time of kernel execution for Intel

i7-2600K with PB N = 10,000 and fissioned

loops.

20

40

TILE_ J 60

80

100

0

0

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

Dependence between tile size and total number of data cache L1 misses

TILE_ I

20

40

60

80

100

Figure 21. Number of data L1 cache misses

for Intel i7-2600K with PB N = 10,000 and

fissioned loops.

40

TILE_ J 60

80

100

20

0

0

0

Dependence between tile size and total number of data cache L2 misses

TILE_ I

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

40

20

80

100

60

Figure 22. Number of data L2 cache misses

for Intel i7-2600K with PB N = 10,000 and

fissioned loops.



160 Dominik Adamski, Grzegorz Jab loński

For both processors, the biggest bottleneck is memory speed. Time of data access

is considerably longer than the time of loop branches. Fissioned loops are executed

in a time comparable to the fused loops. If the tile size is wrongly chosen, then the

time of execution of the fused loops can be longer than for the fissioned loops.

6. Conclusions

Tiling optimization can significantly reduce the number of data cache misses. The

experimental results show that the efficiency of tiling is strongly dependent on me-

mory access patterns for any given SCoP and hardware platform. Measurement data

indicates that code analysis cannot be skipped in optimized tile size analysis.

Experimental results have shown that tiling optimization cannot be focused only

on a single loop. Efficient tiling optimization should take into account the dependen-

cies between neighboring and nested loops. SCoP analysis can indicate such regions

of code. This analysis can state if it is safe to tile a given loop. It can also provide

some information about the memory access patterns. This data can be used during

runtime for quick and accurate suboptimal tile size prediction.

Measurements indicate that the efficiency of tiling is hardware-dependent. Exe-

cution of the same code on different hardware platforms causes the output results to

be different. In general, tiling optimization can provide a higher gain for powerful

processors. Figure 15 indicates that, for an Intel i7, tiling optimization reduces the

number of cache misses by double. For the older platform, the dependency between

tile size and number of cache misses is weaker. This conclusion should be used in

runtime design. If it is possible to detect such a situation where the number of cache

misses does not change radically for multiple tile sizes, then runtime should not spend

much time on finding the most-optimal tile size. In such a case, the coarse result will

be acceptable.

An efficient optimization procedure should take into account more parameters

than the number of data cache misses or execution time. There is a strong need to

define a holistic approach for efficient tiling optimization. This task is difficult be-

cause of the vast variety of hardware platforms. The dependencies between hardware

specifications and executed software should be stated. It is vital to state which de-

pendencies can be skipped during the optimization process. This simplification will

lead to a reduction in time, which is necessary for the fine-tuning of the tiled loop.

References

[1] Bastoul C.: Code Generation in the Polyhedral Model Is Easier Than You Think.

In: Proceedings of the 13th International Conference on Parallel Architectures and

Compilation Techniques, PACT ’04, pp. 7–16, IEEE Computer Society, Washing-

ton, DC, USA, 2004. http://dx.doi.org/10.1109/PACT.2004.11.

[2] Carvalho C.: The Gap between Processor and Memory Speed. In: Proceedings of

the Internal Conference on Computer Architecture, pp. 27–34, 2002.



Hardware-aware tiling optimization for multi-core systems 161

[3] Deest G., Estibals N., Yuki T., Derrien S., Rajopadhye S.: Towards Scalable and

Efficient FPGA Stencil Accelerators, article presented during 6th International

Workshop on Polyhedral Compilation Techniques 2016.

http://impact.gforge.inria.fr/impact2016/papers/impact2016-deest.pdf.

[4] Dongarra J., Jagode H., Mucci P., Vaccaro P., YarKhan A.: PAPI Library. Pro-

ject description available on webpage http://icl.cs.utk.edu/papi/index.html.

[5] Frigo M., Leiserson C.E., Prokop H., Ramachandran S.: Cache-Oblivious Al-

gorithms. In: Proceedings of the 40th Annual Symposium on Foundations of

Computer Science, FOCS ’99, pp. 285–. IEEE Computer Society, Washington,

DC, USA, 1999. http://dl.acm.org/citation.cfm?id=795665.796479.

[6] Grosser T.: Speedup of Polly tiling optimization in comparison to gcc -O3. Figure

available on webpage http://polly.llvm.org/performance.html.

[7] Grosser T., Cohen A., Holewinski J., Sadayappan P., Verdoolaege S.: Hybrid

Hexagonal/Classical Tiling for GPUs. In: Proceedings of Annual IEEE/ACM

International Symposium on Code Generation and Optimization, CGO ’14,

pp. 66–75. ACM, New York, NY, USA, 2014. http://doi.acm.org/10.1145/

2544137.2544160.

[8] Grosser T., Größlinger A., Lengauer C.: Polly – Performing Polyhedral Opti-

mizations on a Low-Level Intermediate Representation. In: Parallel Processing

Letters, vol. 22(4), 2012. http://dx.doi.org/10.1142/S0129626412500107.

[9] Grosser T., Zheng H., Aloor R., Simbürger A., Größlinger A., Pouchet L.N.:

Polly – Polyhedral optimization in LLVM. In: First International Workshop on

Polyhedral Compilation Techniques (IMPACT’11). Chamonix, France, 2011.

[10] Hennessy J.L., Patterson D.A.: Computer Architecture, Fifth Edition: A Quan-

tative Approach, Morgan Kaufmann Publishers, San Francisco, CA, USA, 5th

ed., 2011.

[11] Intel Xeon PhiTM Coprocessor System Software Developers Guide, document

available on webpage http://www.intel.com/content/dam/www/public/us/

en/documents/product-briefs/xeon-phi-coprocessor-system-software-

developers-guide.pdf.

[12] Kong M., Pop A., Pouchet L.N., Govindarajan R., Cohen A., Sadayappan P.:

Compiler/Runtime Framework for Dynamic Dataflow Parallelization of Tiled

Programs. In: ACM Trans. Archit. Code Optim., vol. 11(4), pp. 1–30, 2015.

http://doi.acm.org/10.1145/2687652.

[13] Lattner C.: LLVM. Figure available on webpage http://www.aosabook.org/en/

llvm.html.

[14] Lattner C., Adve V.: LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In: Proceedings of the International Symposium on

Code Generation and Optimization: Feedback-directed and Runtime Optimiza-

tion, CGO ’04, pp. 75–86, IEEE Computer Society, Washington, DC, USA, 2004.

http://dl.acm.org/citation.cfm?id=977395.977673.



162 Dominik Adamski, Grzegorz Jab loński

[15] Malik A.M.: Optimal Tile Size Selection Problem Using Machine Learning. In:

Proceedings of the 2012 11th International Conference on Machine Learning and

Applications – Volume 02, ICMLA ’12, pp. 275–280, IEEE Computer Society,

Washington, DC, USA, 2012. http://dx.doi.org/10.1109/ICMLA.2012.214.

[16] Puchet L.N.: PolyBench/C the Polyhedral Benchmark suite. Benchmark

available on webpage http://web.cse.ohio-state.edu/~pouchet/software/

polybench/.

[17] Rahman M., Pouchet L.N., Sadayappan P.: Neural Network Assisted Tile

Size Selection. In: International Workshop on Automatic Performance Tuning

(IWAPT’2010). Springer-Verlag, Berkeley, CA, 2010.

[18] Rupp K., Horovitz M., Labonte F., Shacham O., Olukotun K., Hammond

L., Batten C.: 40 Years of Microprocessor Trend Data. Figure available on

webpage http://www.karlrupp.net/wp-content/uploads/2015.06/40-years-

processor-trend.png.

[19] Shirako J., Sharma K., Fauzia N., Pouchet L.N., Ramanujam J., Sadayappan P.,

Sarkar V.: Analytical Bounds for Optimal Tile Size Selection. In: Proceedings of

the 21st International Conference on Compiler Construction, CC’12, pp. 101–121.

Springer-Verlag, Berlin, Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-

642-28652-0 6.

[20] Verdoolaege S.: isl: An Integer Set Library for the Polyhedral Model. In: Fu-

kuda K., Hoeven J., Joswig M., Takayama N. (eds.), ICMS’10 Proceedings of the

Third International Congress on Mathematical Software, pp. 299–302, Springer-

-Verlag, 2010.

Affiliations

Dominik Adamski
Lodz University of Technology, Department of Microelectronics and Computer Science

Grzegorz Jab loński
Lodz University of Technology, Department of Microelectronics and Computer Science

Received: 03.02.2016

Revised: 26.11.2016

Accepted: 26.11.2016


