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Abstract Re-speaking is a mechanism for obtaining high-quality subtitles for use in live

broadcasts and other public events. Because it relies on humans to perform

the actual re-speaking, the task of estimating the quality of the results is non-

trivial. Most organizations rely on human effort to perform the actual quality

assessment, but purely automatic methods have been developed for other simi-

lar problems (like Machine Translation). This paper will try to compare several

of these methods: BLEU, EBLEU, NIST, METEOR, METEOR-PL, TER, and

RIBES. These will then be matched to the human-derived NER metric, com-

monly used in re-speaking. The purpose of this paper is to assess whether the

above automatic metrics normally used for MT system evaluation can be used

in lieu of the manual NER metric to evaluate re-speaking transcripts.
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1. Introduction

Over the last several years, one of the main driving forces in speech technology has

come from the efforts of various groups and organizations trying to tackle the concerns

of the disabled; specifically, deaf and hard-of-hearing people. Most notably, a long-

term effort by such organizations has lead to a plan by the European Commission

to enable “Subtitling of 100% of programs in public TV all over the EU by 2020,

with simple technical standards and consumer-friendly rules” [6]. This ambitious task

would not be possible to achieve without the aid of speech technology. While there

has recently been a considerable improvement in the quality of Automatic Speech

Recognition (ASR) technology, many of the tasks present in real-life are simply beyond

complete automation. On the other hand, there are tasks that are also impossible to

achieve by humans without the aid of ASR. For example, movie subtitles are usually

done by human transcribers and can take an entire day (or up to a week) to complete

one film. Live subtitling, however, can sustain only a few-seconds delay between the

time an event is recorded and the time it appears on the viewer’s screen. This is

where re-speaking comes into play.

The idea of re-speaking is to use ASR to create live and fully annotated subtitles;

but rather than risking misrecognition of the speech happening in the live recording,

a specially trained individual (the so-called re-speaker) repeats the speech from the

recorded event in a quiet and controlled environment. This approach has many advan-

tages that guarantee excellent results: a controlled environment, the ability to adapt

the speaker, the ability of the speaker to adapt and learn to better use the software,

solving problems like double-speak, the cocktail-party effect, and non-grammatical

speech by paraphrasing. The standard of quality required by many jurisdictions de-

mands fewer than 2% of errors [19]. From the point of view of a re-speaker, this

problem is very similar to that of an interpreter; only instead of translating from one

language to another, re-speaking is usually done within one language only. There are

many aspects of re-speaking worthy of their own insight [5], but this paper will deal

only with the issue of quality assessment.

Similarly to Machine Translation (MT), assessment of the accuracy of re-speaking

is not a trivial task because there are many possible ways to paraphrase an utterance,

just like there are many ways to translate any given sentence. Measuring the accuracy

of such data has to take semantic meaning into account rather than blindly performing

a simple word-to-word comparison.

One option is to use humans to perform this evaluation, as in the NER model

described later in this paper. This has been recognized as very expensive and time-

-consuming [9]. As a result, human effort cannot keep up with the growing and con-

tinual need for evaluation. This has led to the recognition that the development of

automated evaluation techniques is critical [9, 18].

Unfortunately, most of the automatic evaluation metrics were developed for other

purposes than re-speaking (mostly for machine translation) and are not suited for

languages that differ semantically and structurally from English (like Polish). The
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Polish language has complex declension, 7 cases, 15 gender forms, and complicated

grammatical construction. This leads to larger vocabulary and greater complexity in

data requirements for such tasks. Unlike Polish, English does not have declensions.

In addition, word order (esp. the Subject-Verb-Object (SVO) pattern) is absolutely

crucial to determining the meaning of an English sentence [22]. While these automatic

metrics have already been thoroughly studied, we feel that there is still much to be

learned, especially in different languages and for different tasks (like re-speaking).

This paper will compare some of these automated and human-assisted metrics

while also considering issues that are related specifically to Polish. To our knowledge,

these metrics used for evaluating MT systems were never utilized in the context of

re-speaking. A small introduction to all of the metrics is presented in the beginning

of the paper, followed by an experiment using actual re-speaking data.

2. Machine translation metrics

This chapter will describe many of the state-of-the-art metrics for machine translation.

Most of them were tested using software that is available online. The Meteor metric

was also adapted to Polish for the purpose of this paper. This is described in detail

in section 2.5. The EBLEU metric, described in section 2.7, is an extension of the

popular BLEU metric; it was created by the first author of this paper as outlined in

the cited references.

2.1. BLEU metric

BLEU was developed based on a premise similar to that used for speech recognition,

described in [16] as: “The closer a machine translation is to a professional human

translation, the better it is.” So, the BLEU metric is designed to measure how close

SMT output is to that of human reference translations. It is important to note that

translations (SMT or human) may differ significantly in word usage, word order, and

phrase length [16]. To address these complexities, BLEU attempts to match variable-

length phrases between SMT output and reference translations. Weighted match

averages are used to determine the translation score [1]. A number of variations of

the BLEU metric exist; however, the basic metric requires the calculation of a brevity

penalty (PB), which is calculated as follows:

PB =

{
1 c > r

e(1−r/c) c <= r
(1)

where r is the length of the reference corpus, and the candidate (reference) translation

length is given by c. [1] The basic BLEU metric is then determined as shown in [1]:

BLEU = PB exp

(
N∑

n=1

wn log pn

)
(2)
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where wn are positive weights summing to one, and n-gram precision pn is calculated

using n-grams with a maximum length of N .

There are several other important features of BLEU. First, word and phrase

position within the text are not evaluated by this metric. To prevent SMT systems

from artificially inflating their scores by overusing words known with high confidence,

each candidate word is constrained by the word count of the corresponding reference

translation. A geometric mean of individual sentence scores is then calculated for the

entire corpus (with consideration of the brevity penalty) [1].

2.2. NIST metric

The NIST metric was designed to improve BLEU by rewarding the translation of

infrequently used words. This was intended to further prevent the inflation of SMT

evaluation scores by focusing on common words and high-confidence translations. As

a result, the NIST metric uses heavier weights for rarer words. The final NIST score

is calculated using the arithmetic mean of the n-gram matches between SMT and

the reference translations. In addition, a smaller brevity penalty is used for smaller

variations in phrase lengths. The reliability and quality of the NIST metric has been

shown to be superior to the BLEU metric in many cases [4].

2.3. Translation Edit Rate (TER)

The Translation Edit Rate (TER) was designed to provide a very intuitive SMT

evaluation metric, requiring less data than other techniques while avoiding the labor

intensity of human evaluation. It calculates the number of edits required to make

a machine translation match exactly to the closest reference translation in fluency

and semantics [2, 12]. Calculation of the TER metric is defined in [12]:

TER =
E

R
(3)

where E represents the minimum number of edits required for an exact match, and

the average length of the reference text is given by R. Edits may include the deletion

of words, word insertion, word substitutions, and changes in word or phrase order [12].

2.4. METEOR metric

The Metric for the Evaluation of Translation with Explicit Ordering (METEOR) is

intended to take several factors that are indirect in BLEU into account more directly.

Recall (the proportion of matched n-grams to total reference n-grams) is used directly

in this metric. In addition, METEOR explicitly measures higher-order n-grams, con-

siders word-to-word matches, and applies arithmetic averaging for a final score. The

best matches against multiple reference translations can also be used [2].

The METEOR method uses a sophisticated and incremental word alignment

method that starts by considering exact word-to-word matches, word stem matches,
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and synonym matches. Alternative word-order similarities are then evaluated based

on these matches.

The calculation of precision is similar in the METEOR and NIST metrics. Recall

is calculated at the word level. To combine the precision and recall scores, METEOR

uses a harmonic mean. METEOR rewards longer n-gram matches [2].

The METEOR metric is calculated as shown in [2]:

METEOR = Fmean ∗ (1 − Penalty) =

(
10 · P ·R
P +R

)
(1 − PM ) (4)

where the unigram recall and precision are given by R and P , respectively. Brevity

penalty PM is determined by:

PM = 0.5 ·
(
C

MU

)
(5)

where MU is the number of matching unigrams, and C is the minimum number of

phrases required to match unigrams in the SMT output to those found in the reference

translations.

An important factor in METEOR is the liberal use of weights for the numerous

aspects of the system. These weights need to be tuned for specific tasks to match

human judgment precisely. The tool comes with a couple of pre-tuned parameter

sets for some common task and language pairs, but these obviously include neither

re-speaking nor Polish.

2.5. METEOR-PL

While often used in a language-independent manner, the greatest advantage of ME-

TEOR is its ability to model the features of a specific language, like the aforementio-

ned synonyms, stems, and paraphrasing. These features are enabled through the use

of standard language tools, easily obtainable for many languages. In order to adapt

METEOR to Polish, several steps needed to be made.

The synonym matcher uses a special script for extracting relevant information

from the Princeton WordNet [15] project. In Polish, there is an equivalent project

developed at the Wroclaw University of Technology [14], and it works exactly the

same as the Princeton original.

The standard METEOR stemmer is implemented using the Snowball [17] tool,

but this only supports a limited set of languages. Other languages can be implemen-

ted by hand-crafting rules using a special finite grammar. For Polish, Morfologik [21]

(a well-known morphological analyzer and stemmer developed at the IPI PAN) was

used instead. This meant that the METEOR source code needed to be slightly mo-

dified, specifically to support multiple stems per word.

One final modification of the system with respect to Polish was the creation of

a list of function words. This list isn’t very long (this is true for other languages as
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well) and may have to be adjusted for specific uses. In its current state, it contains

punctuation, some common abbreviations, and common conjunctions.

The last feature of METEOR is its ability to model paraphrasing. This uses

a system that is trained on a parallel corpus. At the moment of writing this paper,

the amount of re-speaking data was so small that no such corpus could be readily

produced. This is something that could significantly improve the measure in the

future, however.

2.6. RIBES

The focus of the RIBES metric is word order. It uses rank correlation coefficients

based on word order to compare SMT and reference translations. The primary rank

correlation coefficients used are Spearman’s ρ, which measures the distance of differen-

ces in rank, and Kendall’s τ , which measures the direction of differences in rank [10].

These rank measures can be normalized to ensure positive values [10]:

• normalized Spearman’s ρ (NSR) = (ρ+ 1)/2,

• normalized Kendall’s τ (NKT) = (τ + 1)/2.

These measures can be combined with precision P and modified to avoid ove-

restimating the correlation of only corresponding words in the SMT and reference

translations:

NSRPα and NKTPα (6)

where α is a parameter in the range 0 < α < 1.

2.7. EBLEU

We now discuss the enhancements to the BLEU metric that we introduced in [23].

The goal was to make this metric more reliable when it comes to morphologically

rich languages like Polish. In particular, our enhanced metric rewards synonyms and

rare-word translations while modifying the calculation of cumulative scores.

2.7.1. Consideration of synonyms

In our enhanced metric, we would like to reward matches of synonyms, since the

correct meaning is still conveyed.

Consider this test phrase: “this is an exam”; and this reference phrase: “this is

a quiz”.

The BLEU score is calculated as follows:

BLEU = (1 + 1 + 1 + 0)/4 = 3/4 = 0.75 (7)

BLEU does not count the word “exam” as a match, because it does not find it

in the reference phrase. However, this word is not a bad choice. In our method, we

want to score the synonym “exam” higher than zero and lower than the exact word

“quiz”.
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During the BLEU evaluation, we check each word for an exact match. If the word

is a synonym and not an exact match, we do not give a full score to that word. The

score for a synonym will be the default BLEU score for an original word multiplied

by a constant (synonym-score).

For example, if this constant equals 0.90, the new score with synonyms is:

(1 + 1 + 1 + 0.9)/4 = 3.9/4 = 0.975 (8)

With this algorithm, we have synonym scores for all n-grams, because we have

“a quiz” in 2-gram and “is a quiz” in 3-gram in both the test and reference phrases.

The score values and other details were determined empirically; information about

this can be found in [23].

2.7.2. Consideration of rare words

Our algorithm gives extra points to rare word matches. First, it obtains the rare words

found in the reference corpus. If we sort all distinct words of the reference with their

repetition order (descending), the last words in this list are rare words. The algorithm

takes a specific percentage of the whole sorted list as rare words (rare-word-percent).

When the default BLEU algorithm tries to score a word, the score is multiplied

by a constant (rare-word-score) if this word is on the rare word list. This action

applies to all n-grams. So, if we have a rare word in a 2-gram, the algorithm increases

the score for this 2-gram. For example, if the word “Roman” is rare, the “Roman

Empire” 2-gram gets an increased score. The algorithm is careful that the score for

each sentence falls within a range of 0.0 to 1.0.

2.7.3. Determination of cumulative score

The cumulative score of our algorithm combines the default BLEU scores using loga-

rithms and exponentials as follows: where Bi is the default BLEU score and Ci is

Initialize s = 0;

for each ith-gram: do

s = s + log(Bi);

Ci = exp(s/i);

end

the cumulative score. In addition, we know that:

exp(log(a) + log(b)) = a · b and exp(log(a)/b) = a(
1
b ) (9)

3. NER subtitle accuracy model

The NER model [19] is a simple extension of the word-accuracy metric adapted spe-

cifically for measuring the accuracy of subtitles. It is one of two measures that is of

particular importance for media providers (television companies, movie distributors,

etc); the other one being the reduction rate. Generally, the aim of good subtitles is to
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reduce the length of the written text as much as possible (in order to preserve space

on the screen and make it easier to read) while maintaining almost-perfect accuracy

(usually above 98%).

Since we are dealing with paraphrasing, it is very difficult to perform accurate

measurements by only comparing the text. The NER model gets around this problem

by counting errors using a simple formula (which inspired its name):

NER accuracy =
N − E −R

N
· 100% (10)

where N is the number of analyzed tokens (usually also includes punctuation), E is the

number of errors performed by the re-speaker, and R is the number of errors performed

by the ASR system (on the re-speaker’s speech). Additionally, the errors in E are

weighted: 0.25 for minor errors, 0.5 for normal, and 1 for serious ones. There are

user-friendly tools available for making these assessments, so obviously there may

be a certain level of human bias involved in these estimates. Nevertheless, all of the

decisions are thoroughly checked and explainable using this method, which makes it

one of the most-popular techniques for the subtitle quality assessment used by many

regulatory bodies worldwide.

It is also worth noting that the primary goal of NER was to create a measure

that would correlate with user perception of subtitle quality. Many studies in various

languages confirm this [5] by finding a high correlation with user experience asses-

sment derived from questionnaires. Another important aspect is the consistency and

reproducibility of the measure, which has also been confirmed in separate studies [19].

4. Dataset and experiment setup

The data used in the experiments described in this paper was collected during a study

performed in the Institute of Applied Linguistics at the University of Warsaw [5].

This ongoing study aims to determine the relevant features of good re-speakers and

their techniques. One of the obvious measures is naturally the quality of re-speaking

discussed in this paper.

The subjects were studied in several hour-long sessions, where they had to per-

form various tasks and psychological exams. The final test was to do an actual re-

speaking of pre-recorded material. This was simultaneously recorded and recognized

by a commercial, off-the-shelf ASR suite. The software was moderately adapted to

each re-speaker during a several-hour session that was held a few weeks before the test.

The selection of the participants was performed in such a way as to fairly re-

present both the professional and less-experienced re-speakers. At a minimum, all of

the participants took part in a short, couple of hour training spanning 2–3 days in

order to learn the basics and most important rules of this profession (compared to

the several month training taken by professionals). The main goal of this selection is

related to the project mentioned above; more details can be learned from there. This



Comparison and adaptation of automatic evaluation metrics (. . . ) 137

paper, however, makes no distinction between the specific re-speaking sessions and

treats them all equally.

The complete set of materials included four different 5-minute segments in the

speaker’s native language and one in English (where the task was also a translation).

The recordings were additionally transcribed by a human to convey exactly what the

person said. The final dataset contains three sets of transcriptions:

• the transcription of the original recorded material,

• the transcription of the re-speaker transcribed by a human,

• the output of the ASR recognizing the re-speaker.

5. Result comparison

In our experiments, we used 57 transcripts prepared using the protocol above. Each

transcript was evaluated with all of the metrics described in this paper as well as

manually using the NER metric. Table 1 presents an evaluation between human-made

text transcription and the original texts. Table 2 presents an evaluation between the

ASR system and original texts.

Table 1
Evaluation of human-made text transcription and original text. RED stands for reduction

rate and MTR for METEOR. For brevity, only the first ten and last ten transcripts are shown.

BLEU NIST TER MTR MTR-PL EBLEU RIBES NER RED.

56.20 6.90 29.10 79.62 67.07 62.32 85.59 92.38 10.15

56.58 6.42 30.96 78.38 67.44 58.82 86.13 94.86 17.77

71.56 7.86 18.27 88.28 76.19 79.58 92.48 94.71 12.01

76.64 8.27 13.03 90.34 79.29 87.38 93.07 93.1 3.72

34.95 5.32 44.50 61.86 47.74 37.06 71.60 91.41 17.03

61.73 7.53 20.47 83.10 72.55 69.11 92.43 92.33 4.89

61.74 6.93 28.26 78.26 69.78 63.99 78.32 95.3 10.29

33.52 4.28 46.02 63.06 47.61 36.75 77.55 93.95 26.81

68.97 7.46 22.50 83.15 76.56 71.83 88.78 94.73 4.05

70.02 7.80 18.78 86.12 78.71 75.16 88.15 95.23 6.41

. . . . . . . . . . . . . . . . . . . . . . . . . . .

40.73 4.93 41.96 68.61 54.34 42.96 83.09 89.97 21.15

29.03 2.65 51.27 61.24 47.21 39.53 67.21 86.07 31.98

68.75 7.78 18.78 86.24 77.18 72.40 90.65 94.95 5.41

75.24 7.97 16.07 88.88 81.51 81.27 90.88 95.75 7.45

78.71 8.24 11.51 91.33 83.99 86.08 94.77 98.69 4.23

37.60 4.31 44.84 66.32 51.59 42.22 78.73 89.37 −6.6

73.20 8.07 14.38 88.78 79.55 77.39 93.93 93.73 2.2

67.43 7.67 20.30 85.64 75.90 70.28 87.57 94.91 12.07

70.06 7.90 18.44 87.29 76.67 78.93 90.79 93.49 7.11

71.88 7.83 17.77 88.24 78.07 77.51 89.21 97.74 8.46

80.05 8.3 11.00 91.81 85.72 83.94 95.03 96.12 2.88
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Table 2
Evaluation between ASR and original text. This was only performed

for the first 20 re-speakers.

BLEU NIST TER MTR MTR-PL EBLEU RIBES NER RED.

41.89 6.05 44.33 66.10 54.05 44.77 78.94 92.38 10.15

48.94 5.94 37.39 71.14 60.24 49.79 81.29 94.86 17.77

57.38 7.11 27.24 78.41 67.08 62.87 89.42 94.71 12.01

59.15 7.07 27.24 77.21 67.94 65.31 87.71 93.1 3.72

26.08 4.57 55.33 52.33 39.14 26.89 69.22 91.41 17.03

44.17 6.32 36.38 69.16 60.15 47.97 86.04 92.33 4.89

51.79 6.39 34.86 71.42 65.47 52.31 79.19 95.3 10.29

22.03 3.17 61.93 45.27 33.90 22.14 59.93 93.95 26.81

52.35 6.09 39.93 68.02 63.07 53.87 78.53 94.73 4.05

54.44 6.65 33.50 73.16 65.42 57.28 82.11 95.23 6.41

65.95 7.57 19.63 84.68 76.30 72.76 92.45 97.01 3.89

59.12 7.26 24.53 81.63 69.57 61.59 89.13 95.83 8.63

17.08 2.96 68.19 42.14 30.55 21.97 59.69 85.76 28.09

49.78 6.53 32.32 72.88 64.10 51.98 86.56 93.98 8.63

46.01 6.3 34.69 71.10 61.70 46.11 87.96 95.79 11.68

35.50 5.03 44.33 65.64 50.58 36.53 79.16 93.61 22.77

34.42 4.51 56.01 52.80 41.15 34.17 63.30 94.09 14.33

58.58 6.95 28.93 77.96 69.47 59.22 85.73 94.78 9.31

49.06 6.50 31.64 72.94 63.35 47.49 85.64 94.82 6.09

19.86 2.58 65.48 46.48 31.29 21.38 60.96 85.26 32.83

Backward linear regression is used to find the most reliable combination of metrics

that could be used to replace NER [20]. This regression has been selected for the

following reasons:

• the data is linear (correlation analysis present linear relation),

• the data is ratio level data; thus, good for linear regression,

• this regression analysis provides more than one regression result; thus, the best

variables can be found,

• reliable variables are extracted by excluding irrelevant variables from the first to

the last stages (give the most-reliable variables).

Table 3 represents the regression summary for estimating NER using various

metrics [11]. The significance (p-value) is estimated with an alpha 0.05 to investigate

the most-significant variables. The Adjusted R2 [7, 24] provides an idea of how much

the variables explain the NER variances. The table also contains several section,

representing subsequent iterations of the model with the least significant variable

removed at each step. The removed variables are shown in bold at each step. The

metrics in the last model are all significant, as their p-values are less than alpha,

therefore no more iterations need to be executed.
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The R2 value of the last model accounts for the 76.1% of NER variance. All

of the models have statistically acceptable R2 values.

Table 3
Regression result summary for predicting NER using six metrics. The boldface metrics are

least-significant and are removed in subsequent models. The italicized metrics are significant

predictors of NER.

Model
Unstandardized Coeff. Std. Coeff.

t-score Signif.
Adj.

Beta Std. Error Beta R2

1
st

m
o
d
el

(Constant) 100.068 19.933 5.020 .000

0.759

BLEU .176 .122 1.060 1.439 .157

NIST 1.162 .530 .738 2.192 .033

TER −.072 .186 −.353 −.386 .701

METEOR −.205 .168 −.797 −1.216 .230

EBLEU −.218 .078 −1.293 −2.806 .007

RIBES −.067 .093 −.219 −.723 .473

METEOR pl .194 .160 .954 1.216 .230

2
n
d

m
o
d
el

(Constant) 92.622 4.895 18.920 .000

0.763

BLEU .189 .117 1.136 1.614 .113

NIST 1.220 .504 .775 2.420 .019

METEOR −.190 .163 −.741 −1.170 .248

EBLEU −.215 .077 −1.270 −2.803 .007

RIBES −.051 .082 −.167 −.620 .538

METEOR pl .217 .147 1.067 1.479 .145

3
rd

m
o
d
el

(Constant) 91.541 4.547 20.133 .000

0.766

BLEU .184 .116 1.107 1.586 .119

NIST 1.068 .438 .678 2.440 .018

METEOR −.237 .143 −.923 −1.655 .104

EBLEU −.193 .068 −1.145 −2.841 .006

METEOR pl .222 .146 1.093 1.527 .133

4
th

m
o
d
el

(Constant) 90.471 4.550 19.885 .000

0.760

BLEU .285 .096 1.716 2.955 .005

NIST 1.083 .443 .687 2.444 .018

METEOR −.099 .112 −.385 −.878 .384

EBLEU −.204 .069 −1.210 −2.982 .004

5
th

m
o
d
el (Constant) 86.556 .913 94.814 .000

0.761
BLEU .254 .090 1.531 2.835 .006

NIST .924 .404 .587 2.289 .026

EBLEU −.221 .066 −1.310 −3.370 .001
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6. Conclusion

The goal of this paper was to evaluate automatic metrics that are normally used for

assessing the quality of Machine Translation systems and apply them for assessing the

performance of re-speaking professionals. The ground-truth for this endeavor was

the human-derived NER metric used commonly in the re-speaking industry. Note that

this paper does not attempt to establish which metric is directly best at evaluating

re-speaking, but simply which metric is the best estimator of NER (which is widely

confirmed to correlate with human judgement regarding its quality of subtitles).

From the regression, it has been found that BLEU is the most-significant predic-

tor of NER. After BLEU, NIST is significant; and finally, EBLEU is also a significant

metric that can predict NER better. Thus, these can be alternatives to the NER

metric. The regression equation that can compute the value of NER based on these

three statistical metrics is:

NER = 86.55 + 0.254 · BLEU + 0.924 · NIST − 0.221 · EBLEU (11)

Moving forward, regression plots from the regression above for the significant

metrics are presented in Figures 1, 2, and 3. These plots show the relationships

between the dependent metrics with each significant metric. The closer the dots are

to the regression line in the plot, the better the R2 value and, thus, the relationship.

It is worth noting that the METEOR metric should be fine-tuned to work pro-

perly. This would, however, require more data, and more research into this is planned

in the future. The results presented in this paper are derived from a very small data

sample and may not be very representative of the task in general. The process of

acquiring more data is still ongoing, so these experiments are going to be repeated at

some point when more data becomes available.

5.00

2.50

0.00

-2.50

-5.00

-4.00 -2.00 0.00 2.00 4.00 6.00

NER

B
L
E
U

Dependent Variable: NER

R Sq Linear = 0.132

Figure 1. Partial regression plot for NER and BLEU.
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Figure 3. Partial regression plot for NER and EBLEU.

There are several additional topics that will be attempted in the future: the use

of other metrics, including inter-lingual, like MEANT [13] or LEPOR [8], as well as

intra-lingual, like CollGram [3] or language model perplexity and other model-based

techniques. Furthermore, we would also like to develop methods for assessing an

inter-lingual form of re-speaking (i.e., re-speaking combined with translation). The

methods would be similar but may require some form of machine translation to allow

for full automation.
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