
Agnieszka Kamińska
W lodzimierz Bielecki

STATISTICAL MODELS
TO ACCELERATE
SOFTWARE DEVELOPMENT
BY MEANS OF ITERATIVE COMPILATION

Abstract Minimization of data-processing time and reduction of software-development

time are important practical problems to be tackled by modern computer sci-

ence.

This paper presents the authors’ proposal of a family of statistical models

for the estimation of program execution time, which is an approach focused on

both of the above problems at the same time. The family consists of a general

model and specific models and has been elaborated based on empirical data col-

lected for pattern-program loops representing some arbitrarily selected features

related to the program structure and the specificity of a program-execution en-

vironment.

The paper presents steps to elaborate the aforementioned family as well as

the results of the carried-out experimental research. The paper demonstrates

how the elaborated models can be applied in iterative compilation for opti-

mization purposes, allowing us to reduce the time of software development and

produce code with minimal execution time.

Keywords program execution time, optimizing compilation, iterative compilation,

statistical models, processor cache

Citation

2016/09/21; 22:35 str. 1/29

Computer Science • 17 (3) 2016 http://dx.doi.org/10.7494/csci.2016.17.3.407

Computer Science 17 (3) 2016: 407–435

407

http://journals.agh.edu.pl/csci/


1. Introduction

The reduction of software development time is an important practical problem to be

tackled by modern computer science. Resolving this problem is an object of research

carried out both in the scientific and industrial centers.

Special attention is paid to compilation. During compilation, a computer pro-

gram written in a programming language comprehensible to a human is converted

into an executable form comprehensible to a computer. Applying the appropriately

selected transformations at a compilation stage, one can transform a program, written

in a given programming language and for a given computer platform, to various yet

semantically equivalent executables which however differ in execution times. Within

the compilation known as optimizing, one tries to select transformations allowing for

the shortest execution time of a resultant executable in the target environment.

In view of the great complexity of the organization of modern computers, applying

methods used in optimizing compilation it is impossible to undoubtedly indicate which

of possible versions of the source code of a given program will have the shortest

execution time in a given target environment. Iterative compilation is one of the

possible ways to produce such a code.

Within iterative compilation, all considered and semantically equivalent source

codes of a given program are executed in a target environment; their execution times

are compared, and the source code with the shortest execution time is selected for

final use [10, 13].

In the case of programs intended for solving complex problems for large data

sets, it may take several hours or even days to complete a single iteration of iterative

compilation. Such a situation takes place, for example, for real-life problems that, in

view of the necessity to be quickly solved, are subjected to being solved by means of

parallel computing.

For the sake of its potentially being very time consuming, iterative compilation

can be costly in practical applications, especially in the case of commercial software

development. Therefore, a potential improvement in iterative compilation is to use

a mathematical model in order to select from possible source-code variants of a given

program those with the shortest expected execution times.

Modern computer architectures are so complex that it is not possible to un-

doubtedly indicate – without executing all considered source code variants in the

target hardware environment – the source-code variant with the shortest execution

time in the target hardware environment. Therefore, the mathematical model would

be used for identifying, among the considered source-code variants, several variants

with shortest expected execution times and iterative compilation would be performed

only on the so-selected variants instead of on the entire set of all the considered

variants. This would result in the shortening of iterative compilation time with no

deterioration of its results.

Potential practical advantages related to such an improvement in iterative com-

pilation and the scientific gap in this area have become an inspiration for the authors’

2016/09/21; 22:35 str. 2/29

408 Agnieszka Kamińska, Włodzimierz Bielecki



solution presented in this paper and involving the elaboration of a family of iterative

compilation-oriented statistical models for the estimation of program execution time.

The authors’ solution is based on statistical models allowing for taking into account

a large number of factors influencing program execution time and the complexity of

their mutual relations.

Because most of time-consuming operations – calculations made within computer

programs – are executed in loop nests, the scope of the applicability of an elaborated

family of statistical models is limited to a class of coarse-grained parallel loop nests,

represented in the OpenMP C/C++ standard.

Coarse-grained granulation [12] takes place when the time of the execution of

data-processing-related operations in a program is longer than the total time of ini-

tializing these operations and transferring the data needed for the execution of these

operations. This type of granulation corresponds with the nested-loop structure in

which the outermost loop of the nest is parallel. Coarse-grained granulation is typ-

ically used in the parallelization of programs executed by currently very popular

multiprocessor machines with shared memory.

OpenMP [17] is currently a very popular standard for representing parallelism

of applications written in C and C++ and intended for execution on multiprocessor

machines with shared memory.

The contribution of this paper over the related work is as follows:

• A general model for the estimation of parallel coarse-grained program execution

time,

• Two specific models derived from the general model,

• The demonstration of practical advantages of using the presented specific models

in iterative compilation.

The rest of the paper is organized as follows. Section 2 presents the idea and basic

assumptions of a family of statistical models for the estimation of program execution

time. Section 3 outlines a general model. Section 4 describes how to estimate the

values of parameters of the general model and use these estimates to derive specific

models from the general model. Section 5 discusses the quality of estimations made

according to the obtained models. Section 6 describes how the elaborated specific

models can be applied in iterative compilation. Section 7 presents the results of

experimental research focused on examining practical advantages of using specific

models in iterative compilation. Section 8 discusses related work; conclusions are

drawn in Section 9.

2. Basic assumptions of statistical models for the estimation

of program execution time

A family of statistical models for the estimation of program execution time is based

on a general model that makes it possible to estimate the execution time of coarse-

grained program loop nests presented in the OpenMP C/C++ standard.

2016/09/21; 22:35 str. 3/29

Statistical models to accelerate software development by means (...) 409



Program execution time has been assumed as the dependent variable of a gen-

eral model. We have assumed that quantitative variables reflecting the factors that

significantly influence program execution time should be the independent variables of

a general model. Apart from dependent and independent variables, a general model

comprises parameters whose values are unknown a priori.

We have decided that the values of these parameters should be determined for

a specific computer environment by means of regression analysis carried out for the

empirical data collected in this environment.

Although there are also various evolutionary methods that are used for modeling

purposes, we have decided not to involve any of them in our research. Contrary to

statistical methods, evolutionary methods are highly unpredictable in terms of the cost

of using them and the quality of results they produce [7] – and this unpredictability

makes evolutionary methods unfit for being considered as a potential way of carrying

out the proposed improvement of iterative compilation.

In order to collect the empirical data necessary for determining the values of

model parameters, we have used programs prepared specially for this purpose. These

programs are hereafter referred to as pattern programs.

Because of a significant disproportion between the processor speed and memory-

access time of today’s computers, cache memory is used in processors; it is a bridge

in communication between a processor and the main memory. For this reason, we

have decided to reflect in pattern programs typical situations of taking advantage

of cache memory. These situations are characterized by means of data reuse and

cache interference; hence, each pattern program represents an arbitrarily assumed

combination of two characteristics: data reuse and cache interference. These two

characteristics are sufficient to cover and describe the whole intended scope of the

applicability of our family of statistical models.

Because we use only a very small number of characteristics with a very limited

number of value variants as the basis for pattern programs, a proposed approach

is highly general and requires only a small number of pattern programs to be pre-

pared. As a consequence, the time to elaborate the resultant specific models is much

shorter than it would be in the situation when a greater number of characteristics

with a greater number of value variants was used as the basis for pattern programs.

There are two types of data reuse: temporal and spatial. Temporal data reuse

takes place when the data fetched from a specific memory location are many times

reused in the program. Spatial data reuse takes place when the data adjacent, within

a given cache line, to the data fetched from a specific memory location are used in

the program [1, 20]. Both types of data reuse can be easily identified from a source

code, applying the approach proposed in [20].

Cache interference takes place when a cache line containing data, which can be

reused in a program, is overwritten with new data, despite the fact that there is

sufficient unoccupied space in the cache where to the new data could well be fetched

– however, because of cache organization, a specific and already-occupied cache line

2016/09/21; 22:35 str. 4/29

410 Agnieszka Kamińska, Włodzimierz Bielecki



has to be overwritten instead [1, 6, 8, 19]. The influence of cache interference on data

reuse can be assessed based on the source code of a program, applying the approach

proposed in [14].

In order to elaborate a family of statistical models, we have elaborated and used

pattern programs that reflect two typical situations of taking advantage of cache

memory:

• reusing data stored in the cache with no cache interference (this situation is

represented by pattern program nonInterf ),

• reusing data stored in the cache with cache interference (this situation is repre-

sented by pattern program matmul).

The source codes of the both pattern programs are presented in Table 1.

Table 1

Pattern programs.

Assumptions Realization

Pattern program 1
Data reuse with no cache interference

Loop nest nonInterf
int ma[N][N], mb[N][N], mc[N][N], md[N][N],

me[N][N];
int i, j, N;
for (i = 0; i ≤ N − 1; i+ +){

for (j = 0; j ≤ N − 1; j + +){
ma[i][j] = 1;
mb[i][j] = mc[i][j] + md[i][j]*me[i][j];
}
}

Pattern program 2
Data reuse with cache interference

Loop nest matmul
int ma[N][N], mb[N][N], mc[N][N];
int i, j, k, r, N;
for (i = 0; i ≤ N − 1; i+ +){

for (k = 0; k ≤ N − 1; k + +){
r = ma[i][k];
for (j = 0; j ≤ N − 1; j + +){

mc[i][j] = mc[i][j] + r*mb[k][j];
}
}
}

After substituting the parameters of a general model with values determined by

means of regression analysis, the general model becomes a specific one. A specific

model defines a general model for a particular situation by assigning relevant values

to the parameters of the general model.

Each specific model is derived from a general model for a particular pattern

program. A specific model can be applied not only to a pattern program but also to

other programs with the same data-reuse type, as in the case of the pattern program.

We call such programs “non-pattern”.

2016/09/21; 22:35 str. 5/29

Statistical models to accelerate software development by means (...) 411



In order to avoid the extrapolation of a specific model beyond the data range for

which the model is constructed, we have elaborated assumptions regarding the scope of

the applicability of a specific model to non-pattern programs. For the aforementioned

purpose, we have introduced assumptions limiting:

• the total size of data processed in a program,

• the maximum number of iterations in a single chunk of iterations assigned to be

executed by a program thread,

• program execution time.

To assess whether it is possible to estimate with sufficient accuracy the execu-

tion time of non-pattern programs by applying a specific model, we have elaborated

a method of assessing the quality of estimates generated by a specific model. This

quality-assessment method relates the achieved estimates to real values determined

empirically in a target environment.

Specific models can be used in iterative compilation to estimate the execution

time of various source-code variants of a given program. For each source-code variant

of a given program, one calculates the estimated execution time as per a relevant

specific model. Then, several source-code variants with best estimates (i.e., shortest

expected execution times in the target hardware environment) are subjected to iter-

ative compilation. From these source-code variants, the source-code variant for final

use is selected based on the results of the carried-out iterative compilation.

3. General model

The execution time of a program is the resultant of the interaction of a great number

of various factors. Because of the number and heterogeneity of these factors, it is

not possible to identify and quantify them all so that all of them could be included

in our model for the estimation of program execution time. Therefore, in order to

elaborate a model, we have decided to act in the following way: select some factors

that potentially influence program execution time, empirically prove that the selected

factors indeed influence program execution time, and quantify their influence as the

independent variables of the model. Intuitively, the execution time of a given program

depends on factors related to the environment of program execution, the structure

of an executed program, and the way in which the program is executed. Taking

into account the expected area of the application of our model for the estimation of

program execution time, these intuitively selected factors are equivalent to:

a) the structure of a parallel program and the type of parallelism exposed by this

program,

b) the specificity of a problem to be resolved in parallel,

c) parameters of a hardware environment in which a parallel program is to be exe-

cuted.

In a model, we have quantified the influence of factors a), b), and c) on the

program execution time in the following way.

2016/09/21; 22:35 str. 6/29

412 Agnieszka Kamińska, Włodzimierz Bielecki



a) A parallel program and the type of parallelism exposed by this program

In the OpenMP C/C++ standard, programs are executed by multiple threads.

The time of execution of a parallel program depends on the number of invoked

OpenMP threads – therefore, the number of OpenMP threads executing the program

has been adopted as an independent variable (X4) of a general model.

While executing a program loop nest, each of the invoked OpenMP threads is

assigned to execute a certain number of iterations of the loop nest. Depending on the

adopted way of assigning loop-nest iterations to OpenMP threads, particular threads

may be assigned to execute either identical or different numbers of loop-nest iterations.

Loop-nest iterations to be executed are assigned to OpenMP threads in portions

called chunks; depending on the settings made chunks may be of identical or different

sizes. As all the invoked threads simultaneously start executing their assigned iter-

ations, the time of execution of a program loop nest is determined by the execution

time of the thread that last finishes executing its assigned iterations. This essentially

will be the thread that has been assigned to execute the greatest number of iterations,

and the time in which this thread executes its assigned iterations is determined by

the size of the largest chunk of iterations assigned to this thread. Therefore, we have

adopted as an independent variable (X3) of a general model the maximum number

of iterations in a single chunk of iterations assigned to be executed by an OpenMP

thread.

b) The specificity of a problem to be resolved in parallel

From a low-level perspective, the specificity and variety of problems to be solved

are reflected in the number and type of arithmetic operations to be executed by the

processor. A simple yet effective way of expressing this observation quantitatively is

to assign different weights to different types of arithmetic operations. Weights should

be selected based on the analysis of the execution times of instructions in a given

processor. With this approach, it is guaranteed that different types of arithmetic

operations (e.g., addition and multiplication) are comparable. Therefore, the total

weighted number of arithmetic operations per single program thread has been adopted

as an independent variable (X2) of a general model.

c) Parameters of a hardware environment in which a parallel program is to be

executed

Ideally, all of the data needed by a processor during program execution should

be available in the processor cache at the moment when they are requested, instead

of being just then fetched from main memory into processor cache.

On the other hand, the capacity of cache memory and its replacement policy

(associativity) determine what fraction of the data processed in a program will be

available in the cache right at the moment they are requested.

This means that the time of program execution depends on the following factors:

1. The actual capacity of cache memory in a given computer system and its replace-

ment policy (associativity).

2016/09/21; 22:35 str. 7/29

Statistical models to accelerate software development by means (...) 413



2. The minimum capacity of direct-mapped cache, which is necessary in order to

contain all of the data processed in a program, assuming full temporal and spatial

reuse of the data stored in cache memory. The minimum data-storage capacity

in question can be estimated by means of data footprint [14, 20]. In order to

calculate the data footprint for a given program, it is sufficient to know its source

code; there is no need to execute this program. Calculation of the data footprint

can be carried out automatically and, at the same time, statically – by parsing

the source code of the program and using the parse results to obtain the data

reuse factors; based on this, the value of the data footprint is easy to determine

(according to the methods presented in [14] and [20]).

3. The relationship between factors 1 and 2.

In connection with the discussion above, a relationship between factors 1 and 2

has been adopted as an independent variable (X1) of a general model.

Thus, the final list of potential independent variables of a model comprises the

following variables: X1, X2, X3, and X4. To empirically prove which of these

potential independent variables indeed influence the program execution time, we have

used regression analysis.

The defined independent variables take into account and reflect many different

aspects of the parallel execution of a program; see Table 2. All of its remaining

aspects that are not covered by the independent variables are indirectly reflected in

the parameters of the model.

Table 2

Determiners of independent variables.

X1 X2

• Cache size (L1 and L2)

• Cache organization

• Data reuse in the program

• Type of data reuse in the program

• Cache interference

• Program structure

• Number of arithmetic operations exe-
cuted in a program

• Type of arithmetic operations executed
in a program

• Time of execution of particular types of
processor arithmetic operations

X3 X4

• Structure of a parallel program

• Type of parallelism exposed by
a program

• Way of assigning tasks to particu-
lar threads executing a program

• Number of OpenMP threads

With such a list of independent variables of a model to be formulated and assum-

ing that the dependent variable is Y t that estimates CPU time of the execution of

2016/09/21; 22:35 str. 8/29

414 Agnieszka Kamińska, Włodzimierz Bielecki



a program loop nest by all program threads (Y t is expressed by the number of CPU

clock cycles), we have undertaken regression analysis. The object of regression analy-

sis was the empirical data collected for two pattern programs (nonInterf and matmul)

prepared especially for this purpose. The selected method of regression analysis was

linear regression based on the classical method of least squares.

According to the assumptions of linear regression, a dependency between the

observed values of dependent variable Y and the values of independent variables X1,

X2, . . ., and Xp is expressed by the following equation:

Yi = a0 + a1X1i + a2X2i + ...+ apXpi + εi = Y ti + εi (1)

where:

i is the identifier of observations (i = 1, . . . , n),

a0, . . . , ap are unknown parameters; the values of these parameters are estimated

by means of the classical method of least squares,

X1i, . . . , Xpi are known values of independent variables X1, X2, . . ., Xp, corre-

sponding to the value of variable Y for the ith observation,

Yi is the value of dependent variable Y for the ith observation,

Y ti is the theoretical (estimated) value of dependent variable Y for the ith ob-

servation,

εi is the statistical error (disturbance, noise) for the ith observation.

Equation (1) is typically applied when there is a linear dependency between the

dependent variable and independent variables. However, regression analysis assumes

that equation (1) may also be applied if there is a nonlinear yet linearly transformable

(by use of appropriate transformations, e.g. logarithms) dependency between the de-

pendent variable and independent variables. Such nonlinear yet linearly transformable

dependencies are: power, exponential, logarithmic, or hyperbolic. As the actual type

of dependency between independent variables X1, X2, X3, X4 and dependent vari-

able Y t is unknown a priori, a general model (which is a linear regression model

derived by means of the classical method of least squares) could take one of the

following forms:

• A linear form, expressed by the following equation:

Y t = a1 ×X1 + a2 ×X2 + a3 ×X3 + a4 ×X4 (2)

• A power form, presented by the following equation:

Y t = X1a1 ×X2a2 ×X3a3 ×X4a4 (3)

• An exponential form, expressed by the following equation:

Y t = a1X1 × a2X2 × a3X3 × a4X4 (4)

• A logarithmic form, presented by the following equation:

Y t = a1× logX1 + a2× logX2 + a3× logX3 + a4× logX4 (5)

• A hyperbolic form, expressed by the following equation:

2016/09/21; 22:35 str. 9/29

Statistical models to accelerate software development by means (...) 415



Y t = a1× 1

X1
+ a2× 1

X2
+ a3× 1

X3
+ a4× 1

X4
(6)

Note: Parameter a0 is not taken into account in equations (2) ÷ (6) because it

has no practical sense for the modeled phenomenon.

To determine the ultimate form of a general model, we have used:

• coefficient of determination R2 (in order to determine the character of a depen-

dency between the dependent variable and particular independent variables of

a model),

• adjusted R2 (in order to form an ultimate list of independent variables of

a model).

Taking into account the nature of variables X1, X2, X3, X4, Y t and their mutual

relations, we could assume that a dependency between all of these variables takes the

power form expressed by equation (3).

This assumption has been verified by examining the value of the coefficient of

determination (R2) calculated for:

• variable Y t and all of the independent variables considered altogether (case 1/),

• variable Y t and a particular independent variable considered individually (cases

2/ ÷ 5/).

The values of the coefficient of determination obtained for both pattern programs

are presented in Tables 3 and 4. For case 1/ and both programs, the greatest value

of R2 (which indicates the best-fitted model of all of the considered models) has been

obtained for power model (3). Moreover, for both programs, the power model is very

well-fitted for cases 2/ ÷ 5/ as well. According to the rules of regression analysis,

this proves that a power function is best fitted to analytically describe a dependency

between the dependent variable and each of the considered potential independent

variables of the model.

Table 3

Values of the coefficient of determination for various possible forms of the general model –

for the nonInterf program.

1/ 2/ 3/ 4/ 5/
Form of the
model

R2
Y t.X1,X2,

X3,X4

R2
Y t.X1 R2

Y t.X2 R2
Y t.X3 R2

Y t.X4

linear 0.9738484 0.0602237 0.9239709 0.6125842 0.6390095
power 0.9999580 0.8968516 0.9957804 0.9653380 0.9203893
exponential 0.9845407 0.3399016 0.7284349 0.8848293 0.9194891
logarithmic 0.9557310 0.4977595 0.7366662 0.6611192 0.6387514
hyperbolic 0.9458243 0.9239709 0.0602237 0.5872795 0.5997874

The carried-out analysis indicates that variables X1, X2, X3, and X4 signifi-

cantly influence program execution time – hence, they were defined as the potential

independent variables of a general model. Whether all or only some of these variables

2016/09/21; 22:35 str. 10/29

416 Agnieszka Kamińska, Włodzimierz Bielecki



should be chosen, we can decide only after analysis of the empirical data. To make

such a decision, we have calculated the value of the adjusted coefficient of determina-

tion for power model (3) and all possible combinations of the potential independent

variables (i.e., X1, X2, X3, X4).

Table 4

Values of the coefficient of determination for various possible forms of the general model –

for the matmul program.

1/ 2/ 3/ 4/ 5/
Form of the
model

R2
Y t.X1,X2,

X3,X4

R2
Y t.X1 R2

Y t.X2 R2
Y t.X3 R2

Y t.X4

linear 0.9506216 0.0002301 0.9286567 0.3616036 0.4771490
power 0.9999514 0.6540767 0.9982205 0.9119271 0.9183616
exponential 0.9645971 0.1066810 0.5703056 0.4310208 0.9170599
logarithmic 0.8230448 0.8095558 0.5858303 0.5074892 0.4774223
hyperbolic 0.8098927 0.7669016 0.0014395 0.3219836 0.4602693

If the degree to which a model explains the changes of values of a dependent

variable indeed increases once a particular independent variable is added to the model,

then the value of the adjusted coefficient of determination is greater than that for the

case when an independent variable in question is not included in the model. Therefore,

in a regression model, we should include those variables (as independent ones) whose

combination exposes the greatest value of the adjusted coefficient of determination.

The values of the adjusted coefficient of determination obtained for both pattern

programs are presented in Tables 5 and 6. For both pattern programs, the greatest

value of adjusted R2 has been obtained when we take into account all of the potential

independent variables in power model (3); i.e., variables: X1, X2, X3, and X4.

Based on the obtained values of R2 and adjusted R2, we have adopted the fol-

lowing general model:

Y t = X1a1 ×X2a2 ×X3a3 ×X4a4 (7)

where:

Y t is the estimated CPU time for the execution of the program loop nest by all

program threads, expressed by the number of CPU clock cycles,

X1 states for a value expressing the relationship between the total size of cache

L1 and L2 per single OpenMP thread and data footprint per single OpenMP thread,

X2 is the total weighted number of arithmetic operations per single OpenMP

thread,

X3 is the maximum number of iterations in a single chunk of iterations assigned

to be executed by an OpenMP thread for a given assignment of iterations to OpenMP

threads,

X4 is the number of OpenMP threads executing the program,

2016/09/21; 22:35 str. 11/29

Statistical models to accelerate software development by means (...) 417



a1, a2, a3, and a4 are parameters whose values are determined by means of

regression analysis on the empirical data collected in a target software-hardware en-

vironment for a specially prepared sample.

Table 5

Values of the adjusted coefficient of determination for various possible combinations of po-

tential independent variables – for the nonInterf program and power model (3).

Variables of the model R2 Adjusted R2

X1 0.8968516 0.8919398
X2 0.9957804 0.9955795

X3 0.9653380 0.9636874
X4 0.9203893 0.9165983

X1 X2 0.9982909 0.9981200
X1 X3 0.9663456 0.9629802
X1 X4 0.9300614 0.9230676

X2 X3 0.9966362 0.9962998
X2 X4 0.9959525 0.9955477

X3 X4 0.9702187 0.9672406
X1 X2 X3 0.9983220 0.9980570
X1 X2 X4 0.9999401 0.9999306
X1 X3 X4 0.9747436 0.9707558

X2 X3 X4 0.9970075 0.9965350
X1 X2 X3 X4 0.9999580 0.9999486

Table 6

Values of the adjusted coefficient of determination for various possible combinations of po-

tential independent variables – for the matmul program and power model (3).

Variables of the model R2 Adjusted R2

X1 0.6540767 0.6458404
X2 0.9982205 0.9981782

X3 0.9119271 0.9098301
X4 0.9183616 0.9164178

X1 X2 0.9994628 0.9994366
X1 X3 0.9383487 0.9353413
X1 X4 0.9655228 0.9638410

X2 X3 0.9982451 0.9981595
X2 X4 0.9982402 0.9981543

X3 X4 0.9549970 0.9528018
X1 X2 X3 0.9994630 0.9994227
X1 X2 X4 0.9999501 0.9999463
X1 X3 X4 0.9796433 0.9781166

X2 X3 X4 0.9982646 0.9981345
X1 X2 X3 X4 0.9999514 0.9999464

2016/09/21; 22:35 str. 12/29

418 Agnieszka Kamińska, Włodzimierz Bielecki



4. Estimation of parameter values for specific models

Our goal is to determine the values of parameters for specific models for a computer

environment and a pattern program in such a way that these models could also be

valid for non-pattern programs executed in this computer environment. Therefore,

we have decided to determine the values of parameters a1, a2, a3, and a4 for a given

environment by means of the statistical analysis of the empirical data collected in this

environment.

To determine the values of parameters a1, a2, a3, a4, we have used two pat-

tern programs: nonInterf and matmul. Each of the pattern programs represents an

arbitrarily assumed combination of data reuse and cache interference.

Taking into account data reuse and cache interference, programs can be classified

as follows:

• programs with no data reuse – in practice, very rarely used and therefore not

considered in an elaborated model

• programs with data reuse:

– without cache interference – sample pattern program: nonInterf

– with cache interference – sample pattern program: matmul

The source codes of the nonInterf and matmul programs are presented in Table 1.

Empirical data collected for a pattern program are the basis for determining

the values of parameters a1, a2, a3, and a4 of a specific model referring to all such

programs that represent the same combination of data reuse and cache interference

as a pattern program. In this paper, a program, which is not a pattern program, but

represents the same combination of data reuse and cache interference as a pattern

program, is referred to as a non-pattern program.

It should be stressed here that pattern programs nonInterf and matmul are

exemplary pattern programs with the characteristics presented in Table 1. These

programs have been adopted simply in order to determine exemplary specific mod-

els on the basis of general model (7). This realization of the pattern programs (i.e.,

nonInterf and matmul) is one of many possible realizations. Assuming some other

realization of pattern programs, one could derive specific models with domains dif-

ferent from the domains of specific models derived from pattern programs nonInterf

and matmul. This, in turn, means that the proposed approach is highly universal,

as it provides the possibility of changing the domain of a specific model simply by

modifying a pattern program.

In view of the complexity of contemporary hardware, it is essential to define

some limits for the empirical data collected in the hardware environment and used

for determining the values of parameters a1, a2, a3, and a4 so that there are rules

clearly stating what data are representative for an environment under analysis. For

this purpose, it has been assumed that for each pattern program:

1. The total size of the data processed in a loop nest does not exceed the size of the

L2 cache available for a single processor.

2016/09/21; 22:35 str. 13/29

Statistical models to accelerate software development by means (...) 419



Assumption 1 is expressed by the following formula:

λ =
total matrix size(N)

L2 per processor
≤ 1 (8)

where:

total matrix size(N) is the total size (in bytes) of the data occupied by the array

variables available in a loop nest, with the upper bounds of loop indices dependent

on N ,

L2 per processor is the size (in bytes) of L2 cache memory available for a single

processor.

2. The relative difference between the mean and maximum number of iteration

chunks per single OpenMP thread for a given assignment of iterations to OpenMP

threads does not exceed 50 % (the value assumed a priori).

Assumption 2 is expressed by the following formula:

θ =
no chunksmax − no chunksaverage

no chunksaverage
≤ 0.5 (9)

where:

no chunksmax is the maximum number of iteration chunks per single OpenMP

thread for a given assignment of iterations to OpenMP threads,

no chunksaverage is the mean number of iteration chunks per single OpenMP

thread for a given assignment of iterations to OpenMP threads.

We used the following environment to carry out all experiments discussed in this

paper: processor: Intel Core 2 Quad Q6600; number of processor cores: 4; number of

processor threads: 4; L1 data cache: 4 x 32 KB (8-way set associative, 64-byte line

size); L2 cache: 2 x 4096 KB (16-way set associative, 64-byte line size); operating

system: Linux Slax 6.1.2; compiler: gcc 4.2.4; version of OpenMP: 2.5; compilation

level optimization: turned off; compilation with the option: -O0.

For assumptions 1 and 2, the exemplary pattern programs, and the computer

system environment as above, we have derived the following specific models:

• for the nonInterf pattern program:

Y t = X1−0.325431 ×X20.675172 ×X3−0.082602 ×X40.981967 (10)

• for the matmul pattern program:

Y t = X1−0.298695 ×X20.623738 ×X30.014426 ×X40.962976 (11)

A resultant regression model should not be extrapolated outside the data range

for which the regression model has been constructed because the character of a depen-

dency between the values of independent and dependent variables is unknown outside

the data range in question.

To avoid the risk of such an extrapolation while applying specific models to non-

pattern programs, we have formulated the following detailed assumptions regarding

the scope of applicability of the specific models:

2016/09/21; 22:35 str. 14/29

420 Agnieszka Kamińska, Włodzimierz Bielecki



1. The value of λ , calculated for a non-pattern program by means of equation (8),

should not exceed the minimum/maximum value of λ calculated for a correspond-

ing pattern program. This assumption is expressed by the following inequalities:

λmin(referenceLoop) ≤ λ ≤ λmax(referenceLoop) (12)

where:

λ holds the value of λ calculated for a non-pattern program,

λmin(referenceLoop) represents the minimum value of λ for a corresponding

pattern program,

λmax(referenceLoop) states for the maximum value of λ for a corresponding

pattern program.

2. The value of θ, calculated for a non-pattern program as per equation (9), cannot

exceed 0.5.

3. The actual time of the execution of a non-pattern program in a target environ-

ment should be of the same order of magnitude as the time of the execution of

a corresponding pattern program. This assumption is expressed by the following

inequalities:

γmin(referenceLoop) ≤ γ ≤ γmax(referenceLoop) (13)

where:

γ is the actual CPU time for the execution of a program by all program threads,

expressed by the number of CPU clock cycles,

γmin(referenceLoop) is the shortest actual CPU time for the execution of a pro-

gram loop nest by all program threads, expressed by the number of CPU clock

cycles,

γmax(referenceLoop) is the longest actual CPU time for the execution of a pro-

gram by all program threads, expressed by the number of CPU clock cycles.

The assumption expressed by inequalities (13) has been introduced because there

can be such programs for which assumptions 1 and 2 are met, however, despite the

similarity between these programs and the corresponding pattern programs in respect

to data reuse and cache interference, the programs may differ so much from corre-

sponding pattern programs in other respects as to have execution times of a completely

different order of magnitude than that of corresponding pattern programs. This sit-

uation is not a problem, though, as by changing the number and type of arithmetic

operations executed in pattern programs, one can easily change execution times of

pattern programs and, consequently, tailor them to various orders of magnitude – so

that they can be used as pattern programs for real-life programs with very different

execution times.

2016/09/21; 22:35 str. 15/29

Statistical models to accelerate software development by means (...) 421



5. Verification of the quality of estimations

Verification of the quality of estimations made according to the proposed general

model is equivalent to the assessment of the quality of specific models derived from

the general model.

The quality of specific models has been assessed in a qualitative aspect and

a quantitative aspect.

The qualitative quality assessment of specific models has been focused on rec-

ognizing whether one can satisfactorily use estimated execution times obtained by

applying specific models to non-pattern programs in order to select, from the consid-

ered source-code variants of a given program, a subset certainly containing the variant

with the shortest actual execution time in a given target hardware environment.

In practice, this means the following: for a given size of a problem, one should

check whether the trend of changes in measured execution times per program thread of

particular variants of a given program matches the trend of changes in corresponding

estimates per program thread calculated according to the elaborated models.

The quantitative quality assessment of the specific models in question has been

focused on determining the estimation errors that one can expect to obtain while

using the models. A relative estimation error has been calculated as follows:

δY (per thread) is the relative estimation error for Y t(per thread), calculated ac-

cording to the following formulae:

δY (per thread) =

∣∣∣∣
Y t(per thread)− γ(per thread)

γ(per thread)

∣∣∣∣× 100% (14)

Y t(per thread) =
Y t

X4a4
(15)

γ(per thread) =
γ

X4a4
(16)

where:

Y t is the estimated CPU time for the execution of a program loop nest by all

program threads, calculated according to a relevant specific model and expressed by

the number of CPU clock cycles,

Y t(per thread) is Y t per thread,

γ is the actual (i.e., empirically measured) CPU time spent on executing a pro-

gram loop nest by all program threads, expressed by the number of CPU clock cycles,

γ(per thread) is γ per thread,

X4 is the number of OpenMP threads executing the program,

a4 is parameter a4 of a relevant specific model.

It should be stressed here that because the main goal of the model application

is iterative compilation, the qualitative quality assessment and its results are much

2016/09/21; 22:35 str. 16/29

422 Agnieszka Kamińska, Włodzimierz Bielecki



more important than the quantitative quality assessment and its results. Within the

trend-matching verification carried out in the qualitative quality assessment, various

source-code variants of a given program are sorted in descending order by their es-

timated execution times per program thread as calculated according to the model.

The resultant sequence of source-code variants is then compared with a sequence of

the same source-code variants yet sorted in descending order by their measured exe-

cution times per program thread. The trend-matching verification allows us to find

out whether, by applying only a model, one can select – from all of the considered

source-code variants of a given program – a small subset of source-code variants where

in the source-code variant with the minimal actual execution time in a hardware en-

vironment is for certain included. Then, iterative compilation is carried out only for

the source-code variants from the selected subset. Therefore, if it is indeed possible to

select the subset in question, the estimation errors obtained within the quantitative

quality assessment are of minor importance.

6. Application of specific models in iterative compilation

The objective of iterative compilation is to find, among the semantically equivalent

source-code variants of a given program, the variant with the shortest execution time

in a target environment. Typically, iterative compilation is carried out as follows. In

a target hardware environment, one executes the considered, semantically equivalent

source-code variants of a given program, registers their measured execution times

per program thread, and selects the source-code variant with the shortest-measured

execution time per program thread for final use. This means that, if t semantically

equivalent source-code variants of a given program are under consideration, all of

these source-code variants have to be executed in the target environment to find

within iterative compilation the variant intended for final use. The time cost of

such iterative compilation is equal to the total time of execution of the t source-code

variants of the program in the target environment.

Our goal is to obtain the same result (i.e., source-code variant) as the one obtained

within the typical iterative compilation described above, but with a lower time cost

involved in comparison to the typical iterative compilation. We have decided to

achieve this goal by decreasing the number of source-code variants to be executed

in the target environment from t to k (k < t) in order to find the variant with the

minimal execution time. As nothing is known beforehand about the actual execution

times of the considered t source-code variants in the target environment, we have

decided to limit an empirical search to those source-code variants with the k shortest

estimated execution times as per our respective specific model. The fundamental

problem here is what value of k guarantees that the source-code variant with the

shortest execution time in the target environment is selected for final use.

Let kmin be the minimum value of k.

Let an “empirical code sequence” and an “empirical time sequence” be, respec-

tively, a sequence of semantically equivalent source-code variants of a given program,

2016/09/21; 22:35 str. 17/29

Statistical models to accelerate software development by means (...) 423



sorted in descending order by their measured execution times per program thread and

a sequence of the corresponding measured execution times. Knowing the empirical

code sequence for a given program is sufficient for finding its source-code variant with

the shortest execution time in the target environment. By the very definition of an

empirical code sequence, such a source-code variant is its last element. The definition

also implies that it is necessary to carry out iterative compilation in order to form an

empirical code sequence.

Let a “theoretical code sequence” and a “theoretical time sequence” be, respec-

tively, a sequence of semantically equivalent source-code variants of a given program,

sorted in descending order by their estimated execution times per program thread

calculated in accordance with our relevant specific model and a sequence of the cor-

responding estimated execution times. To form a theoretical code sequence, we apply

a relevant specific model.

Because of the specificity of regression analysis, the estimates obtained by using

our specific models differ from the real values measured in the target environment –

hence, the theoretical time sequence differs from the empirical time sequence. This

implies that for the considered source-code variants of the program under analysis,

the empirical code sequence may be different from the theoretical code sequence.

However, in view of the assumed sorting criteria, both the empirical time sequence

and theoretical time sequence for a given program are monotonically decreasing. Tak-

ing this fact as well as the relationships between the discussed time and code sequences

into account, the value of kmin for a given program can be determined as follows. Let

Elast be the last code variant in an empirical code sequence. In the corresponding

theoretical code sequence, we have to find such code variant s that s = Elast. Then,

the position of s in the theoretical code sequence taken in reverse order defines the

value of kmin.

The above-proposed way of supporting iterative compilation by using specific

models is illustrated by the example of the UA diffuse 3 benchmark from the NAS

Parallel Benchmarks (NPB) suite [11, 16] (upper bounds of loop indices are dependent

on parameter N ; in the example, N = 30).

The source code of the parallel UA diffuse 3 loop nest is presented in Table 7.

Adopting different values of variables NUM THREADS and CHUNK SIZE,

one can obtain various (but semantically equivalent) variants of the source code

of the UA diffuse 3 benchmark. The values of variables NUM THREADS and

CHUNK SIZE should be selected so that the execution time of a given program is as

short as possible.

We have created nine different (yet semantically equivalent) source-code vari-

ants for the UA diffuse 3 benchmark, by adopting various values of variables

NUM THREADS and CHUNK SIZE for particular source-code variants, as presented

in Table 8.

For each of these nine source-code variants, we estimated execution time per

thread in the target environment as specified in Section 4. To make estimations, we

2016/09/21; 22:35 str. 18/29

424 Agnieszka Kamińska, Włodzimierz Bielecki



Table 7

Source code of the parallel UA diffuse 3 loop nest.

int N = 30;
int NUM THREADS = ?;
int CHUNK SIZE = ?; //Possible values:

• value defined by the developer,

• default value (equal to N / NUM THREADS),
resulting from the specificity of the OpenMP standard.

int tm1[N][N][N], u[N][N][N], wdtdr[N][N];
omp set num threads(NUM THREADS);
#pragma omp parallel for private(iz, k, j, i) schedule(static, CHUNK SIZE)
for (iz = 0; iz < N; iz++) {

for (k = 0; k < N; k++) {
for (j = 0; j < N; j++) {

for (i = 0; i < N; i++) {
tm1[iz][j][i] = tm1[iz][j][i] + wdtdr[k][i]*u[iz][j][k];

}
}

}
}

Table 8

Semantically equivalent source-code variants of the UA diffuse 3 program.

source-code variant NUM THREADS CHUNK SIZE

1 2 default
2 2 5
3 2 3
4 3 3
5 3 default
6 3 5
7 4 5
8 4 3
9 4 default

used the specific model derived from a pattern program representing the same combi-

nation of data reuse and cache interference as in the UA diffuse 3 benchmark. Next,

the nine source-code variants were sorted in descending order by their aforementioned

estimated execution times, thus forming a theoretical code sequence (see Figure 1).

Then, in the target environment as specified in Section 4, we executed all nine

source-code variants and registered their execution times per thread as measured

empirically. The source-code variants were sorted in descending order by their afore-

mentioned measured execution times, thus forming an empirical code sequence (see

Figure 1).

Next, we used the obtained theoretical code sequence and empirical code sequence

to determine the value of kmin for the considered example. In the considered example,

2016/09/21; 22:35 str. 19/29

Statistical models to accelerate software development by means (...) 425



Figure 1. Empirical and theoretical code and time sequences for the UA diffuse 3 (N = 30)

program.

the number of source-code variants is 9; i.e., t = 9. As shown in Figure 1, the Elast
code variant from the empirical code sequence is variant 8; i.e., Elast = variant 8.

Compared with the theoretical code sequence, the Elast code variant is equivalent to

the eighth element of the theoretical code sequence. Hence, s = variant 8. When the

theoretical code sequence is sorted in reverse order, the position of s in the reversed

sequence is 2. This means that, for the considered example, kmin = 2.

Figure 2 presents the time of iterative compilation for various assumed values

of k. For k = kmin = 2, the time of iterative compilation is about 7 500 CPU clock

2016/09/21; 22:35 str. 20/29

426 Agnieszka Kamińska, Włodzimierz Bielecki



cycles. For k = t = 9, the time in question is about 47 500; i.e., more than six-times

longer.

Figure 2. Time of the iterative compilation of the UA diffuse 3 (N = 30) program carried

out in accordance with the proposed procedure, for various possible values of k.

Generalizing the above-presented example, and assuming that k is such that

kmin ≤ k < t, we have derived the following procedure of how to apply iterative

compilation supported by our models to find among t semantically equivalent source-

code variants the one with the shortest execution time in a given environment:

1. Based on the data reuse and cache interference criteria (see Sections 2 ÷ 4), select

the specific model applicable to the provided input source code.

2. Generate/provide t semantically equivalent source-code variants of the provided

input source code.

3. For each of the t semantically equivalent source-code variants, estimate the exe-

cution time per program thread according to the selected specific model.

4. Form the theoretical code sequence by sorting the t semantically equivalent

source-code variants in descending order by their estimated execution times per

program thread, calculated in accordance with the selected specific model.

5. Execute in the target environment the last k source codes from the theoreti-

cal code sequence, and select for final use the one with the shortest-measured

execution time per program thread.

2016/09/21; 22:35 str. 21/29

Statistical models to accelerate software development by means (...) 427



7. Results of experiments

In order to demonstrate that the obtained models are indeed useful in iterative compi-

lation, we have used the NAS Parallel Benchmarks (NPB) suite [11, 16]. NPB is a test

suite dedicated to the performance assessment of parallel computers and consists of

a great number of very various loop nests.

Ten NPB programs were selected for our experiments. The selected benchmarks

are different from the pattern programs, however, according to the analysis of the

source codes of the benchmarks (which we carried out according to the technique

presented in [20] and [14]), the benchmarks represent the same combination of data

reuse and cache interference as the pattern programs. By means of the exemplary

specific models, we estimated execution times for various source-code variants of the

ten selected programs (from 6 to 9 for each benchmark). In total, we estimated the

execution times for 241 various source codes.

For each of the selected NPB benchmarks, the trend of changes in the measured

execution times per program thread of particular variants of a given loop nest is

matched by the trend of changes in the corresponding estimations per program thread

calculated according to a relevant specific model.

The mean and maximum relative estimation errors calculated in relation to exe-

cution times measured empirically for all source-code variants adopted for a given loop

nest and the size of a problem (which we comprehend as the product of differences

between upper and lower bounds of particular loop indices) do not exceed 55 and 65

percentage points (detailed results are presented in Tables 9 and 10, respectively).

For each of the selected NPB benchmarks, we have also estimated the reduction

of iterative compilation time that could be achieved by applying specific models in

accordance with our procedure on how to support iterative compilation with such

models. The meaning of the variable names used is as follows:

t is the number of all various input source-code variants for a given loop nest,

k (0 < k ≤ t) is the assumed number of source-code variants with the shortest

estimated execution times for a given loop,

kmin represents the minimum value of k that guarantees that one selects for final

use the source-code variant with the shortest execution time measured in a target

environment.

For each of the selected NPB benchmarks, kmin was determined as described in

Section 6.

The achieved results are presented in Tables 11 and 12.

Summing up the results presented in Tables 11 and 12 for the selected NPB

loop nests, we have obtained the following reduction of iterative compilation time by

decreasing the number of iterations from t to kmin:

• minimum reduction: 3.53 times

• maximum reduction: 12.82 times.

2016/09/21; 22:35 str. 22/29

428 Agnieszka Kamińska, Włodzimierz Bielecki



Table 9

Quality assessment of estimates calculated according to specific model (10).

Loop nest Size of
a problem, S

Number of
various
source-code
variants
subjected to the
estimation of
execution time

Resultant mean
for
δY t(per thread)
[%]

Resultant
maximum for
δY t(per thread)
[%]

CG3 75,000 8 14.27 24.97
CG3 118,000 8 13.73 24.01
CG3 160,000 8 12.48 21.46
CG4 100,000 8 10.48 20.43
CG4 215,000 8 11.66 24.43
CG4 330,000 8 13.66 27.06
FT2 27,000 8 53.34 60.43
FT2 54,872 9 51.54 60.75
FT2 91,125 8 53.05 60.43
L11 39,800 8 16.42 32.04
L11 69,960 8 16.47 32.85
L11 108,570 8 14.84 28.76
MG3 26,000 6 25.96 34.41
MG3 57,444 6 29.21 38.35
MG3 88,888 6 31.04 40.51
UA2 80,000 6 6.80 15.29
UA2 173,333 6 5.12 13.61
UA2 266,666 6 6.44 17.01

where the loop nests are denoted as follows:
CG3 – CG cg 3
CG4 – CG cg 4
FT2 – FT auxfnct 2
L11 – LU HP pintgr 11
MG3 – MG mg 3
UA2 – UA diffuse 2

The empirical results presented in Tables 11 and 12 also indicate that, for the

selected NPB loop nests, it is quite safe to assume without actually finding kmin that,

if t ≥ 6, then kmin ≤ floor(t/2). In our future research, we plan to formulate more

general conclusions regarding the upper limits for the value of kmin.

The experimental research has been focused on demonstrating the usefulness of

our proposed procedure of supporting iterative compilation with specific models when

applied to small benchmark codes. The achieved, positive results indicate that it is

worth examining whether the proposed procedure is also useful for real-life programs.

Tailoring pattern programs for real-life programs and verifying the usefulness of our

proposed procedure for real-life programs are the intended directions of our future

research.

2016/09/21; 22:35 str. 23/29

Statistical models to accelerate software development by means (...) 429



Table 10

Quality assessment of estimates calculated according to specific model (11).

Loop nest Size of
a problem, S

Number of
various
source-code
variants
subjected to the
estimation of
execution time

Resultant mean
for
δY t(per thread)
[%]

Resultant
maximum for
δY t(per thread)
[%]

UA3 810,000 9 31.60 38.46
UA3 6,250,000 9 16.88 24.02
UA3 25,411,681 9 27.84 49.59
UA4 810,000 9 28.55 35.80
UA4 6,250,000 9 12.70 20.18
UA4 25,411,681 9 26.49 45.39
U11 980,000 9 10.49 20.44
U11 18,891,585 9 11.30 29.81
U11 80,807,759 9 14.86 37.89
U16 970,200 9 12.27 23.60
U16 18,820,830 9 11.10 29.05
U16 80,621,136 9 14.86 34.97

where the loop nests are denoted as follows:
UA3 – UA diffuse 3
UA4 – UA diffuse 4
U11 – UA transfer 11
U16 – UA transfer 16

8. Related work

Optimizing compilation, iterative compilation, and program execution-time estima-

tion are objects of scientific research carried out in many centers. Various solutions

have been proposed: methods for forecasting program execution time [4], estimat-

ing program execution time [5, 9, 15], optimizing program execution time [2, 3] or

selecting the program source code with the shortest-expected execution time [18].

A method for elaborating models intended for forecasting execution times of par-

ticular parallel and distributed programs is presented in [4]. The proposed method is

based on linear regression. It assumes that a dedicated model for forecasting program

execution time should be formed for each program in a target computer environment.

Models elaborated in such a way are very well-fitted to the empirical data and, as

such, are a valuable tool for forecasting program execution time in the considered

domains of independent variables. However, elaborating a model in accordance with

the proposed method is time consuming (for each program, one has to elaborate

a separate model).

A proposal of estimating program execution time by using atoms (i.e., elementary

components of a program source code) is presented in [5]. Atoms are equivalent to

terminal symbols of the grammar of a given programming language. The estimated

2016/09/21; 22:35 str. 24/29

430 Agnieszka Kamińska, Włodzimierz Bielecki



Table 11

Reduction of iterative compilation time after applying specific model (10).

Loop
nest

Size of
a prob-
lem,
S

t kmin Iterative
compilation
time (T ) for
t
source-code
variants

Iterative
compilation
time (T ) for
kmin
source-code
variants

Reduction of
iterative com-
pilation time =
(Tt / Tkmin)

CG3 75,000 8 2 1,957.38 341.16 5.74
CG3 118,000 8 2 3,007.58 516.88 5.82
CG3 160,000 8 2 4,086.69 698.61 5.85
CG4 100,000 8 2 2,053.32 354.45 5.79
CG4 215,000 8 1 4,334.33 369.65 11.73
CG4 330,000 8 1 6,630.62 560.69 11.83
FT2 27,000 8 1 1,970.33 170.83 11.53
FT2 54,872 9 3 4,262.63 1,115.40 3.82
FT2 91,125 8 3 6,449.17 1,827.18 3.53
L11 39,800 8 2 2,411.02 415.78 5.80
L11 69,960 8 1 4,189.57 357.66 11.71
L11 108,570 8 1 6,463.89 547.95 11.80
MG3 26,000 6 1 1,415.69 168.43 8.41
MG3 57,444 6 2 3,077.12 723.66 4.25
MG3 88,888 6 2 4,721.80 1,105.69 4.27
UA2 80,000 6 1 1,507.84 178.29 8.46
UA2 173,333 6 2 3,209.56 753.97 4.26
UA2 266,666 6 2 4,952.80 1,160.27 4.27

where the loop nests are denoted as follows:
CG3 – CG cg 3
CG4 – CG cg 4
FT2 – FT auxfnct 2
L11 – LU HP pintgr 11
MG3 – MG mg 3
UA2 – UA diffuse 2

time of program execution depends on: the number of occurrences of particular types

of atoms Ai; data sets Dj on which atoms operate and statistical deviation δ. The

value of δ depends, in turn, on various complex factors (e.g., a source-code structure,

characteristics of a compiler, a processor architecture, etc.). This approach does not

take into account how memory hierarchy influences program execution time; moreover,

the assumed way of estimating the value of δ is too simplified.

A method for estimating and minimizing the worst-case execution time (WCET)

of a program is presented in [15]. The method is intended for use in optimizing compil-

ers, and the main purpose of its application is to assess whether applying a given com-

piler level optimization results in a shorter execution time of a program as compared

to that obtained without applying an optimization in question. It has been assumed

that a separate, dedicated model should be created for each possible optimization.

The proposed method focuses on the estimation of the program execution time for

2016/09/21; 22:35 str. 25/29

Statistical models to accelerate software development by means (...) 431



Table 12

Reduction of iterative compilation time after applying specific model (11).

Loop
nest

Size of a prob-
lem, S

t kmin Iterative
compila-
tion time
(T ) for t
source-code
variants,
x103

Iterative
compilation
time (T ) for
kmin
source-code
variants,
x103

Reduction of
iterative
compilation
time = (Tt /
Tkmin)

UA3 810,000 9 2 47.49 7.43 6.39
UA3 6,250,000 9 1 367.22 28.66 12.81
UA3 25,411,681 9 3 1,553.45 440.50 3.53
UA4 810,000 9 1 45.46 3.55 12.80
UA4 6,250,000 9 1 349.38 27.29 12.80
UA4 25,411,681 9 3 1,436.87 406.68 3.53
U11 980,000 9 1 39.44 3.08 12.82
U11 18,891,585 9 1 754.40 58.90 12.81
U11 80,807,759 9 1 3,322.82 259.52 12.80
U16 970,200 9 2 39.22 6.14 6.39
U16 18,820,830 9 1 753.42 58.80 12.81
U16 80,621,136 9 1 3,219.80 251.49 12.80

where the loop nests are denoted as follows:
UA3 – UA diffuse 3
UA4 – UA diffuse 4
U11 – UA transfer 11
U16 – UA transfer 16

a given compiler level optimization and involves carrying out a time-consuming learn-

ing process separately for each optimization.

A tournament predictor is presented in [18]. It is a model that for given input

data – performance characteristics of a program and two different sequences of com-

piler level optimizations – indicates a sequence of optimizations, which once applied,

results in a shorter program execution time as compared to the other sequence. The

independent variables of the model proposed in [18] are dynamic characteristics of

the program (i.e., they are collected and calculated at run time) – in practice, this

means that program profiling has to be carried out whenever the model is to be used

for a new program.

A random search-strategy algorithm is proposed in [9]. By applying this algo-

rithm, it is possible to reduce the time of iterative compilation. The algorithm makes

use of a method for finding the minimum execution time of a program. A method

in question lets one determine what program execution time is if no cache misses

occurred during the execution of the program. However, it is not guaranteed that ap-

plying the random search-strategy algorithm during iterative compilation of a given

program will help find such a source-code variant of the program whose execution

time will be approximately equal to the minimum execution time of this program.

2016/09/21; 22:35 str. 26/29

432 Agnieszka Kamińska, Włodzimierz Bielecki



The idea of optimizing source codes of programs by applying iterative compila-

tion with kernel decomposition is presented in [3] and [2]. The proposed approach

comprises several steps; it separates the optimization of memory use (focused on data

locality) from the optimization of processor operations (focused on instruction level

parallelism). However, for the approach presented in [3] and [2] to be effective in

practice, it is essential to use a good compiler, i.e. such a compiler that is capable of

generating kernels with very good performance characteristics.

In view of the above-discussed limitations of the approaches presented in [2, 3, 4,

5, 9, 15], and [18], the approaches in question are not adequate for carrying out the

proposed improvement of iterative compilation, which involves an analytical selection

from semantically equivalent source-code variants of a given program the ones with

several shortest expected execution times in order to limit the empirical selection of

the best source code thereto.

The solution we present in this paper is free from the limitations spoken about in

the aforementioned approaches. Applying this solution, it is possible to quickly elab-

orate models for the estimation of program execution time that are adequate for both

pattern programs for which models have been derived and for completely different

(non-pattern) programs that have only the presence of data reuse and cache inter-

ference in common with a corresponding pattern program. Therefore, our solution is

adequate for carrying out the proposed improvement of iterative compilation.

9. Conclusion

This paper presents the authors’ family of statistical models for the estimation of

program execution time. The family consists of a general model as well as specific

models. The family has been elaborated based on the empirical data collected for

pattern-program loops representing some arbitrarily selected features related to the

program structure and the specificity of a program-execution environment.

Exemplary specific models belonging to the family have been used to estimate

execution times of non-pattern programs. The accuracy of estimations is satisfactory.

We have also estimated the reduction of iterative compilation time (and, as a con-

sequence, the related software development time) that could be achieved by applying

the proposed procedure of supporting iterative compilation with our specific models.

For this purpose, we have applied the proposed procedure to altogether 241

source-code variants of altogether 10 different programs coming from the NPB bench-

mark suite. As a result thereof, the time of iterative compilation for the particular

programs has been reduced from approximately 3 to 13 times (detailed results are

presented in Tables 11 and 12).

The large number of programs and source-code variants used in our experimental

research indicates that the achieved, positive results cannot be regarded as accidental.

The achieved results show that the authors’ solution presented in the paper is

adequate for use in iterative compilation for optimization purposes and, at the same

time, gives the possibility of reducing the time of software development.

2016/09/21; 22:35 str. 27/29

Statistical models to accelerate software development by means (...) 433



References

[1] Aho A., Lam M., Sethi R., Ullman J.: Compilers: Principles, Techniques, and

Tools. Addison Wesley, 2 ed., 2006.

[2] Barthou D., Donadio S., Carribault P., Duchateau A., Jalby W.: Loop optimiza-

tion using hierarchical compilation and kernel decomposition. Proceedings of the

International Symposium on Code Generation and Optimization, pp. 170–184,

2007.

[3] Barthou D., Donadio S., Duchateau A., Jalby W., Courtois E.: Iterative compi-

lation with kernel exploration. Languages and Compilers for Parallel Computing,

pp. 173–189, 2007.

[4] Berlińska J.: Methods of creating statistical models characterizing parallel and

distributed applications (in Polish). Politechnika Szczecińska, 2005.

[5] Brandolese C., Fornaciari W., Salice F., Sciuto D.: Source-level execution time

estimation of C programs. Proceedings of the ninth international symposium on

Hardware/software codesign, pp. 98–103, 2001.

[6] Coleman S., McKinley K.: Tile Size Selection Using Cache Organization and

Data Layout. ACM SIGPLAN Notices, vol. 30, pp. 279–290, 1995.

[7] Eiben A.E., Michalewicz Z., Schoenauer M., Smith J.E.: Parameter control in

evolutionary algorithms. Parameter setting in evolutionary algorithms, pp. 19–46,

2007.

[8] Esseghir K.: Improving data locality for caches. Rice University, 1993.

[9] Fursin G.: Iterative Compilation and Performance Prediction for Numerical Ap-

plications. University of Edinburg, 2004.

[10] Fursin G., O’Boyle M., Knijnenburg P.: Evaluating iterative compilation. Lan-

guages and Compilers for Parallel Computing, pp. 362–376, 2005.

[11] Haoqiang J., Frumkin M., Yan J.: The OpenMP implementation of NAS parallel

benchmarks and its performance. NASA Ames Research Center, 1999.

[12] Ishizaka K., Obata M., Kasahara H.: Coarse grain task parallel processing with

cache optimization on shared memory multiprocessor. Languages and Compilers

for Parallel Computing, pp. 352–365, 2003.

[13] Knijnenburg P., Kisuki T., O’Boyle M.: Iterative compilation. Embedded proces-

sor design challenges, pp. 171–187, 2002.

[14] Lam M., Rothberg E., Wolf M.: The Cache Performance and Optimization

of Blocked Algorithms. ACM SIGARCH Computer Architecture News, vol. 19,

pp. 63–74, 1991.

[15] Lokuciejewski P., Stolpe M., Morik K., Marwedel P.: Automatic Selection of

Machine Learning Models for WCET-aware Compiler Heuristic Generation. Pro-

ceedings of the 4th Workshop on Statistical and Machine Learning Approaches to

Architectures and Compilation (SMART), pp. 3–17, 2010.

[16] NASA Advanced Supercomputing Division: NAS Parallel Benchmarks. http:

//www.nas.nasa.gov/publications/npb.html Accessed 28 July 2015.

2016/09/21; 22:35 str. 28/29

434 Agnieszka Kamińska, Włodzimierz Bielecki



[17] OpenMP: The OpenMP API specification for parallel programming. http://www.

openmp.org/. Accessed 28 July 2015.

[18] Park E., Kulkarni S., Cavazos J.: An Evaluation of Different Modelling Tech-

niques for Iterative Compilation. Proceedings of the 14th international conference

on compilers, architectures and synthesis for embedded systems, pp. 65–74, 2011.

[19] Temam O., Fricker C., Jalby W.: Cache interference phenomena. ACM SIGMET-

RICS Performance Evaluation Review, vol. 22, pp. 261–271, 1994.

[20] Wolfe M.: High Performance Compilers for Parallel Computing. Addison-Wesley,

1996.

Affiliations

Agnieszka Kamińska
West Pomeranian University of Technology, Faculty of Computer Science and Information
Technology, Szczecin, Poland, agnieszka_kaminska@wp.pl

W lodzimierz Bielecki
West Pomeranian University of Technology, Faculty of Computer Science and Information
Technology, Szczecin, Poland, wbielecki@wi.zut.edu.pl

Received: 25.11.2015

Revised: 5.05.2016

Accepted: 5.05.2016

2016/09/21; 22:35 str. 29/29

Statistical models to accelerate software development by means (...) 435


