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Abstract Scientific workflows are data- and compute-intensive; thus, they may run for

days or even weeks on parallel and distributed infrastructures such as grids,

supercomputers, and clouds. In these high-performance computing infrastruc-

tures, the number of failures that can arise during scientific-workflow enact-

ment can be high, so the use of fault-tolerance techniques is unavoidable. The

most-frequently used fault-tolerance technique is taking checkpoints from time

to time; when failure is detected, the last consistent state is restored. One

of the most-critical factors that has great impact on the effectiveness of the

checkpointing method is the checkpointing interval. In this work, we propose

a Static (Wsb) and an Adaptive (AWsb) Workflow Structure Based checkpoint-

ing algorithm. Our results showed that, compared to the optimal checkpointing

strategy, the static algorithm may decrease the checkpointing overhead by as

much as 33% without affecting the total processing time of workflow execution.

The adaptive algorithm may further decrease this overhead while keeping the

overall processing time at its necessary minimum.
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1. Introduction

Real-time users typically want to know an estimation regarding the execution time of

their application before deciding to have it executed. In many cases, this estimation

can be considered to be a soft deadline that shall be satisfied with some probabil-

ity without serious consequences. Moreover, time-critical scientific workflows to be

successfully terminated before hard deadlines imposes many challenges. Many fields

research faces time constraints and soft or hard deadlines to task execution. A hard

deadline means that the results are only meaningful before the hard deadline; if any

of the results are late, then the whole computational workflow and its executions are

a waste of time and energy.

Furthermore, scientific workflows are mainly enacted on distributed and parallel

computing infrastructures such as grids, supercomputers, and clouds. As a result,

a wide variety of failures can arise during execution. Scientific workflow management

systems should deal with the failures and provide some kind of fault-tolerant behavior.

There are a wide variety of existing fault-tolerant methods, but one of the most-

frequently used proactive fault-tolerant method is checkpointing, where the system

state is captured from time to time, and in case of a failure, the last-saved and

consistent state is restored.

The drawback of the already-existing checkpointing methods is that they mostly

use static checkpointing intervals. Using static intervals bypasses the opportunity

to adapt the method to the new and actual status of the scientific workflow man-

agement system. During enactment, several conditions can change, ranging from

network reachability issues to the checkpointing cost or even to the reliability of the

computational architecture. From this perspective, they cannot be said to be opti-

mal. Moreover, capturing checkpoints generates costs in both time and space. On

one hand, the time overhead of checkpointing can have a great impact on the to-

tal processing time of the workflow execution; on the other hand, the needed disk

size and network bandwidth usage can also be significant. By dynamically assigning

the checkpointing frequency, we can eliminate unnecessary checkpoints. Where the

danger of a failure is considered to be severe, we can introduce extra state savings.

Our Static (Wsb) Adaptive (AWsb) Workflow Structure-based checkpointing al-

gorithm is based on a workflow model structure and failure statistics gathered about

resources from historical executions. It extends related work on workflow-structure

analysis, which focuses mainly on workflow similarity issues concerning the efficient

storing and sharing of reproducible workflows [9], exception handling, and scheduling

mechanisms, and also workflow execution-time estimation problems [8]. Our work

also promotes research into fault-tolerant methods by including the information ob-

tained from the workflow structure into the actual state analysis, and thus, into the

checkpointing interval determination.

This paper contributes a novel Wsb checkpointing method for scientific workflows

based on not communicating, but parallel-executable jobs. In our work, we also

show a way that this method can be used adaptively in a dynamically changing
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environment. Finally, with our adaptive algorithm, we create the possibility for the

scientist to get feedback about the remaining execution time during enactment and

the possibility of meeting a predefined soft or hard deadline.

Our paper is structured as follows: Section 2 gives a brief overview about the

state of the art. In Section 3, we analyze the scientific workflow model and give some

describing definitions. It also gives an algorithm to calculate the needed parameters

and subsets of the workflow model. Section 4 introduces our Wsb algorithm for

a static scenario, and Section 5 presents our AWsb algorithm for the online adaptive

case. Section 6 demonstrates our simulation results. Finally, section 7 summarizes

our work and further research directions.

2. State of the art

Concerning dynamic workflow execution, fault tolerance is a long-standing issue, and

checkpointing is the most-widely-used method for achieving fault-tolerant behavior.

Since grids, clusters, and clouds are highly dynamic in nature, they must overcome

resource failure and check how changes in the topology and computational capability

of the high-performance computing infrastructure resources affect the efficiency in

terms of task completion.

Hwang et al. [3] divided workflow-failure-handling techniques into two different

levels, namely task-level and workflow-level. Task-level techniques handle the exe-

cution failure of tasks like the task-independent scenario and the techniques similar

to those earlier described, while workflow-level techniques may alter the sequence of

execution in order to address the failures [2]. Hwang and Kesselman proposed three

different techniques on the basis of assuming that there is more than one implementa-

tion possible for a certain computation with different execution characteristics. From

this perspective, a hybrid failure-handling technique is used; namely, at the task and

workflow levels to minimize the effects of the task-level fault-tolerant techniques on

the whole workflow.

The efficiency of the used checkpointing mechanism is strongly dependent on

the length of the checkpointing interval. Frequent checkpointing may increase the

overhead, while rarely made checkpoints may lead to a loss of computation. Hence,

the decision about the size of the checkpointing interval and checkpointing technique

is a complicated task and should be based on knowledge specific to the application as

well as the system. Therefore, various types of checkpointing optimization have been

considered by the researchers.

According to the level where the checkpointing occurs (whether at the appli-

cation, library, or system levels), the methods are differentiated. Application level

checkpointing means that the application itself contains the checkpointing code. The

main advantage of this solution lies in the fact that it does not depend on auxiliary

components; however, it requires a significant programming effort to be implemented,

while library-level checkpointing is transparent for the programmer. The library-

level solution requires a special library linked to the application that can perform the
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checkpoint and restart procedures. The system-level solution can be implemented by

a dedicated service layer that hides the implementation details from the application

developers yet still gives the opportunity to specify and apply the desired level of

fault tolerance [4].

From another perspective, we can differentiate coordinated and uncoordinated

methods. With coordinated checkpointing (synchronous), the processes will synchro-

nize to take checkpoints in a manner to ensure that the resulting global state is

consistent. This solution is considered to be domino effect-free. With uncoordinated

checkpointing (independent), the checkpoints at each process are taken independently

without any synchronization among the processes. Because of the absence of syn-

chronization, there is no guarantee that a set of local checkpoints result in having

a consistent set of checkpoints and, thus, a consistent state for recovery. This may

lead to the initial state due to the domino effect.

Meroufel and Belalem [6] proposed an adaptive time-based coordinated check-

pointing technique without clock synchronization on the cloud infrastructure. Be-

tween the different VMs, jobs can communicate with each other through a message-

passing interface. One VM (Virtual Machine) is selected as initiator; and based on

timing, it estimates the possible time interval where orphan and transit messages can

be created. There are several solutions to deal with orphan and transit messages,

but most of them solve the problem by blocking the communication between jobs

during this time interval. However, blocking the communication increases the re-

sponse time and, thus, the total execution time of the workflow, which can lead to an

SLA (Service-level Agreement) violation. In Meroufels work, they avoid blocking the

communication by piggybacking the messages with some extra data so, during the es-

timated time intervals, it can be decided when to take a checkpoint. Logging the

messages can also resolve the transit-message problem. The initiator selection is also

investigated in Meroufel and Belalems other work [7]; they found that the impact of

initiator choice is significant in terms of performance. They also proposed a simple

and efficient strategy to select the best initiator.

The frequency of the checkpointing interval also imposes many opportunities in

checkpointing algorithms. In [11], John W. Young defined his formula for the optimum

periodic checkpoint interval in 1974, which is based on the checkpointing cost and the

mean time between failures (MTBF) with the assumption that failure intervals follow

an exponential distribution. In [1], Di et al also derived a formula to compute the

optimal number of checkpoints for jobs executed in the cloud. Their formula is generic

in a sense that it does not use any assumption on the failure-probability distribution.

The drawback of these solutions lies in the fact that the checkpointing cost can change

during the execution if the memory footprint of the job changes, network issues arise,

or when the failure distribution changes. Thus, static intervals may not lead to an

optimal solution. By dynamically assigning checkpoint frequency, we can eliminate

unnecessary checkpoints, or where the danger of a failure is considered to be severe,

extra state savings can be introduced.
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Di et al. also proposed another adaptive algorithm to optimize the impact of

checkpointing and restarting cost [1]. In their work [10], Theresa et al propose two dy-

namic checkpoint strategies: Last Failure time-based Checkpoint Adaptation (LFCA)

and Mean Failure time-based Checkpoint Adaptation (MFCA), which takes into ac-

count the stability of the system and the probability of failure concerning individual

resources.

In our work, the determination of the checkpointing interval (besides some failure

statistics) is primarily based on workflow characteristics, which is a key difference

from existing solutions. We demonstrate that we can still get good insight into the

number of checkpoints during job execution in order to achieve the desired level of

performance with minimum overhead of the used fault-tolerant technique.

3. Model and workflow structure analyses

Given workflow model G(V,
→
E), where V is the set of nodes (tasks) and

→
E is

the set of edges representing data dependency, formally V = {Ti|1 ≤ i ≤ |V |}
→
E= {(Ti, Tj) |Ti, Tj ∈ V and ∃Ti→ Tj}. |V | = n is the number of nodes (tasks in the

workflow). Usually, scientific workflows are represented with Directed Acyclic Graphs

(DAGs), where the numbers associated with tasks specify the time that is needed to

execute each given task, and the numbers associated with the edges represent the

time needed to start each subsequent task. This can involve data-transfer time from

the previous tasks, resource starting time, or time spent in the queue. These values

can be obtained from historical results, from a Provenance Database, or it can be

estimated based on certain parameters; for example, on the number of instructions.

In one of our previous works [5], we defined the concepts for sensitivity and

a sensitivity index, and we have also demonstrated calculations in simple workflow

examples.

Definition 3.1 A workflow model is said to be sensitive if failures occurring during

the execution of a task in most cases causes the total workflow execution time (total

processing time of the workflow execution) to increase.

To formulate the sensitivity of a workflow model, we define the influenced zone

of an individual task.

Definition 3.2 The influenced zone of an individual task Ti is the set of tasks that,

at submission time, is affected because a failure is occurred during the execution of

a task Ti.

In other words, if a failure does not have a global effect on workflow-execution

time, then we can define the border of its effect or the set of tasks for which submission

occurs at a later time. The influenced zone is always related to a certain delay

parameter.

Based on this definition, the sensitivity index of graph G(V,
→
E) is defined as the

ratio of the influenced zone to the remaining subgraph summarized by all tasks (which
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is averaged over all tasks).

S =

∑|V |
i=1

|Ii|
|GR,i|
|V | , (1)

Where Ii is the influenced zone of vertex Ti, and GR,i is the remaining subgraph

that is induced by vertex Ti as the entry point (or starting point) of the subgraph,

and the original endpoint (Te) serves as the endpoint of the subgraph. In other words,

GR,i contains all of the paths that existed in the original graph between vertices Ti
and Te.

We also define the flexibility zone of a graph.

Definition 3.3 The flexibility zone or zones of a workflow is a subworkflow of the

original workflow, where changes in timing parameters may happen without affecting

the total execution time of the workflow.

This subgraph consists of multiple paths, which enables the time flexibility to

the given task. The flexibility zone is always related to an influenced zone; thus, it is

based on a certain delay interval.

a

b
c

d e

f g h

i

Figure 1. A simple workflow example.

3.1. Workflow structure analyses with complex graphs

As it is well demonstrated in Figure 1 (and according to one of our previous works [5]),

the influenced zone, flexibility zone and sensitivity index of a simple workflow model

can be easily determined; but, in complex workflow structures with a high number of

vertices, it would need a very long time to carry out an exhaustive search to find the

influenced and flexibility zones for all tasks and for the different delay parameters.

If we have n nodes, than we can have, at most, |E| =
(n

2
)

= (n·(n−1))
2 edges

between the nodes, because duplicate edges and self-loops are not allowed in a model

of scientific workflows. Duplicate edges are not allowed, because they are not needed

(since an edge between two nodes can represent the dataflow of more than one of

the datasets as well). Self-loops are also not tolerated, because DAGs cannot con-

tain cycles. Deriving from that, if we ignore the orientation of the edges (in other
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words, we form our graph into a non-directed one), the number of cycles may reach
∑n
i=3

(n
3
)
≈ 2n.

The listing and analyzing of all of the cycles and from the results calculating the

influenced zones cannot be performed in polynomial time. Instead, we have to invent

another method to accomplish this.

The basic idea behind our algorithm is the fact that DAGs have topological

orderings. DAGs are used to indicate a precedence relationship or relative ordering

among the vertices. Given DAG G(V,
→
E), a topological ordering of G is a linear order

of all vertices, which respects the precedence relation; i.e., if G contains edge (Ti, Tj),

or with another notation Ti → Tj , then Ti appears before Tj in the topological

ordering. Concerning the graph demonstrated in Figure 1, a possible topological

ordering would be {a, b, d, e, c, f, g, h, i}, but the series {a, d, e, b, c, f, g, h, i} also gives

a valid ordering. As can be seen from the example, many topological orders may exist

for a given DAG.

Lemma 3.4 A G graph is a DAG if and only if it has a topological ordering.

As a consequence of lemma, we know that every DAG has topological orderings.

The topological order of a DAG can be computed in many ways, but maybe

the most-frequently-used method is applying a Depth-First Search (DFS). DFS is

a systematic way to find all vertices reachable from a source vertex, s.

Our algorithm to find the influenced zones and flexibility zones of a workflow

model is based on DFS and consists of the following three steps:

1. Calculating the global flexibility concerning to the whole workflow model

2. Determining the influenced zones of each node

3. Calculating the flexibility zones of a workflow model

3.1.1. Calculating the global flexibility concerning the whole workflow model

The first step is to carry out a Depth-First Search (DFS) on the workflow model;

during the search, the following values must be stored to each node Ti: Ti.start is

the earliest possible start time and Ti.end represents the latest possible end time of

a node (task) Ti without affecting the total execution time of the workflow.

By going through the workflow with DFS from entry task T0 to end task Te, we

calculate and store values Ti.start in each step by summarizing the values Tj .start of

predecessor task Tj , and the time that is needed to start task Ti (values assigned to

edge (Ti, Tj) for all predecessors Tj , and we store the maximum of these values.

The Ti.end time for all i can be calculated in a similar manner, recursively back-

wards from the last or ending task Te.

Definition 3.5 Given DAG G(V,
→
E), the global flexibility of Ti ∈ V is gflex[Ti] =

Ti.end− Ti.start.
In other words, global flexibility of task Ti gives the time flexibility of a task, in which

the task execution can be freely managed.
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If gflex[Ti] = t(Ti) for vertex Ti, this means that this node does not have any

flexibility in time, where t(Ti) is the calculation time of node Ti.

Since we investigate workflows here with one entry node T0 and one ending task

Te, these two nodes are surely part of the critical path in all cases; so, for their global

flexibility, parameter gflex[T0] = t(T0) and gflex[Te] = t(Te) stand.

It can be also generally declared that, if task Ti’s global flexibility is zero, then

this task must be part of at least one of the critical paths.

Figure 1 shows a simple workflow model. For the sake of simplicity in this

scenario, we assume that the data transfer time is 0 (values assigned to edges are all

0), and all of the tasks need one time unit to be executed.

Thus, there are two critical paths in the workflow: a → d → e → c → i and

a → f → g → h → i. From that follows that for all these tasks that are part of the

critical paths gflex[a] = gflex[d] = ... = gflex[i] = 1. There is only one task, b for

which gflex[b] = 2.

3.1.2. Determining the influenced zones of each node

If we have all of the global-flexibility values, we have to determine the influenced

zones. In regards to to Definition 3.2: if a failure occurs during the execution of Ti,

then the total execution time of Ti is increased; therefore, all of the tasks belonging

to the influenced zone (or zones) of Ti can be started later than originally planned.

Formally, influenced zone Ii of vertex Ti for given delay df can be determined as

follows: Starting from Ti, we carry out a search for all nodes Tj ∈ SUCC(Ti) where

gflex[Tj ] = Tj .end− Tj .start < df .

According to Figure 1, the influenced zone of task b concerning a delay of one

time unit consists of only task b; so, the failure has only a local significance. However,

for all other nodes, the same one-time-unit delay has an influence zone consisting of

the whole subworkflow originating from the actual node.

3.1.3. Calculating the flexibility zones of a workflow model

It can be realized that flexibility zones are connected to cycles in the workflow graph

when ignoring the orientation of the edges (regarding DAGs, we can only talk about

cycles when we omit the orientation of the edges). More precisely, this is the case with

subgraphs that contain several cycles interconnected with each other. To calculate

the flexibility zones of a workflow model, we use the base of the algorithms published

by Li et al. in [?]. In this paper, the authors calculated the number of all topological

orderings of a Directed Acyclic Graph. For this purpose, they introduced the following

concepts (which we also need in our calculations): PRED(Tj) and SUCC(Tj) is the

predecessor set and successor set of task Tj , respectively. Formally, PRED(Tj) =

{Ti|Ti →→ Tj} and SUCC(Tj) = {Tk|Tj →→ Tk}, where Tj →→ Tk indicates that

a path exists from Tj to Tk.

Definition 3.6 A static vertex is vertex Ti for which |PRED(Ti)| + |SUCC(Ti)| =

|V | − 1 for given DAG G(V,
→
E).
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The placement of a static vertex is deterministic, so it is the same in all existing

topological orders.

Definition 3.7 Static vertex set S ∈ V is a vertex set for which |PRED(S)| +

|SUCC(S)| = |V | − |S| for given DAG G(V,
→
E) and is minimal; that is, no proper

subset of S has the same property.

In Li’s work, the authors proved that these static vertex sets are disjoint.

According to these static vertex sets, a graph can be partitioned into disjoint

static vertices and vertex sets.

Since the static vertex set means that the nodes or subset of these nodes can be

in arbitrary order to each other, we may divide the vertex set into disjoint parallel

threads of tasks. Thus, if a subgraph resulting from the algorithm is not simple

enough, we can further use these algorithms after dividing the subgraphs into disjoint

parallel threads. So, our algorithm can be recursively adapted until the desired depth.

As a result, the minimal flexibility zones of a workflow will be those static vertex

sets that cannot be further partitioned. Of course, upon applying the results of the

workflow structure analyzes, we may conclude a lack of need for the minimal flexibility

zones of the nodes, but a few sizes greater. Involving this method, we can determine

the appropriate flexibility zones according to a given influenced zone.

Determining the static vertex set is based on the simple method used by Li et

al. in [?].

4. Static Wsb algorithm

Given a workflow model G(V,
→
E), V is the set of nodes (tasks in the workflow) and

→
E is the set of edges representing data dependency. There are |V | = n tasks and m

resources in the system. The execution time of a task without any failure tolerant

behavior and without any failures (i.e., the calculation time of task Ti on resource j) is

t(Ti)j . This t(Ti)j value can be obtained from a provenance database or can be calcu-

lated based on the number of instructions that the code contains. Table 1 summarizes

the notation for the variables of our system.

Table 1

Notation of the variables of the Wsb algorithm.

t(Ti)j Calculation time of task Ti on resource j

tf,j Fault detection time on resource j

ts,j Restart time on resource j

Cj(t) Checkpointing cost on resource j

TC,j Checkpointing interval on resource j

Ri,j Recomputation time of task Ti on resource j

For our first order model, let us assume that the checkpointing cost does not

change during execution and does not depends on the type of resource, so we denote

it with C. We also assume that the fault-detection time is negligible, so tf,j = 0 for
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all j, and we have only one type of resource. So, from now on, we omit notation

t(Ti)j , tf,j , ts,j , TC,j , Ri,j ; we only use t(Ti), tf , ts, Cj , TC , Ri respectively.

After a failure occurs during checkpointing interval TC , the rework time that is

needed to recalculate the lost values is, on average, Tc2 . From this, it follows that the

expected rework time that is needed to successfully terminate given task Ti can be

expressed by:

E(Ri) =

∞∑

j=1

P (Y = j) · j ·
(
Tc
2

+ ts

)
, (2)

where P (Y = j) denotes the probability of having j failures during the execution

of task Ti. With these assumptions, we can calculate the expected wallclock (total

processing) time of a task Ti as:

E(Wi) = t(Ti) +

(
t(Ti)

TC
− 1

)
· C +

∞∑

j=1

P (Y = j) · j ·
(
Tc
2

+ ts

)
(3)

Thus, if critical errors (failures that do not allow for the further execution of a job)

and program failures do not occur during the execution, then the expected execution

time can be calculated using the above equation. According to the definition of the

expected value for a discrete random variable, we get E(Y ) =
∑∞
j=1 P (Y = j) · j.

From the above equation, Di et al [1] derived the optimal number of checkpointing

intervals (Xopt) for a given task:

Xopt =

√(
t(Ti) ·

E(Y )

2C

)
(4)

If we assume that the failure events follow an exponential distribution, then we get

that the optimal checkpointing interval during the execution of task Ti can be ex-

pressed by:

Tcopt =
√

(2CTf ) (5)

where Tf is the mean time between failures. This equation was derived by Young in

1974.

We will use equation (3) as a starting point to calculate the checkpointing interval

in order to minimize the checkpointing overhead without affecting the total wallclock

execution time of the whole workflow. In equation (3), the unknown parameter is the

checkpointing interval; for Wi, we have an upper bound from the flexibility parameter

of task Ti.

4.1. Large flexibility parameter

If flexibility parameter gflex[Ti] >> t(Ti), then this means that we have ample time

to successfully terminate the task. Maybe the task could be successfully executed even

more times. In this case, it is not worth pausing the execution to take checkpoints,
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but trying to execute it without any checkpoints. If failure occurs, we still have time

to re-execute it. When there has already been more than one trial and no successful

completion, then we should check the remaining time to execute the task without

negatively affecting the total wallclock execution time. We would like to ensure that

the task execution time does not affect the total execution time of the workflow (or

only has an effect with probability p).

4.2. Adjusting the checkpointing interval

When the failure distribution is not known but we have a provenance database which

contains the timestamps about the occurrences of failures for a given resource, then

calculating the time that is needed to execute a task in the presence of failures with

probability p is as follows:

If the mean time between failures is Tf , and we also have the deviance from

provenance, then, with Chebyshev’s inequality (6), we can determine the minimum

size interval between the failures with probability p. This means that, with probability

p, the failures do not happen within shorter time intervals

P (|ξ − Tf | ≥ ε) ≤
D2ξ

ε2
. (6)

We should find a valid ε for that P (|ξ − Tf | ≥ ε) ≤ 1−p stands. If we have this ε,

then we can calculate Tm = Tf − ε as the minimum failure interval with a probability

greater than p. From this follows that, with probability p, there will not be more

than k = t(Ti)
Tm failures during the execution time of Ti,j . If we substitute this k into

equation (3), we get an upper bound for the total wallclock execution time of the

given task with k failures:

Wi = t(Ti) + (
t(Ti)

Tc
− 1) · C + k ·

(
Tc
2

+ ts

)
. (7)

If we use the optimal checkpointing for given task Ti with Tf mean time between

failures (MTBF) and the deviance from this MTBF is ξ, then Tp gives the upper

bound of the wallclock execution time with probability p:

Tp = t(Ti) +

(
t(Ti)

Tcopt
− 1

)
· C + k ·

(
Tcopt

2
+ ts

)
. (8)

We henceforth assume that the failures do not occur during checkpointing and

recovery (restarting and restoring the last-saved state) time, only during calculations.

If the flexibility parameter still permits some flexibility (i.e., gflex[Ti] > Tp),

then we can increase the checkpointing interval and so decrease the checkpointing

overhead.

To calculate the checkpointing interval according to the flexibility parameter, we

should substitute gflex[Ti] into Wi:

gflex[Ti] > t(Ti) + (
t(Ti)

Tcflex
− 1) · C + k ·

(
Tcflex

2
+ ts

)
. (9)
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We should fine Tcflex value for that (9) and Tcflex > Tcopt stands.

From these inequalities, the actual Tcflex can be calculated easily.

If Wi − Tp = 0, the flexibility only allows us to guarantee successful completion

with probability p.

However, if the flexibility parameter does not permit any flexibility (moreover, if

Wi < Tp), then maybe the soft deadline cannot be guaranteed with probability p.

4.3. Proof of the usability of our algorithm

According to (9), it is also numerically proven that the total execution time is a func-

tion of checkpointing interval Tc; or as it is indicated, a function of the number of

checkpoints n = t(Ti)
Tc

. As seen in Figure 2, the dependency is quadratic. Figure 2

shows five parabolas with a different number of failures (k values). All of the parabo-

las have minimum points, where the wallclock time of a task is minimal with an

appropriate number of checkpoints. As k increases, the minimum points are shifted

to the right. The dashed green line represents the curve with k = 4, where check-

pointing cost C = 2 and calculation time t(Ti) = 32. This curve has its minimum

points at four checkpoints n = 4. However, if we have time flexibility according to

the curves in Figure 2, we have the possibility of decreasing the number of check-

points. In the case of the dashed green line, if we have four checkpoints, then the

wallclock time reaches its minimum, while having only two checkpoints increases the

total wallclock time. According to the flexibility parameter, an appropriate number

of checkpoints can be determined; thus, it is possible to minimize the checkpointing

overhead without increasing the total wallclock execution time of the workflow.
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Figure 2. Total process time as a function of the number of checkpoints.
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5. Adaptive Wsb algorithm

We talk about adaptive workflows and whether a workflow model can change during

execution according to the dynamically changing conditions.

In previous chapters, we made calculations on the graphs that are based on

prior knowledge obtained from previous enactments or estimations for runtime, com-

munication, and data-transfer-time requirements. However, if the system supports

provenance data storage and runtime provenance analysis, then we can base our cal-

culations on realistic and up-to-date data. For example, if the precise timing of the

task submissions that are under enactment and all of the tasks that are already ter-

minated are known, then the accurate flexibility parameter of the running tasks can

be calculated, and a more-precise estimation of the flexibility zones of the successor

tasks can be made available. These calculations are always updated with newer and

newer timing data but include fewer and fewer subgraphs with the advance of the

execution steps. So, the remaining steps and calculations are getting simpler. Thus,

if before workflow submission we calculate the global flexibility parameter vector of

the whole workflow, and we also store the estimated starting time of the individual

execution times relative to each other, then before executing a task, its starting time

should be updated to the new situation caused by the failures. Of course, depending

on the delay, the global flexibility parameters of all of the nodes belonging to the

influenced zone of this task should be adjusted.

Based on these calculations, it is also possible to give a scientist more feedback

about its workflow execution during enactment. For example, the researcher may get

feedback on the probability of meeting soft or hard deadlines or whether the results

will be outdated when the workflow execution terminates. So, it can be decided to

stop the workflow, to modify the workflow, or to take other actions that are supported

by the scientific workflow management system.

a

b
c d

e
T0 Te

Figure 3. An example workflow with one critical path.

For the sake of simplicity, let us assume that data transfer time is negligibly small

in our examples (there are not any values assigned to the edges) and task execution

time is 1 time unit for all tasks in Figure 3. The critical path is built up from the blue

tasks before submitting the workflow. As a result, the global flexibility parameters

for all white tasks are two times the unit except for task a, where this value is three

times the unit.
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In Figure 4 during the execution of task a, a 1-time-unit failure has occurred.

Since gflex[a] = 2 and gflex[e] = 1, this 1-unit delay has only a local significance.

This means that this delay will not effect subsequent task e’s submission time (it

can also be determined from the alternative path through tasks c and d). So, the

influenced zone of this failure consists only of task a.

T0 Te

a
b

c d
e

Figure 4. An example workflow with a one-time-unit delay during the execution of task a.

c d
e

T0 Te

b

a

Figure 5. An example workflow with a two-time-unit delay during the execution of task a.

In Figure 5, the delay caused by the failure occurring during the execution of

task a is two-times-the-unit long. In this case, the influenced zone is the set of tasks

enclosed with the dotted line. This means that, due to this delay, task e should start

later; but, the successor task of task e is not influenced, so the workflow-execution

time can still remain the originally estimated time. Due to the postponed starting

time of task e, the global flexibility parameters of tasks c and d need to be recalculated

according to the new situation. In other words, the flexibility zone of task a consists

of the subgraph induced by task b to task e. But, this delay has another effect as well;

namely, the path driving through task a also became a critical path in addition to

the original one. As a consequence, if any failure occurs during this path, the entire

workflow execution lasts longer.

6. Results

For validation purposes, we have implemented both of our checkpointing algorithms

in Matlab, a numerical computing environment by MathWorks.
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To clarify the benefits of our static (Wsb) and adaptive (AWsb) algo-

rithms, Figure 6 shows our sample workflow Gsample

(
V,
→
E
)

, where V =
{
T1, T2,

T3, T4, T5, T6, T7, T8

}
and

→
E=

{
(T1, T2), (T1, T3), (T3, T4), (T1, T5), (T5, T6), (T6, T7),

(T2, T8), (T4, T8), (T7, T8)
}

, running in a distributed environment, consisting of three

resources: R1, R2, and R3. For the sake of simplicity, the resources are identical

and have identical failure distribution. We use E(Y ) = 2 as the expected number

of failures for an 18-time-unit-long task, and when changes occur during execution,

this value is proportionally calculated to the changes. We also take advantage of the

simplification that the data transfer times are negligibly small (they are all zeros) and

the checkpointing cost has a constant value of C = 2. The workflow makespan (total

wallclock time) is the longest path from T0-Te. We have simulated five scenarios with

the same input parameters for our sample workflow:

1. optimal static case: Optimal checkpointing is used [1] (Tcopt is the optimal check-

pointing interval, Xopt is the number of checkpoints, Worig is the total execution

time).

2. static execution with our static Wsb algorithm: In this case, the Wsb algorithm is

executed once before workflow submission, which calculates the number of check-

points based on the workflow structure (Xstat−wsb is the number of checkpoints,

Wstat−wsb is the total execution time).

3. dynamic execution with optimal checkpointing: In this case, the execution time of

a task is changed, but the execution is based on the original optimal checkpointing

interval. (Optimal checkpointing interval Tcopt is used, Wdyn−opt is the total

execution time).

4. dynamic execution with our static (Wsb) algorithm: In this scenario, the execu-

tion time of a task is changed, but the execution is based on static Wsb algorithm

that was carried out before workflow submission; thus, before the change (the

checkpointing interval is the same as in the static execution with the Wsb algo-

rithm, Wdyn−wsb the total execution time).

5. dynamic execution with our adaptive (AWsb) algorithm: In this case, the execu-

tion time of a task is changed, and the adaptive AWsb algorithm recalculated the

checkpointing intervals after the change (Xdyn−awsb is the number of checkpoints,

Wdyn−awsb the total execution time).

In the above-defined dynamic scenarios, there is only one task during each indi-

vidual execution of the workflow; namely, T3, for which the execution time is changed

compared to the predestined values.

The simulation was carried out with t(Ti) = 18 and based on this value Tcopt = 6,

Xopt = 3 and thus Wi−orig = 28 was calculated for all tasks Ti, where Wi−orig is the

total processing time of Ti when optimal checkpointing interval (Tcopt) is used.

Table 2 shows the actual parameters for all tasks of the workflow for the static and

adaptive cases. Table 3 compares the number of checkpoints and the total wallclock

time for the whole worklfow for the five scenarios.
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As the results show, our static algorithm reduces the checkpointing overhead by

33%, as the number of checkpoints were decreased from 24 to 16 with our algorithm,

and the total wallclock time of the workflow did not change. We can also notice

that, in a dynamically changing environment where the execution time for the tasks

can change unpredictably, our adaptive algorithm may further increase the number

of checkpoints but decrease the total wallclock time compared to dynamic execution

with the static-algorithm scenario.

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Figure 6. Sample workflow with 8 tasks.

Table 2

Simulation results for sample workflow (Fig. 6).

Xstat−wsb t(Ti)dyn (Wi)dyn−awsb Xdyn−awsb
t(T1) 3 18 28 3

t(T2) 0 18 36 0

t(T3) 0 36 72 1

t(T4) 1 18 28 3

t(T5) 3 18 28 3

t(T6) 3 18 36 0

t(T7) 3 18 36 0

t(T8) 3 18 28 3

Table 3

Comparison of number of checkpoints (X) and the total wallclock time (W ) in the five

scenarios.

Xopt Xstat−wsb Xdyn−awsb Worig Wstat−wsb Wdyn−stat Wdyn−awsb Wdyn−opt
24 16 13 140 140 164 156 140
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We have also carried out simulations with randomly formed DAGs. In these

cases, the number of tasks has moved between 10 and 60 nodes, and calculation time

t(Ti) was randomly generated within the interval of (10,100). The expected number

of failures was increased during the simulations (Fig. 7 failure frequency), started for

an average of a 55-time-unit-long task with E(Y ) = 2 to E(Y ) = 10, and it was

proportionally adapted to the tasks according to their calculation time. Each point

of the curve was averaged over 50 executions.

As Figure 7 shows, the results strongly vary, but they also show a significant

improvement as a function of the failure frequency. It can also be declared that this

significant improvement can be seen as a function of the checkpointing cost as well.

Our AWsb adaptive algorithm has also been tested with random graphs similar

to the static case. As a consequence of the randomly generated workflows, the average

difference between the total wallclock time of the dynamic execution with our Wsb

algorithm case compared to dynamic execution with the AWsb scenario spread over

a range of 0 % and 10 % improvement, and the number of checkpoints also shows

a significant decrease in the latter case. So, we can conclude that the AWsb algorithm

may decrease the checkpointing overhead to a further extent than the static Wsb

algorithm while keeping the total processing time at its necessary minimum.
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Figure 7. Results of our static algorithm.

6.1. Limitations of our work

In our simulations, we have simplified the calculations by using constant values as

checkpointing cost C by neglecting the data-transfer and task-submission times during

the executions (or by assuming identical resources). Nevertheless, these assumptions
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can be easily resolved by substituting actual functions instead of using constant or

simplified parameters.

The calculation time for complex graphs can be lengthy; but after a brief study

at the myExperiment.org website, we have concluded that the mean size of the up-

loaded workflows moves between 30 and 50 nodes with manageable complexity. This

revelation led us to develop the adaptive algorithm for which the recalculation time

can be measured in hundreds of milliseconds.

Our algorithm cannot be used for an arbitrary type of failure or fault. It was

intended to develop a mechanism against crash faults, or network outage. Of course,

the proposed checkpointing method does not solve programming failures, byzantine

failures, etc. in itself, as is the case with the optimal checkpointing strategy developed

by Young [11] and Di [1].

A further limitation of the algorithms lies in the fact that they depend highly

on historical execution data or on estimated data about execution time and failure

distribution. Data about historical executions can be stored in a provenance database;

but today, there are only limited capabilities for runtime provenance analysis, and of

course the estimations lack precision.

7. Conclusion

We introduced Static (Wsb) and Adaptive (AWsb) Workflow Structure-based check-

pointing methods that are based on failure statistics on resources and on information

that can be obtained from the workflow structure. With the help of the introduced

checkpointing method, the checkpointing overhead can be minimized by continually

keeping the performance at a satisfactory level; namely, ensuring the successful com-

pletion of scientific workflows before soft or hard deadlines with a predefined prob-

ability of p. We also showed that this algorithm can be adapted to a dynamically

changing environment by updating the results of the workflow structure analysis.

Our simulation results showed that the checkpointing overhead can be decreased by

as much as 33% with our static Wsb algorithm, and the adaptive AWsb algorithm may

further decrease this overhead while keeping the total wallclock time at its necessary

minimum.

Our future work is to use our algorithm to inform scientists to the extents of

the probability with which hard and soft deadlines will be met during their workflow

executions.
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