
Marcus Hilbrich
Markus Frank

ANALYSIS OF SERIES OF MEASUREMENTS
FROM JOB-CENTRIC MONITORING
BY STATISTICAL FUNCTIONS

Abstract The rising number of executed programs (jobs) enabled by the growing amount

of available resources from Clouds, Grids, and HPC (for example) has resulted

in an enormous number of jobs. Nowadays, most of the executed jobs are mainly

unobserved, so unusual behavior, non-optimal resource usage, and silent faults

are not systematically searched and analyzed. Job-centric monitoring enables

permanent job observation and, thus, enables the analysis of monitoring data.

In this paper, we show how statistic functions can be used to analyze job-centric

monitoring data and how the methods compare to more-complex analysis meth-

ods. Additionally, we present the usefulness of job-centric monitoring based on

practical experiences.

Keywords job-centric monitoring, monitoring, similarity, series of measurements,

statistical functions, grid, cloud, analysis

Citation

2017/03/13; 18:16 str. 1/17

Computer Science • 18 (1) 2017 http://dx.doi.org/10.7494/csci.2017.18.1.3

Computer Science 18 (1) 2017: 3–19

3

http://journals.agh.edu.pl/csci/


1. Introduction

The rising demand for computing time by scientists from different fields of research

is an ongoing trend. This demand has been answered with more and more powerful

computing systems. Nevertheless, the demand for further resources persisted, so the

number of resources (like available CPU cores) has increased dramatically over the last

several years.

To enable easy resource usage for such systems, a set of techniques was intro-

duced. Such techniques are e.g., Portal-Systems, Grid and Cloud services. These

techniques enable scientists with moderate knowledge about computer science to use

huge amounts of resources by providing easier access. A drawback of the techniques

is the decreased observability of the executed processes (which we call jobs). The rea-

sons for this are the many introduced abstraction layers such as middlewares, batch

systems, service layers, virtualization, etc. – where each layer hides information to

allow for easier usage. As a result, it is unclear how efficient the resources are used,

and silent errors during job execution remain mainly unobserved.

One solution dealing with the additional layers of job execution is job-centric

monitoring; this offers online job observation and automatic post mortem analysis.

In [11, 12], we showed how to build an infrastructure to handle job-centric monitoring

data for huge installations. The analysis of monitoring data is a common Big Data

challenge. Therefore, we started by studying related work [14], where we identified

a set of analysis techniques like genetic algorithms [6, 7, 17, 29], machine learn-

ing [2, 19–21], sequence comparison [1, 9, 24, 25], intrusion detection [5, 26, 27], and

statistic of events [4, 18, 28]. The most promising technique is a similarity comparison

[8, 13]. However, this method is complex and computing-intensive.

Thus, we need to check how less-computing-intensive analysis performs and

whether it is possible to execute a pre analysis to reduce the number of jobs that

must be handled by more-complex algorithms. The analysis of series of measure-

ments from job-centric monitoring works in principle like the following: for a group of

jobs that are expected to have similar behavior, a reference is defined. Such a group

of jobs can be based on a user running similar types of applications or of a specific

application or service that is executed by different users. In each scenario, varying

input data is used. Jobs behaving the same as the reference are marked as error-free

execution. Outliers must be analyzed further.

In the following section – Section 2 – we give examples of two typical usage

scenarios where job-centric monitoring can be helpful. A description of the domains

and environments for the examples is also given. Afterwards. we present the fun-

damentals of job-centric monitoring – Section 3. In Section 4, we explain the test

data based on two so-called basic jobs. To test the detection potential of the analysis

methods, we varied the basic jobs by applying aberrations. The aberrations represent

possible faults in job execution or changes in the execution environment. Afterwards,

we describe the statistical functions and exemplify the potential of detecting faults

in job execution in Section 5. The description is based on basic jobs and the applied

2017/03/13; 18:16 str. 2/17

4 Marcus Hilbrich, Markus Frank



aberrations. An outlook to further test data is given in Section 5.6. To classify the

detection potential of the statistical functions, we present a comparison of an analysis

method based on similarity functions in Section 6. Section 7 refers to the examples

from Section 2 and demonstrates the usefulness of job-centric monitoring in three use

cases. In the last section – Section 8 – we give a conclusion and point out further

work.

2. Domains for job-centric monitoring

In the following, we describe domains that can benefit from job-centric monitoring.

In section 7, we give more-detailed information for real-world examples of this do-

main. The first domain is the German Grid infrastructure (one of our customers we

supported as resource provider). As a resource provider, we allowed other users to

access computing and storage systems. Therefore, we provided access via different

grid middlewares; e.g., Globus1. The grid middlewares used a mapping mechanism

to map grid users to generic/internal users of the computing center. This is needed

to submit a user’s job to the batch system. The batch system cares about allocat-

ing hardware for the user and moves the user’s job to the operating system of the

allocated hardware.

Furthermore, this is needed to invoke an additional abstraction layer; therefore,

we see a lot of abstraction layers just to start a job. It is clear that the job needs

computing resources (hardware) and an operating system. In addition, most jobs

need some software libraries and interpreters like Perl or Java. In our example, the

job wants to run a special program to simulate parts of the cardiovascular system to

prepare for a medical operation. This program is maintained by a group that builds

services for health personnel. The developers of the program make up a scientific

research group. The services for health personnel is based on additional hardware

(not maintained by us as grid resource provider) and additional layers of software.

Back to our example; to enable very easy access for the health personnel, web

browser-based access to a portal is provided. The portal allows the user to access

different storage locations on the grid for uploading data and accessing different pro-

grams (like the one from above) as well as a workflow editor for combining multiple

programs (e.g., transforming the uploaded medical data, so that it can be used as in-

put for a fluid dynamic’s simulator, to run multiple simulations for the cardiovascular

system of a patient, and interpreting the results).

To sum up our small example, we have a lot of different abstraction layers and

different groups of people involved in the process; thus, the system is quite complex

and error-prone. A missing library, a poorly configured workflow, or invalid input data

can stop the system from working properly. And a completed workflow execution dose

not mean the absence of silent faults or near-optimal usage of the resources. A way

to make such a complex system more transparent is job-centric monitoring.

1 http://toolkit.globus.org/toolkit/

2017/03/13; 18:16 str. 3/17

Analysis of series of measurements from job-centric monitoring (...) 5



The second example comes from particle physics. The principle is similar to

the one before, but only a single program was used (no complex workflow and fewer

abstraction layers were introduced). The used libraries and program were installed

and maintained by us, and we had direct contact to the users; thus, we had more

control over the complete execution of the program and direct contact to the physicists

that executed the program via the middleware installed on our computing systems.

The testing data (provided later) is also based on this program, so we will give

more details in Section 4 by explaining the basic jobs.

3. Fundamentals of job-centric monitoring

Job-centric monitoring was introduced as a grid-based monitoring system called

AMon [22]. AMon uses the monitoring infrastructure SLAte [11, 12] to store data in

an scalable manner.

The monitoring data, can be recorded in variable time intervals, ranging from

seconds to minutes. This was based on the experience that many jobs failed during

their starting phases. Thus, the intervals were set shorter for each starting phase.

Over the last few years, we discovered that the number of early failing jobs dramati-

cally decreased, so we decided on a constant measurement interval (which is easier to

handle for automatic analysis processes).

The monitoring data is recorded directly on the computing node. Used are

common monitoring techniques [23] known from tools like top or ps without privileged

access rights. The recorded data contains information about a job; e.g., consumed

CPU time, CPU load, main memory, and access to the file system. Also recorded is

information about the executing system like the free main memory, state of the storage

systems, used network bandwidth, and number of interrupts. In addition, scheduling

information such as time, date, and wall-clock time of the job are recorded. Each

of the measurements is directly transferred to the SLAte infrastructure and can be

accessed by users with the needed privileges (e.g., the user who started the job).

AMon is used [13] for visualizing and analyzing the monitoring data. AMon

can be used as a desktop application or can be provided by a server and accessed

via a web browser. For a single user, it is often needed to present thousands of

jobs. As an answer to the demand, the monitoring data was presented as color

coded graphs (for example). The visualization allowed us to compare at least dozens

of jobs by manual analysis. It was also noticed that the manual analysis needed

a lot of experience from the users as well as a noticeable amount of time. To re-

duce the time for manual analysis, an automatic analysis was developed. Parts

of the complex analysis process are presented in this paper. By the way, the au-

tomatic analysis also reduces the need of visualizing thousands of jobs (which is

currently not possible with AMon and an unsolved challenge in the related dis-

ciplines). Based on the automatic analysis, the user is only confronted with jobs

that do not behave as expected and likely had problems during execution. To iden-

tify jobs that behave unexpectedly, a reference job is needed. A reference can be

2017/03/13; 18:16 str. 4/17

6 Marcus Hilbrich, Markus Frank



based on a controlled and error-free run of the application or service. Another –

not yet realized variant – is to base the reference not on historical information but

on a behavior description from a model-based software development process. After

the first reference is defined, jobs can be analyzed by comparing them to the ref-

erence. In case a job and a reference have similar behavior, the job is marked as

normal execution and no further – manual – analysis is performed. In case a job

does not match the behavior of the reference, a further analysis is necessary. Af-

ter this manual analysis, the initial reference (for well-behaving jobs) can be up-

dated or a reference for the specific error of execution (e.g., over-utilization of the

hardware) can be set. In this case, the error can be automatically detected in

the future.

We also build a test system to inform users directly by mail about the executed

jobs and potential failures upon execution.

4. Test data

From a larger dataset, we selected test cases that are suitable to demonstrate the

principle approach of the analysis by statistical functions. Information about addi-

tional test data is given in Section 5.6. In the following, we will use two synthetic

basic jobs. The first one is based on the CKM-Fitter [3, 15] application. The series

of measurements is plotted in Figure 1. In concrete, the CPU load over a runtime of

about eight hours is shown. At the beginning of the job, CPU usage increases from

0 to 1. This is the starting phase of the job. Afterwards, a working phase follows

with a constant value of 1, which means that one CPU is used at 100% load. In the

last phase, the job ends with decreasing CPU-usage. There is no measurement with

zero percent CPU usage at the end of the job. This is based on the fact that the

job became deallocated before such a measurement was taken. An example of such

a behavior is an application that reads in data at the beginning, does some extensive

calculations, and outputs some data at the end. Based on the fact that a job is not

limited to a single sequential application, multiple CPUs can be used. This can lead

to a CPU load of more then 100%.

0 2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

22.000

24.000

26.000

28.000

30.000

0, 0

0, 5

1, 0

Runtime in seconds

C
P

U
lo

a
d

Basic job 1 (unchanged)

Figure 1. Plot of the used monitoring data (CPU load) of basic job 1.

2017/03/13; 18:16 str. 5/17

Analysis of series of measurements from job-centric monitoring (...) 7



To exemplify aberrations, we constructed additional jobs based on basic job 1. In

the following, so-called gaps are applied. A gap changes the monitored values within

a defined time interval. In our example, the value is varied by a load of 1 over 10%

of the runtime, either as an increase (<+<) (Fig. 2) or a decrease (<–<) (Fig. 3). In

addition, we use a gap that increases and subsequently decreases the values. The gap

is called (<+–<) and is shown in Figure 4.

0 2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

22.000

24.000

26.000

28.000

30.000

0, 0

0, 5

1, 0

1, 5

2, 0

Runtime in seconds

C
P

U
lo

a
d

Basic job 1, gap with increased value

Figure 2. Adaptations of basic job 1 with gap (<+<).

0 2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

22.000

24.000

26.000

28.000

30.000

0, 0

0, 5

1, 0

Runtime in seconds
C

P
U

lo
a
d

Basic job 1, gap with decreased value

Figure 3. Adaptations of basic job 1 with gap (<–<).

0 2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

22.000

24.000

26.000

28.000

30.000

0, 0

0, 5

1, 0

1, 5

2, 0

Runtime in seconds

C
P

U
lo

a
d

Basic job 1, gap with increased and decreased value

Figure 4. Adaptations of basic job 1 with gap (<+–<).

2017/03/13; 18:16 str. 6/17

8 Marcus Hilbrich, Markus Frank



For demonstration purposes, we introduced a second synthetic job (basic-job 2),

shown in Figure 5. The job consists of 16 CPU-intensive working phases, each fol-

lowed by a waiting phase for network or other I/O operations without CPU demand.

The working phases take 2
3 of the job, and the waiting phases are 1

3 . An adaption of

basic job 2 is shown in Figure 6. This job was executed by a system with double CPU

speed and the same I/O bandwidth. Thus, the working phases need only half the

time as compared to basic-job 2, while the waiting phases stay the same. A change

of CPU changes the execution of a job, but it is not a considerable aberration. Thus,

a detection algorithm should not present this adaptation as an error. Similar adap-

tations are caused by various influences, like an additional iteration of an executed

loop or system noise [16].

0 2, 000

4, 000

6, 000

8, 000

10, 000

12, 000

14, 000

16, 000

18, 000

20, 000

22, 000

24, 000

26, 000

28, 000

30, 000

32, 000

34, 000

36, 000

38, 000

40, 000

42, 000

44, 000

46, 000

0.0

0.5

1.0

Runtime in seconds

C
P

U
lo

a
d

Basic job 2, (unchanged)

Figure 5. Plot of the used monitoring data (CPU load) of basic job 2.

0 2, 000

4, 000

6, 000

8, 000

10, 000

12, 000

14, 000

16, 000

18, 000

20, 000

22, 000

24, 000

26, 000

28, 000

30, 000

32, 000

34, 000

36, 000

38, 000

40, 000

42, 000

44, 000

46, 000

0.0

0.5

1.0

Runtime in seconds

C
P

U
lo

a
d

Basic job 2, CPU speedup 2

Figure 6. Adaptations of basic job 2 with speedup of 2 on CPU-intensive parts.

5. Statistical functions

One of the advantages of statistical functions is the short computing time as compared

to other analysis methods. A previously described analysis method [13] based on sim-

ilarity functions requires an alignment with complexity up to O(n5). For calculating

statistical functions, we need to read the series of measurements once and perform

some calculations per measurement point (e.g., cooperation to find the minimum or

2017/03/13; 18:16 str. 7/17

Analysis of series of measurements from job-centric monitoring (...) 9



summing up to calculate the mean). Thus, the computational complexity is in the

class of O(n).

In concrete, we analyzed the median, minimum, maximum, mean, and standard

deviation of a measurement variable (e.g., CPU load) for a single job. Each statistical

value will be explained and demonstrated in the following sections. An overview about

the results is given in Table 1.

Table 1

Comparison of analysis methods.

Mini- Maxi- Standard Similarity

Median mum mum Mean deviation functions

Handles variable measurement

intervals:

no yes yes yes yes yes

Gap, increasing maximum value: no yes yes yes yes

Gap, increasing value during

waiting time:

no no yes yes yes

Gap, decreasing values: no no yes yes yes

Increases and decreases of values

do not compensate:

yes yes no no yes yes

No false positives by timing

changes:

yes yes yes no no yes

5.1. Median

The median is the measurement value for which half of the additional measurement

values are the same or higher and the other half are the same or smaller. In case

the number of measurement values is even, the median is based on the mean of two

neighbored values.

For job-centric monitoring, the time distance between measurement values is not

constant. So, the result of determining the mean depends on the timing when mea-

surements are taken. As result, the same jobs with different measurement timestamps

result in different determined medians. Thus, the median can change even when the

job and reference have the same behavior. One reason to use miscellaneous intervals

is to achieve higher accuracy for some parts of a job; e.g., for the error-prone starting

phase. Based on these considerations and some preliminary tests, we removed the

median from future investigations.

5.2. Minimum

The minimum of a series of measurement is often zero (like for the basic job in

Figure 1). This is plausible because a first measurement is often done before the

monitored job starts to consume CPU resources or memory. Negative consumption of

such working resources is impossible; thus, it is impossible to go below the minimum of

2017/03/13; 18:16 str. 8/17

10 Marcus Hilbrich, Markus Frank



zero. Under such conditions, the detection potential for the minimum is nonexistent.

Independent of an applied gap, the minimum stays at zero.

5.3. Maximum

The type of analyzed and executed program often defines the highest value of the series

of measurements. CKM for instance uses one CPU at full load, so the maximum

is a CPU load of one for a non-faulty execution (reference). Whenever the use of

a working resource exceeds this limit, it can be easily detected. Thus, a gap increasing

the value (like (<+<) in Figure 2 and (<+–<) in Figure 4) can be easily detected. In

both examples, the maximum is increased from 1.0 to 2.0. Aberrations that only cause

decreases (like (<–<) in Figure 2) cannot be detected (the maximum stays at 1.0).

It is also clear that increases can only be detected when they increase the maximum

value; so, if we have (for example) increased usage of the CPU in a waiting phase

(basic job 2, Figure 5) but the load stays below the maximum, we cannot detect it.

The maximum is just the value of the highest measurement, so it is not dependent

on the concrete time of the measurements. Thus, a partial speedup (like that shown

in Figure 6) does not change the maximum.

5.4. Mean

In case the measurements are equidistant, the mean xeqe could be calculated by the

following formula (where xi is the measurement value with index i and n the number

of measurements):

x̄eqe =
1

n

n∑

i=1

xi (1)

The previous formula is only valid for equidistant measurement intervals. For variat-

ing measurement intervals, the formula has to be extended for calculating the mean

for series of measurements of job-centric monitoring data xjob based on timestamp ti
at which a measurement was taken. In concrete, a value is to be considered for half

the measurement interval before and after the measurement:

x̄job =
1

tn
·
(
t1 · x1 + (tn − tn−1) · xn +

n−1∑

i=2

(ti+1 − ti) · xi
)

(2)

The mean for basic job 1 (Fig. 1) is 0.97. In case the values are either increased

or decreased, the aberration can be detected. The increase by (<+<) in Figure 2

changes the mean to 1.07, and the decrease by (<–<) gives a mean of 0.87.

A drawback is that increases and decreases can compensate each other. This

is demonstrated by gap (<+–<) (in Figure 4). The mean is 0.97 (the same as the

reference), so the aberration to basic job 1 cannot be detected.

In comparison to the maximum, other aberrations can be detected. It is not

needed to extend a certain limit, and it is possible to find increases and decreases.

Nevertheless, a combination of increases and decrease leads to the compensation of

2017/03/13; 18:16 str. 9/17

Analysis of series of measurements from job-centric monitoring (...) 11



both types of apparitions. In the worst-case scenario (like the example above), an

error can not be detected at all by calculating the mean.

The calculation of the mean also depends on the times of the measurements. To

demonstrate the effect, we use basic-job 2 (Fig. 5) and the partly sped-up job from

Figure 6. The mean changes from 0.65 to 0.48. Thus, the change in the job cannot

be distinguished from a fault. In case of a negative speedup (for example), the mean

increases (speedup of 0.5 results in a mean of 0.78). So, a faulty change (demonstrated

by the gaps) and non-faulty change (demonstrated by partial speedup) can both

decrease and increase the mean. Thus, both effects can also compensate each other.

Based on these findings, we expect the mean as an unpredictable value to identify

faulty jobs.

5.5. Standard deviation

The standard deviation cannot be calculated based on samples – by definition. How-

ever, for comparing different jobs to a reference, we can determine an empirical stan-

dard deviation that is based on a set of samples that can be given by a series of mea-

surements; e.g., job-centric monitoring data of a single job. The definition of standard

derivation σX is:

σX =
√
V ar(X) (3)

Where V ar(X) is the variance of the series of measurement, which is defined as:

V ar(X) = E
(

(X − E (X))
2
)

(4)

Where E(X) is the expectation – for the empirical standard derivation, the ex-

pectation is identical to the mean that was used in the last section.

Based on the formulas, the empirical standard derivation can be calculated for

the test data. For basic job 1 (Fig. 1), we get a value of 0.14. After applying the gap

(<+<) (Fig. 2), the derivation changes to 0.36. By applying gap (<–<), the derivation

changes to 0.34. Even the gap for a combination of an increase and a decrease (<+–<)

(Fig. 4) results in a derivation that can clearly distinguish from the basic job. In

concrete, the derivation is 0.36.

The influence of the timing of a job can also be demonstrated. The reference –

basic-job 2 (Fig. 5) – gives a derivation of 0.47. In case the CPU-intensive parts of

the job are sped up (Fig. 6), the derivation is 0.49. Thus, a change in the timing

of a job that is not based on a fault changes the derivation, so non-faulty changes can

lead to false positives.

5.6. More-detailed tests

The exemplification of the potential of statistical functions for analyzing job-centric

monitoring data has already been shown, and a summary is offered in Table 1. Nev-

ertheless, for the underlying investigations, a much-wider test set was used. A part of

the investigations was set on basic job 1. Besides the three different introduced gaps,

2017/03/13; 18:16 str. 10/17

12 Marcus Hilbrich, Markus Frank



an additional gap that first lowers and then increases the value was used. The gaps

were verified in the intensity of time and value. Also, the influence of the number of

applied gaps as well as the position was investigated.

The influence of the counted gaps and their positions can be analyzed by plots

like Figure 7. The figure shows that the number of applied gaps and position have no

relevant influence on the calculated standard derivation. In this case, basic job 1 was

used as reference.

(+
), (>

+
<
),

(<
+

<
), (>

+
>
)

(−
), (> −

<
),

(< −
<
), (> −

>
)

(+−
), (>

+−
<
),

(<
+−

<
), (>

+−
>
)

(−
+
), (> −

+
<
),

(< −
+

<
), (> −

+
>
)

0.0

0.2

0.4

0.6

0.8

Kind of gap

E
m

p
iric

a
l
sta

n
d
a
rd

d
e
v
ia

tio
n

Deviation, intensity of gap value 1, timeframe of gap 50 %

1 gap, (> ∗ <), (< ∗ <)und(> ∗ >) 2 gaps, gap in starting/ending phase 3 gaps, gap in starting/ending phase

5 gaps, gap in starting/ending phase 10 gaps, gap in starting/ending phase 20 gaps, gap in starting/ending phase

30 gaps, gap in starting/ending phase 1 gap, (> ∗ <), (< ∗ <)und(> ∗ >) 2 gaps, starting/ending free of gaps

3 gaps, starting/ending free of gaps 5 gaps, starting/ending free of gaps 10 gaps, starting/ending free of gaps

20 gaps, starting/ending free of gaps 30 gaps, starting/ending free of gaps Reference

Figure 7. Empirical standard deviation for jobs based on basic job 1 with a very strong gap

applied

An even-more-detailed plot that only increases the value is given in Figure 8.

The five groups show that an increased time span of the gap result in an higher

aberration of the standard deviation value. Within each of the five groups, it can be

shown that a higher change in the measurement value leads to a higher aberration of

the calculated standard deviation. The same results are also valid for the other gap

types.

Additional diagrams for the other statistical functions can be plotted and ana-

lyzed. A complete set of these plots is printed in dissertation [10]. Based on this

testing data, we can summarize our findings in Table 2.

In addition to basic job 1, we also investigated on a basic job including a waiting

phase where no CPU load is caused. This tests verified the findings from Section 5.3.

Also, different time spans for taking measurements are analyzed. These tests support

our statements from Section 5.1. An additional wide test set was built on the second

basic job. This job was used to analyze different kinds of time drifts. The changed

CPU speed like that shown in Figure 6 is only an example for such tests. Based

on the fact that the additional tests did not point out additional principle findings

2017/03/13; 18:16 str. 11/17

Analysis of series of measurements from job-centric monitoring (...) 13



and the illustration of the data took dozens of pages in [10], we decided to only refer

to [10] here.

0.001

0.010

0.050

0.100

0.500

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Time ratio of gap

E
m

p
iric

a
l
sta

n
d
a
rd

d
e
v
ia

tio
n

Deviation (basic job 1)

1 gap, start/end, value 0.1, (> + <) 1 gap, start/end, value 0.1, (< + <) 1 gap, start/end, value 0.1, (> + >) 2 gaps, start/end, value 0.1, (+)

3 gaps, start/end, value 0.1, (+) 5 gaps, start/end, value 0.1, (+) 10 gaps, start/end, value 0.1, (+) 20 gaps, start/end, value 0.1, (+)

30 gaps, start/end, value 0.1, (+) 1 gap, not start/end, value 0.1, (< + <) 1 gap, not start/end, value 0.1, (> + >) 2 gaps, not start/end, value 0.1, (+)

3 gaps, not start/end, value 0.1, (+) 5 gaps, not start/end, value 0.1, (+) 10 gaps, not start/end, value 0.1, (+) 20 gaps, not start/end, value 0.1, (+)

30 gaps, not start/end, value 0.1, (+) 1 gap, start/end, value 0.2, (> + <) 1 gap, start/end, value 0.2, (< + <) 1 gap, start/end, value 0.2, (> + >)

2 gaps, start/end, value 0.2, (+) 3 gaps, start/end, value 0.2, (+) 5 gaps, start/end, value 0.2, (+) 10 gaps, start/end, value 0.2, (+)

20 gaps, start/end, value 0.2, (+) 30 gaps, start/end, value 0.2, (+) 1 gap, not start/end, value 0.2, (< + <) 1 gap, not start/end, value 0.2, (> + >)

2 gaps, not start/end, value 0.2, (+) 3 gaps, not start/end, value 0.2, (+) 5 gaps, not start/end, value 0.2, (+) 10 gaps, not start/end, value 0.2, (+)

20 gaps, not start/end, value 0.2, (+) 30 gaps, not start/end, value 0.2, (+) 1 gap, start/end, value 0.5, (> + <) 1 gap, start/end, value 0.5, (< + <)

1 gap, start/end, value 0.5, (> + >) 2 gaps, start/end, value 0.5, (+) 3 gaps, start/end, value 0.5, (+) 5 gaps, start/end, value 0.5, (+)

10 gaps, start/end, value 0.5, (+) 20 gaps, start/end, value 0.5, (+) 30 gaps, start/end, value 0.5, (+) 1 gap, not start/end, value 0.5, (< + <)

1 gap, not start/end, value 0.5, (> + >) 2 gaps, not start/end, value 0.5, (+) 3 gaps, not start/end, value 0.5, (+) 5 gaps, not start/end, value 0.5, (+)

10 gaps, not start/end, value 0.5, (+) 20 gaps, not start/end, value 0.5, (+) 30 gaps, not start/end, value 0.5, (+) 1 gap, start/end, value 1, (> + <)

1 gap, start/end, value 1, (< + <) 1 gap, start/end, value 1, (> + >) 2 gaps, start/end, value 1, (+) 3 gaps, start/end, value 1, (+)

5 gaps, start/end, value 1, (+) 10 gaps, start/end, value 1, (+) 20 gaps, start/end, value 1, (+) 30 gaps, start/end, value 1, (+)

1 gap, not start/end, value 1, (< + <) 1 gap, not start/end, value 1, (> + >) 2 gaps, not start/end, value 1, (+) 3 gaps, not start/end, value 1, (+)

5 gaps, not start/end, value 1, (+) 10 gaps, not start/end, value 1, (+) 20 gaps, not start/end, value 1, (+) 30 gaps, not start/end, value 1, (+)
Reference

Figure 8. Empirical standard derivation for jobs based on basic job 1 with different gaps

increasing measurement values (CPU load)

Table 2

Additional findings for the analysis methods based on basic jobs 1 and 2.

Standard Similarity

Maximum Mean deviation functions

Mainly independent of position of gap: only basic job 1 yes yes yes

Mainly independent of number of gaps: yes yes yes yes

Longer gaps are indicated by higher

aberration to reference:

no yes yes yes

Higher value change of gaps is indicated

by higher aberration to reference:

no yes yes yes

6. Comparison to similarity functions

In this paper, we focus on statistical functions. Nevertheless, we have to include

more-complex methods for analyzing job-centric monitoring data to get a better un-

derstanding of the limitations and advantages of statistical functions. The most-

2017/03/13; 18:16 str. 12/17

14 Marcus Hilbrich, Markus Frank



promising methods we found and developed further are based on similarity compar-

ison. The first steps in using the cross correlation function to compare job-centric

monitoring is shown by [13]. Further developments have already been done; so be-

sides the local and global normalization and linear time adaption explained by [13], an

automatic adoption to time drifts based on an optimization strategy using educated

guessing was developed. The optimization strategy is currently prepared for publica-

tion for a wider audience. An initial description can already be found in dissertation

[10]. Based on this dissertation, we added the possibilities of detecting aberrations of

job execution to Table 1 and Table 2.

By considering Table 1 and Table 2, it is clear that the standard derivation

gives the best results as compared to the analyzed statistical functions. Based on

the standard deviation, the different applied aberrations presented here (and even

other papers) can be detected. The same aberrations can be detected by similarity

comparison. The difference between the two methods is that the standard deviation

cannot distinguish between an error during job execution and an acceptable change

of timing by changed input data or different execution environments, for example.

7. Benefits of job-centric monitoring

It is hard to present a valid measurement of the fraction of found faults. This is based

on the fact that not all faults are known, and even manual analysis is no guarantee

for identifying each error. To show the helpfulness of job-centric monitoring and

automatic analysis, we reactivate the examples from Section 2.

In one of our examples, we collected monitoring data for the particular physics at

different times. During one of the periods, we discovered instabilities. The automatic

analyses were not yet established, so we discovered the problem by the symptom of

a rising number of aborted jobs. In a step-by-step solution, we identified the effected

nodes of our hardware and noticed that some of the system processes were aborted due

to main memory limitations, so we rebooted the appropriate nodes. A later analysis

based on job-centric monitoring data identified additional problematic nodes. The

nodes executed jobs with a CPU load near zero, which was easily identified by the

visualization after we knew what to look for. The underlying problem was the same

as for the previously repaired node, but other system processes were aborted.

An automatic analysis of the monitoring data would helped a lot in this case. The

effected jobs showed a dramatic change of the mean for CPU usage. Thus, the auto-

matic analysis had presented the first irregular job, so we were aware of the problem

much earlier and could fix it before losing a lot of CPU-hours by defective nodes.

In another example, we described the more-complex health care system. Users

complained about long waiting times. The workflow operators identified a program in

the workflow, that was sometimes aborted and re-executed. The program maintainers

identified that the problem only occurs on some computing resources. So, as operators

of one of the effected resources, we got involved. After identifying some of the effected

jobs, we hunted down the symptom from layer to layer, which included reading the log-

2017/03/13; 18:16 str. 13/17

Analysis of series of measurements from job-centric monitoring (...) 15



files, and a lot of personal communication, we confirmed what happened. The failing

jobs extended the limit of the reserved main memory. Thus, the batch system aborted

the jobs; this was reported to the middleware, so workflow management registered the

problem and re-executed the program. Each re-executions extended the waiting time

dramatically. Even worse, a re-execution can once again be executed on a computing

resources with to low main memory capacity, resulting in an additional re-execution.

With job-centric monitoring, the problem could easily be solved. The over-

utilization could be seen directly by the enduser or the workflow developer. Thus,

changes in the input data could be directly mapped to a higher demand of main

memory, and the needed resources for a job could be adapted (this took quite a while

to be realized, based on the long debugging process). Also, the number of involved

parties would be reduced because it would not be necessary to contact the resource

provider to analyze the job’s behavior. An automatic analysis based, for example, on

the maximum had been able to identify and point out the first accordance of increased

demand on the main memory, so the problem could be fixed before the changed input

data led to a problem and caused a long debug session.

8. Conclusion and future work

In our opinion, the ability of the analysis method using the similarity function makes

a big change in the quality of analysis results. The potential of finding unusual

behavior is high, and different kinds of silent faults can be detected. Thus, a more-

efficient resource usage is enabled based on removing problems from the job-execution

process. Nevertheless, checking the behavior of executed jobs is an additional task for

most users. Thus the accepted effort and time spent is very low. This also demands,

that a time spending manual analysis of a job is only acceptable in case it is really

needed. To manually analyze just one job without an fault can be so frustrating, that

job-centric monitoring will be used never again. Following, our key demand is to get

a low rate of false positives to reach a high acceptance rate from the users.

On the one hand, it is clear that we prefer the more-complex analysis method

based on similarity functions. The reason is the ability to avoid more false positives.

On the other hand, the calculation of the standard deviation is much faster because

the analysis is not so complex and, thus, less computing-intense. So, we want to test

whether we can use the standard deviation as a first test and afterwards check the

jobs with aberrations once again by similarity functions. Only aberrations confirmed

by the second check are presented to the user. Based on the provided real-world ex-

amples, we have also seen that merely analyzing the maximal CPU and main memory

demand could point out some irregularities and allow us to fix the underlying problem

very easily.

An additional advantage of the methods based on the similarity functions is that

it points out exactly where an aberration of a job to the reference is located. By

using the standard deviation for only preselecting jobs, this advantage is conserved;

however, computing demand for the analysis can still be reduced. Thus, we can get

2017/03/13; 18:16 str. 14/17

16 Marcus Hilbrich, Markus Frank



the advantages of both methods in case the number of false positives given by the

standard deviation stays moderate. This rate depends on the concrete usage scenario

and has to be further analyzed in real-world examples.

Until now, we have focused on the theoretical impact of different analysis meth-

ods. As a next step, we want to establish cooperation with operating centers for

scientific computing to further test and properly tune and adapt our analysis meth-

ods under real-world conditions. This allows a much bigger testbed that is not limited

to selected applications or synthetic data. Furthermore, we could see and quantify

the influences of users and applications as they change over time.

References

[1] Bellman R.: Dynamic Programming. Princeton University Press, Princeton, NJ,

USA, 2010.

[2] Chan P., Stolfo S.J.: Toward Parallel and Distributed Learning by Meta-

Learning. In: AAAI Workshop in Knowledge Discovery in Databases, pp. 227–

240, 1993.

[3] Charles J., Höcker A., Lacker H., Laplace S., Diberder F., Malclés J., Ocariz

J., Pivk M., Roos L.: CP violation and the CKM matrix: assessing the im-

pact of the asymmetric B factories. The European Physical Journal C – Parti-

cles and Fields, vol. 41(1), pp. 1–131, 2005, http://dx.doi.org/10.1140/epjc/

s2005-02169-1.

[4] Denning D.E.: An intrusion-detection model. IEEE Transactions on Software

Engineering, vol. 13(2), pp. 222–232, 1987.

[5] Dickerson J.E., Dickerson J.A.: Fuzzy network profiling for intrusion detection.

In: Proceedings of NAFIPS 19th International Conference of the North American

Fuzzy Information Processing Society, Atlanta, pp. 301–306, 2000.

[6] Dobai R., Balaz M.: Genetic method for compressed skewed-load delay test gen-

eration. In: Design and Diagnostics of Electronic Circuits Systems (DDECS),

2012 IEEE 15th International Symposium on, pp. 242–247, 2012.

[7] Grefenstette J.: Optimization of Control Parameters for Genetic Algorithms.

Systems, Man and Cybernetics, IEEE Transactions on, vol. 16(1), pp. 122–128,

1986.

[8] von Grünigen D.: Digitale Signalverarbeitung: Mit einer Einführung in die kon-

tinuierlichen Signale und Systeme. Fachbuchverlag, Leipzig, 2008.

[9] Gusfield D.: Algorithms on Stings, Trees, and Sequences. Computer Science and

Computational Biology, 1997.

[10] Hilbrich M.: Jobzentrisches Monitoring in Verteilten Heterogenen Umgebungen

mit Hilfe Innovativer Skalierbarer Methoden. Dissertation, Fakultät Informatik

der Technischen Universität Dresden, Germany, 2014.

2017/03/13; 18:16 str. 15/17

Analysis of series of measurements from job-centric monitoring (...) 17



[11] Hilbrich M., Müller-Pfefferkorn R.: A Scalable Infrastructure for Job-Centric

Monitoring Data from Distributed Systems. In: M. Bubak, M. Turala, K. Wiatr,

eds., Proceedings Cracow Grid Workshop ’09, pp. 120–125, 2010.

[12] Hilbrich M., Müller-Pfefferkorn R.: Achieving scalability for job centric monitor-

ing in a distributed infrastructure. In: G. Mühl, J. Richling, A. Herkersdorf, eds.,

ARCS Workshops, LNI, vol. 200, pp. 481–492, GI, 2012.

[13] Hilbrich M., Müller-Pfefferkorn R.: Cross-Correlation as Tool to Determine the

Similarity of Series of Measurements for Big-Data Analysis Tasks. In: 2015 Inter-

national Conference on Cloud Computing and Big Data (CloudCom-Asia), 2015.

[14] Hilbrich M., Weber M., Tschüter R.: Automatic Analysis of Large Data Sets:

A Walk-Through on Methods from Different Perspectives. In: Cloud Computing

and Big Data (CloudCom-Asia), pp. 373–380, 2013.

[15] Höcker A., Lacker H., Laplace S., Le Diberder F.: A new approach to a global

fit of the CKM matrix. The European Physical Journal C – Particles and Fields,

vol. 21(2), pp. 225–259, 2001, http://dx.doi.org/10.1007/s100520100729.

[16] Hoefler T., Schneider T., Lumsdaine A.: Characterizing the Influence of Sys-

tem Noise on Large-Scale Applications by Simulation. In: Proceedings of the

2010 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’10, pp. 1–11, IEEE Computer Society,

Washington, DC, USA, 2010, http://dx.doi.org/10.1109/SC.2010.12.

[17] Holland J.: Genetic Algorithms. Scientific American, vol. 267(1), pp. 66–72, 1992.

[18] Lazarevic A., Ertoz L., Kumar V., Ozgur A., Srivastava J.: A Comparative Study

of Anomaly Detection Schemes in Network Intrusion Detection. In: D. Barbará,

C. Kamath, eds., Proceedings of SIAM Conference on Data Mining, 2003.

[19] Lee W., Stolfo S., Mok K.: A data mining framework for building intrusion

detection models. In: Security and Privacy, 1999. Proceedings of the 1999 IEEE

Symposium on, pp. 120–132, 1999.

[20] Lee W., Stolfo S.J.: Data Mining Approaches for Intrusion Detection. In: Pro-

ceedings of the 7th conference on USENIX Security Symposium – Volume 7,

SSYM’98, pp. 6–6, USENIX Association, Berkeley, CA, USA, 1998, http:

//dl.acm.org/citation.cfm?id=1267549.1267555.

[21] Lee W., Stolfo S.J.: A framework for constructing features and models for intru-

sion detection systems. ACM Transactions on Information and System Security,

vol. 3(4), pp. 227–261, 2000, http://doi.acm.org/10.1145/382912.382914.

[22] Lorenz D., Borovac S., Buchholz P., Eichenhardt H., Harenberg T., Mättig

P., Mechtel M., Müller-Pfefferkorn R., Neumann R., Reeves K., Uebing C.,

Walkowiak W., William T., Wismüller R.: Job monitoring and steering in

D-Grid’s High Energy Physics Community Grid. Future Generation Computer

Systems, vol. 25, pp. 308–314, 2009, http://dx.doi.org/10.1016/j.future.

2008.05.009.

2017/03/13; 18:16 str. 16/17

18 Marcus Hilbrich, Markus Frank



[23] Müller-Pfefferkorn R., Neumann R., William T.: AMon – a User-Friendly Job

Monitoring for the Grid. In: T. Priol, M. Vanneschi, eds., CoreGRID, pp. 185–

192, Springer, 2007.

[24] Myers E.W.: An O(ND) difference algorithm and its variations. Algorithmica,

vol. 1, pp. 251–266, 1986.

[25] Needleman S.B., Wunsch C.D.: A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, vol. 48(3), pp. 443–453, 1970.

[26] Paxson V.: Bro: a system for detecting network intruders in real-time. Computer

Networks, vol. 31(23–24), pp. 2435–2463, 1999, http://www.sciencedirect.

com/science/article/pii/S1389128699001127.

[27] Roesch M., Telecommunications S.: Snort – Lightweight Intrusion Detection for

Networks. pp. 229–238, 1999.

[28] Smaha S.E.: Haystack: An intrusion detection system. In: Proceedings of the

IEEE 4th Aerospace Computer Security Applications Conference, 1988.

[29] Tang K., Man K., Kwong S., He Q.: Genetic algorithms and their applications.

Signal Processing Magazine, IEEE, vol. 13(6), pp. 22–37, 1996.

Affiliations

Marcus Hilbrich
s-lab – Software Quality Lab, Universität Paderborn, Zukunftsmeile 1, 33102 Paderborn,
Germany, marcus.hilbrich@uni-paderborn.de

Markus Frank
Technische Universität Chemnitz, Straße der Nationen 62, 09107 Chemnitz, Germany,
markus.frank@informatik.tu-chemnitz.de

Received: 16.11.2015

Revised: 9.06.2016

Accepted: 10.06.2016

2017/03/13; 18:16 str. 17/17

Analysis of series of measurements from job-centric monitoring (...) 19


