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Abstract In this paper, a dynamic model of computation based on the Universal Turing

Machine is proposed. This model is capable of applying runtime code modi-

fications for 3-symbol deterministic Turing Machines at runtime and requires

a decomposition of the simulated machine into parts called subtasks. The al-

gorithm for performing runtime changes is considered, and the ability to apply

runtime changes is studied through computer simulations. Theoretical prop-

erties of the proposed model, including computational power as well as time

and space complexity, are studied and proven. Connections between the pro-

posed model and Oracle Machines are discussed. Moreover, a possible method

of implementation in real-life systems is proposed.
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1. Introduction

During the first half of the 19th century, extensive research concerning the nature of

computation and computability was carried out. This resulted in the development

and study of various models of computation, including the Turing Machine [16]. This,

coupled with the invention of the modern computer years later, led to the constant

development of software, and this process has continuously increased in intensity

(especially over the past decade). Software in its various forms has affected? almost

every aspect of human life and is accessible to a wide range of customers.

However, with the widespread use of software, the problems facing its develop-

ment have changed. In the modern, fast-paced world, the requirements of the clients

or end users often change; this issue cannot be completely resolved with the use of

software engineering and requirement analysis due to the human factor. Moreover,

software often needs to be modified because of the changing legal regulations or in

response to programming errors and security issues.

This issue is commonly resolved by using software updates or plug-ins, but those

usually apply changes by restarting the application. It is rare and more interesting

to consider changes done at runtime without the need to stop the application, poten-

tially preventing a loss of data. The possibility of such a runtime change has been

discussed in the literature to some extent. Most approaches use the concept of models

of software in order to represent the system and define the runtime changes in more

abstract and manageable terms. Thus, the target system and model are tied together,

so the changes in the former can be reflected in the latter, and vice versa. Examples

of such apporach include papers by Wang et. al [19], Cheng et. al [3], and Garlan et. al

[8]. Another approach is the use of software architectural styles – in particular, styles

that make a runtime change easier. Such an approach was proposed by Oreizy et. al

[11]. The disadvantage is that the target system must conform to the given archi-

tectural style; thus, greatly limiting its form and subsequently causing problems for

already-existing legacy systems that were designed in a different way. Moreover, var-

ious approaches for specific programming languages and paradigms exist, including

Aspect-Oriented Programming [12], software agents [17], and Java [18]. Among the

approaches for Java is a paper by Dmitriev [6] in which the runtime changes are ap-

plied with the help of a debugger as well as similar low-level tools for Java. This paper

also defines four levels of runtime changes, with level 1 being changes to the method

body and level 4 being arbitrary changes. This approach is successful in implementing

only the first level of runtime changes, proving that there is still much to research

in the field of which changes are possible and how they are to be applied. Another

solution for Java was proposed by Zhang et. al [21]. These authors treat a change as

a path on a graph of safe configurations, allowing us to better judge whether a given

change is possible or not. As a last possibility for Java, we will mention the OSGi

system, which can be used to enrich the Java environment into a dynamic platform

of components (with a heavy emphasis on modularity and services).
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And last, we would like to describe two approaches that are not destined for Java.

The first solution, described in [13], is intended for C applications running under

the Linux operating system (although extension to other systems is possible). The

solution works by using the dynamic loading of libraries and moving those parts of the

code that are meant to be dynamic into separate libraries. Interestingly, the system

keeps the previous code versions, and in the event of a runtime error, it is possible

to use the older code version instead of the new one (which allows for immediate

function resumption. The second approach is the POLUS system [2], which can

be used to dynamically evolve running applications into their never versions. This

system must be supplied with the object code for both versions before it can produce

a patch file, and then a dedicated application running in the background can apply

the change. The approach itself is fairly powerful, and special care was taken to avoid

incoherence; i.e., POLUS guarantees that the new function versions won’t call the old

ones. The research also indicates that POLUS doesn’t incur a significant performance

drop, although the research presented is limited. Two drawbacks of POLUS are the

fact that the changes are limited to functions and that POLUS cannot be used to

make changes for interpreted languages like Java or Perl (since it can evolve the

Java Virtual Machine or the Perl interpreter, but it cannot evolve programs currently

running interpreted).

The above literature review can be used to conclude that most of the existing

approaches focus on specific applications driven by practice, with little emphasis on

theory and properties of runtime changes. In particular, the existing approaches are

incompatible with each other and are not general, as most of them are dedicated to be

used for only one programming language (usually C/C++ or Java). The possibility

of extending the ideas presented in this literature to other similar languages is rarely

discussed, thus making it questionable. Moreover, the approaches usually support

limited programming paradigms (most common is object-oriented programming) or

may even require other paradigms (like software agents or aspect-oriented program-

ming) to function properly, which clearly limits the applications of such solutions.

The next important point is the study of the very nature of dynamic changes.

Several programming languages are supplied with features that make dynamic changes

easier. These features include the presence of a virtual machine or reflection mech-

anism (Java and Smalltalk are examples of languages that rely heavily on such fea-

tures). In general, there exists a notion of dynamic programming language. Such

languages allow many actions that are normally carried out during compilation to be

performed at runtime. Thus, in theory, it seems that languages (environments) like

Java and C# are supplied with everything they need to make runtime changes possi-

ble. However, dynamic languages such as these are not explicitly designed to support

runtime changes. As a result, what we lack is the know-how – the practical knowledge

on how to perform runtime changes using such mechanisms as reflection. Further-

more, we would like to perform changes even in languages that do are not dynamic

and, thus, do not possess such features as reflection. To sum it up, we are clearly
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lacking a coherent theory for representing, verifying, and applying runtime changes

in a general way, independent from the used programming language or paradigm.

Despite this, some theoretical research does exist, including a paper by Zhang

et. al [20] with studies of the so-called quiescent states and global invariants of the

target system. Another concept of representing runtime changes with the use of mod-

els of computation was proposed by Rudy [14]. Runtime changes can be thought of as

changes made to the computable function being computed or the algorithm comput-

ing it, therefore affecting both the output and the computational complexity of the

system. A method of decomposition for deterministic Turing Machines (DTM) was

introduced with the intention of dividing the original machine into a set of so-called

subtasks, each representing a different computable function or algorithm. The rule of

the decomposition is that when each subtask completes, it leaves the tape in some

kind of expected format (protocol), so the next subtask can continue the computation.

A set of special subtasks called repositions is used to shift the head of the machine on

the tape between subtasks. Repositions cannot modify the tape. With such a decom-

position method defined, an algorithm for performing runtime changes was outlined

with an emphasis on the change requirements; i.e., which subtasks cannot execute for

a give subtask to change safely.

This paper, we aim to extend and refine the model of computation outlined

above and study its theoretical and practical properties. In particular, we would

like to define a dynamic model of computation that could be used to design software

with runtime-code-change capability for a wide range of programming languages and

paradigms. We hope that the researched properties (especially time and space com-

plexity) will allow us to better understand the possibilities and limitations of the

runtime code changes and (in the future) help us design more practical systems for

a wide range of programming languages and paradigms.

The remainder of this paper is organized as follows: Section 2 describes the

special versions of the Deterministic Turing Machine and Universal Turing Machine

used in this paper, along with their basic properties. In Section 3, a new dynamic

model of computation based on the special case of the Universal Turing Machine is

proposed. Section 4 contains the study of the theoretical properties of the proposed

model, including time and space complexity with relation to the standard Universal

Turing Machine. Section 5 offers a discussion. Finally, Section 6 contains conclusions

as well as a brief comparison of different models of computation.

2. Turing Machines

This section serves as a necessary foundation for the definition of the dynamic model

of computation, and is composed of two major parts. The first part defines the

base Turing Machine model used through the rest of the paper, including all of the

differences from the commonly used Turing Machine. The second part includes the

definition of our version of the Universal Turing Machine, which can be used to
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simulate the machine from the first part and will serve as the basis for the dynamic

model.

2.1. Deterministic Turing Machine

The original Deterministic Turing Machine (DTM) was developed by Alan Turing

[16]. Various modifications of the DTM have appeared in the literature; thus, we

have decided to use the version by Hopcroft and Ullman [9] as a basic definition of

the DTM. This DTM assumed two finite, non-empty sets of symbols Γ and Σ ∈ Γ ,

called the tape alphabet and input alphabet, respectively, and one symbol b was called

the blank symbol. Moreover, the DTM had two finite, non-empty sets of states Q

and F ∈ Q, called the internal states and the final states, respectively. One state q0

was called the initial state. The last element was the transition function δ. Thus, any

DTM M can be formally defined as a 7-tuple M =< Q,Γ, b,Σ, δ, q0, F >.

The DTM had one bidirectional tape with unlimited number of cells (spaces),

each in the beginning occupied by a single symbol either b or s ∈ Σ, and the blank was

the only symbol allowed to occupy an infinite number of spaces. The DTM also had

one scanning head, which was positioned at any given time over one symbol (called

the current symbol) of the tape and could move left or right by one space.

The computation was carried out step-by-step with the use of the transition

function δ. For each pair of current tape symbol Σ and current non-final state Q \F ,

the function defined three elements: 1) the symbol to write on the current space on the

tape; 2) the direction for the head to shift (either left or right); and 3) the internal

state to go to. This process continued until any final state from F was reached,

at which point the DTM halts. The state on the tape (once halted) is the answer

produced by the DTM. This model was commonly associated with two complexity

measures: T (n) indicated the number of steps needed for the DTM to halt on input

n. Similarly, S(n) indicated the number of spaces on the tape needed for the DTM

to produce an answer for input n.

In order to make the discussion more clear and understandable, we will modify

the previous description of the DTM by making a few alterations. However, we

will later prove that the resulting modification of the DTM has exactly the same

computational power as the DTM presented above. First, we combine both arbitrary

symbol alphabets Γ and Σ into one fixed 3-symbol alphabet Γ = {0,1,#}, with #

being the blank symbol. Second, we assume that the set F of final states has only one

element f . The third change is the addition of two new tapes called the input tape

(TIN) and output tape (TOUT). The original tape is called the data tape (TDATA). TIN

contains the input for the DTM, and the rest of its spaces are filled with blanks (#).

Two other tapes are filled with blanks in the beginning. Each tape has a tape head

called HIN, HOUT, and HDATA, respectively. The tape heads move independently.

In each step, the machine performs one of four possible operations: input, output,

halt, or process. If the final state f is reached, the DTM halts as before, but the

output produced is read from TOUT only. The input operation occurs when the
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current symbol from TIN is copied into the current space of TDATA. After this, the

internal state of the DTM may change, and HIN shifts one space to the right while

the other heads stay intact. Similarly, the output operation consists of copying the

current symbol from TDATA into the current space of TOUT and then shifting HOUT

one space to the right and possibly entering a new internal state. The processing

operation is exactly like the step from the original DTM: the current state on the

TDATA is overwritten, HDATA shifts either left or right, and a new internal state may

be entered. The structure of such a DTM is shown in Figure 1. We also assume that,

in the beginning, HIN is placed at the first non-blank symbol on TIN (starting from

the left side).

Figure 1. The structure of the 3-symbol on-line deterministic Turing Machine.

The changes to the alphabet and final states are done mostly for convenience, as

this allows for a simpler and clearer definition of the Universal Turing Machine later.

The changes to the tapes, however, are meant to follow the concept of an on-line

Turing Machine, where a part of the input may be processed and output produced

before the next part of the input is accessed. This is useful to model some properties

of software (in particular, servers and interactive applications). In this case, TIN can

be thought to contain client requests or be a keyboard buffer. On the other side,

TOUT can be interpreted as server responses or an output file.

Let us note that the heads of TIN and TOUT can shift only to the right, meaning

they act more like streams than typical DTM tapes, and each position of the TIN

and TOUT can be read from or written to only once. Of course, the DTM is free to

make as many copies of the input on TDATA as needed. The advantage of such system

is that, when some output is produced, the TDATA does not need to be erased – the

HDATA may just be shifted to a new, untouched portion of the tape and then continue

processing new input.

Now we formally define our 3-symbol on-line Deterministic Turing Machine M

(referred to simply as DTM3 throughout the remainder of this paper) as 6-tuple

M = 〈Q,Γ,#, q0, f, δ〉 as follows:
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• Q – finite non-empty set of internal states,

• Γ = {0,1,#} – set of tape symbols (tape alphabet),

• # ∈ Γ – the blank symbol,

• q0 ∈ Q – the initial state,

• f ∈ Q – the final state,

• δ : Q \ {f} × Γ → Q× Γ × {L,R, I,O} – the transition function.

The transition function is defined for each pair of tape symbol and non-final

state. The function determines the symbol to write to TDATA, next internal state to

move to, and the shifts for the heads: L (R) shifts only HDATA to the left (right),

while I (O) shift only HIN (HOUT) to the right.

The above DTM3 is defined quite differently from a typical Turing Machine found

in the literature. Therefore, we would want to prove that, despite this, it remains just

as powerful as the original Turing Machine; i.e., it can compute the same (or greater)

class of computable functions and consequently solve the same class of problems. This

is done via Property 1.

Property 1. For every computable function f , there exists DTM3 M3 that com-

putes f .

Proof. For every n-ary computable function f(a1, a2, . . . , an) : Nn → N, there exists

function fn(a) : N → N, such that fn(π(n)(a1, a2, . . . , an)) = f(a1, a2, . . . , an), where

π(n) is the Cantor tuple function. This follows from the definition of π(n). Therefore,

it is sufficient to show that there exists M3 for every fn(a) : N→ N, and it computes

fn(a). From the Church–Turing thesis (starting with Kleene [10]), it follows that, if

fn(a) is a computable function, then there exists a regular DTM M that computes it.

Since every natural number can be encoded over the alphabet {0,1}, let the alphabet

of M be Γ = Σ = {0,1,#}. Let MIN be a DTM3 that copies its TIN into TDATA

and then halts. Similarly, let MOUT be a DTM3 that copies its TDATA into TOUT and

then halts. Now, let our M3 be a composition of the above three:

M3 = MIN |M |MOUT,

i.e., when a machine in the composition halts, the next machine starts in its own

initial state with the contents of the tapes left behind from the previous machine.

Therefore, M works as a regular DTM on the input supplied by MIN, and the final

output is produced by MOUT. Therefore, we constructed a DTM3 with its input on

TIN and its output on TOUT that computes fn(a).

2.2. Universal Turing Machine

The DTM3 presented above is a class of Turing Machines we would like to equip

with support for runtime changes. Turing Machines on their own, however, leave

no possibility for changing the program, since the set of internal states Q and the

transition function δ do not change in any way during computation. Fortunately,

there exists a concept of the Universal Turing Machine (UTM) introduced by Turing
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in his original paper [16]. The UTM is a Turing Machine that is able to simulate any

other Turing Machine (including itself). This is done by encoding and storing the

simulated DTM on the UTM as data. Since the encoded DTM is just a set of symbols

on the tape, it can be modified and processed as any other data. Moreover, by UTM,

Turing understood the simplest (by some criteria) machine capable of simulating all

Turing Machines.

In this subsection, we will present our own version of UTM for simulating any

DTM3 (defined above), called the DTM. This machine will serve as the basis for the

dynamic computation model presented in the next section. It is important to note

that the UTM3 will not be a true UTM. First, it will be able to simulate only 1-,

2-, or 3-symbol DTMs. However, this restriction is meant (as before) to simplify the

design process and make the discussion clearer, and a method for extending this into

UTM for any (on-line) Turing Machine will be presented. Moreover, our UTM3 will

most likely not be the simplest of its kind; but once again, we focus on simplicity.

The UTM3 needs a way to store the internal states and transition function of

the DTM3 it simulates on one of its tapes. TDATA can be used for this, but it would

be problematic to have one tape serving both purposes. Therefore, we add another

tape called the program tape (TPROG) with its own head HPROG. The program stores

the information about all states of the DTM3 in which to simulate. A description

for each state starts with the state number section, and this consists of the symbol D

followed by a number of As, so state 0 is D, state 1 is DA, state 2 is DAA, and so on.

The next section of the state description depends on the state type:

• For the final state (the last state by convention) this section simply contains one

H symbol. Example state description is DAAAH (state 3, halting).

• For the input states, the second section contains symbol I, followed by the des-

ignation of the target state (i.e., state to go into). This is done by single symbol

B followed by the number of As (B, BA, BAA etc.). Example state description

is DAAIBAAA (state 2, input, go to state 3).

• The output states are just like the input states except for the symbol O instead

of I. Example state description is DAAAAOBA (state 4, output, go to state 1).

• For all other states, this section is divided into three subsections: one for each

DTM3 tape symbol. Each subsection consists of three parts: the symbol to write

on TDATA (either 0, 1 or #), the shift direction for HDATA (either L or R), and

the target state designation (B, BA, BAA etc.).

An example of such state encoding for the normal state is shown in Figure 2.

This is the description of state 4. Subsections mean “if 0 then write 1, shift right and

go into state 2”, “if 1 then write #, shift left and go into state 5” and “if # then

write 0, shift left and go into state 3”.

We assume (as in the case of DTM3) that, in each state, the UTM3 can shift as

little as one and as many as all of its tape heads. The UTM3 works as follows: at

the beginning, HPROG is placed on the D symbol of state 0 (since it is the first state

by convention). This state has zero number of A’s, so after a single shift of HPROG
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to the right, the UTM3 is able to determine the type of this state (H for halt, I for

input, O for output, others indicate normal state).

Figure 2. Example of a state description encoding for the UTM3.

For the halting state, the machine halts at this point. For input states, the UTM3

copies the symbol from the space under HIN into the space under HDATA. After that,

HIN is shifted to the right, and the procedure for reaching the next state (described

below) is started. Output states are exactly the same except that the symbol beneath

HDATA is copied into the space beneath HOUT and then HOUT is shifted to the right.

For normal states, the UTM3 first shifts to the correct subsection (either for zero,

one, or blank) and then overwrites the symbol under HDATA with the current symbol

under HPROG (which is either 0, 1, or #). Then, HPROG shifts to the right, where the

intended shift direction (either L or R) is stored. Next, HDATA is shifted according

to this direction. Finally, the procedure for reaching the next state is started.

The procedure for reaching the next state is always started with HPROG placed

directly left to the target (next) state designation (e.g., BAAA). In order to reach the

intended state, the designation of the state needs to be stored. To this end, we equip

the UTM3 with one more tape called the state tape (TSTAT, HSTAT). This tape is

initially empty (i.e., filled with blanks).

With this tape defined, the state-reaching procedure works as follows: we shift

HPROG to the right until symbol A is found, then we copy all subsequent A symbols

to the TSTAT. After this, TSTAT holds the intended state; e.g., AAA if state 3 is

intended. Next, we search for a state candidate by shifting HPROG to the right until

the next state (symbol D) is found. Then, we check whether this candidate state is

the intended state. The check is done by positioning HPROG at the first A symbol

of the candidate state and HSTAT at the first A symbol of TSTAT and then checking

whether the number of A’s matches. If both strings of A’s end at the same time, then

the candidate state is indeed the intended state, and the procedure ends. Otherwise

(substrings of A’s are different), this means that the candidate state is not the intended

state. In this case, we simply shift HPROG once again to the right in search of another

candidate state. However, if we encounter double blank symbol (##), this means

that we have reached the end of TPROG. This can happen when the intended state

to go into is placed earlier on the tape than our position at the beginning of the

procedure. In this case, we need to simply reverse the search direction.
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Figure 3. The structure of the 3-symbol on-line deterministic Universal Turing Machine.

Assuming that TPROG contains valid DTM3 encoding, then the intended state

will eventually be found. When the procedure ends, we clear the contents of TSTAT by

filling it again with blanks. Let us recall that, if the candidate state was the correct

one, then that means we went past the string of A’s on TPROG at the exact same

time we went past it on TSTAT. In result, HPROG is now placed directly right of the

state designation, where the state type is stored. At this point, we have simulated

one step of the target DTM3, and we start the next step with HPROG already placed

to instantly determine the type of the current state.

With this, we have constructed a Deterministic Turing Machine capable of sim-

ulating any valid DTM3. The structure of the UTM3 is shown in Figure 3. It is

important to note that, unlike DTM3, the UTM3 is a single machine. Before we

conclude this subsection, we will establish a few properties of the UTM3. First,

the UTM3 has an alphabet of eight symbols: Γ = {0,1,#, D,B,A,L,R}, although

tighter bounds are achievable (e.g., symbols 0 and 1 can be used instead of L and R).

Next, the UTM3 can be modified to simulate on-line DTMs with an arbitrary

alphabet by encoding the alphabet and adjusting the parts of the machine that use

it. For example, our three symbols could be encoded as follows: 0 = GA, 1 = GAA,

# = GAAA. Any finite alphabet can be encoded in this way.

From the Property 1 and the fact the the UTM3 is capable of simulating any

DTM3, it follows that the computational power of the UTM3 is no less than the

computational power of regular DTMs or UTMs. Now, we will prove the upper

bounds of the space and time complexity for the UTM3 as compared to the DTM3

it simulates.

Property 2. Let M3 be a DTM3 with q internal states and space complexity SD(n) for

input n. Then, the upper bound for space complexity SU (n) of the UTM3 simulating

M3 on input n is:

SD(n) + 3.5q2 + 3.5q − 2. (1)

2016/06/29; 22:51 str. 10/38

196 Jarosław Rudy



Proof. Tapes TIN and TOUT act like streams and are not included in either SD(n) or

SU (N). Thus, SD(n) is affected only by TDATA, while SU (n) is also affected by TPROG

and TSTAT. Since the UTM3 simulates M3 perfectly, then the space used by TDATA

for the UTM3 can never exceed the space of TDATA used for M3, which for input n

equals SD(n). Next, TSTAT is only used for holding the intended state number in a

unary format. Thus, if M3 has q states, then the maximal space needed on this tape

equals q − 1 spaces for storing the state number (the first state is 0, so the last state

is q − 1) and one space reached when we go past the number, so q in total. The last

tape to consider is TPROG. The last state q − 1 is, by convention, the final state,

so it is composed of symbols D, H, and q − 1 symbols A, so q + 1 symbols in total.

Any other of the remaining q − 1 states need one symbol D for the beginning of the

state (so q − 1 symbols in total). After that, each state holds its number in a unary

format. Since this concerns states from 0 to q − 2, then the total space needed for

that is the sum of integers from 0 to q − 2 and equals q2−3q+2
2 . In the worst-case

scenario, each non-final state is a normal state; therefore, it has three subsections.

Each subsection holds the symbol to write (one space) and shift direction (one space).

Moreover, subsections hold the target state designation, which (once again) can take

up to q spaces. Thus, each subsection can take up to q + 2 spaces; therefore, 3q + 6

for all subsections and (q − 1)(3q + 6) = 3q2 + 3q − 6 for all non-final states. Lastly,

we need two blank symbols at the end of the tape whenever we reach the end of the

program when searching for the next state candidate. This gives us a following total

formula:

SD(n) + q + (q + 1) +

(
q2 − 3q + 2

2

)
+ (3q2 + 3q − 6) + 2 =

= SD(n) + 3.5q2 + 3.5q − 2.

Since this is the worst case, the actual value may be lower in practice (which ends

the proof).

While proving the upper bound for the space complexity is relatively easy, the

time complexity is more difficult; so, it is best to split this into three parts. First, let

us consider the moment when the UTM3 has to switch to the next internal state of

the DTM3 it simulates.

Property 3. Let M3 be a DTM3 with q internal states. Then, the upper bound

for the number of steps k needed by the UTM3 simulating the M3 to reach the next

intended state is:

10q2 + 18q + 2. (2)

Proof. As stated before, when the state reaching procedure is started, HPROG is always

placed directly to the left of the intended state designation (e.g., BAA). Thus, two

shifts to the right are needed to position HPROG above the first A. Let us assume

that TSTAT is cleared and that its head is positioned at the beginning. Since M3

has q states and states are numbered from 0, then the longest state designation has
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q − 1 A’s. Thus, q − 1 steps are needed to copy the A’s to TSTAT. Next, we need to

reach the next candidate state and check it. If we don’t reach the end of the program,

then the next candidate will be found in 4q + 6 steps, because the beginnings of any

two adjacent states cannot be further apart than this. If we do reach the end of the

tape, we will need two extra shifts to realize this (reaching two blanks past the end

of the program) and then up to another 4q + 6 steps to find a candidate state in the

reverse direction. To sum it up, the next candidate (symbol D) can always be reached

in 2(4q+6)+2 = 8q+14 steps. Then, we shift once to position HPROG above the first

symbol A of the candidate state, and we use at most q+1 steps to move HSTAT to the

beginning of its tape. Next, we need at most q steps to verify whether the candidate

state is the intended one. After that, either the state is correct (and HPROG will be

placed to determine the state type) and the procedure ends, or the state is not correct

and the next candidate state is sought. To sum it up, searching and checking a single

state candidate takes up to 8q+14+1+(q+1)+q = 10q+16 steps. In the worst-case

scenario, we will need to check all of the states before we find the correct one; so,

this value must be multiplied by q, giving 10q2 + 16q. Finally, we must clear TSTAT,

because we assumed that it is clear before each procedure. Since after a successful

check, HSTAT is placed past the end of its tape, then we need at most q + 1 steps

to clear it. This ends the procedure, giving us a total, worst-case-scenario number of

steps equal to:

2 + (q − 1) + 10q2 + 16q + (q + 1) = 10q2 + 18q + 2,

which ends the proof.

Using the above upper bound for the intended state search procedure, we can

provide the upper bound on the number of steps the UTM3 needs to complete a single

step of the simulated DTM3.

Property 4. The upper bound for the number of steps k needed by the UTM3 to

simulate a single step of the DTM3 M3 with q internal states is:

10q2 + 20q + 8. (3)

Proof. Let us assume that at the beginning of each step HPROG is placed directly to

the right of the current state designation; i.e., directly above the type of the state

indicated by symbols H, I, O, or L/R. If the symbol is H, the machine halts in a single

step. If the symbol is I or O, then the machine inputs/outputs in one step and then

starts the state-reaching procedure which, following the Property 3, completes in at

most 10q2 + 18q + 2 steps, for 10q2 + 18q + 3 steps in total. The last possible case is

a normal state. First, we need to position HPROG at the corresponding subsection.

The worst case is the blank subsection. To shift to it, we have to go past the first two

subsections. As stated in Property 2, a subsection size is no greater than q+ 2; thus,

we have to shift at most 2q+4 times to reach the needed subsection. After this, we use

two steps to 1) overwrite the current symbol on TDATA, and shift TPROG to the right,

and 2) shift TDATA according to the current value on TPROG. After this, we start the
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state-searching procedure, which once again completes in 10q2 + 18q + 2 steps, for

10q2 +20q+8 steps in total. Finally, we conclude that 10q2 +20q+8 > 10q2 +18q+1,

which ends the proof.

With Properties 3 and 4, we can now present a proof for the upper bound on the

number of steps needed by the UTM3 to fully simulate its DTM3 (assuming that the

DTM3 halts on the given input).

Property 5. Let M3 be a DTM3 with q internal states and time complexity TD(n) for

input n. Then, the upper bound for time complexity TU (n) of the UTM3 simulating

M3 on input n is:

TD(n)(10q2 + 20q + 8) + 1. (4)

Proof. The proof is almost entirely self-evident from the Property 4. If a single step

of M3 is simulated in at most 10q2 + 20q + 8 steps of the UTM3, then TD(n) steps

of M3 are simulated in at most TD(n)(10q2 + 20q + 8) steps of the UTM3. The only

thing missing is that, at the beginning, HPROG is placed at the symbol D of the 0th

state, and we need one shift to the right to place it in the correct position for the

simulation of the first step. Thus, the final value is TD(n)(10q2 + 20q + 8) + 1.

To sum up this subsection, we present two theorems concerning time and space

complexity for the UTM3 model that are derived directly from the Properties 2 and 5.

Theorem 1. Let TU (n, q) be the time complexity for the UTM3 that simulates the

DTM3 with q states on input n and TD(n) be the time complexity of that DTM3 on

input n. Then:

TU (n, q) ∈ O(q2TD(n)). (5)

Theorem 2. Let SU (n, q) be the space complexity for the UTM3 that simulates the

DTM3 with q states on input n and SD(n) be the space complexity of that DTM3 on

input n. Then:

SU (n, q) ∈ O(SD(n) + q2). (6)

From Theorems 1 and 2, we conclude that, when the UTM3 model of computation

simulates a DTM3, it does not impose time or space complexity penalties that are

dependent on the input n or (by extension) the size of that input. Thus, the increase

in complexity is dependent only on the squared number of internal states of the DTM3

being simulated (therefore, it is also dependent on the problem being solved).

The upper bounds defined in Properties 2 and 5 apply to the worst-case scenario.

The average state number for q states is 1
2q. This means that the expected value of

the number of steps and space needed should be reduced to 1
4 of the worst-case upper

bound (since ( 1
2q)

2 = 1
4q

2). This was researched and proven using a simple computer

simulation. Two computable functions double (f(x) = 2x) and mod5 (outputs 1 if

x mod 5 ≡ 0 and 0 otherwise) were computed for natural numbers x = {1, . . . , 50}
using both a standalone DTM3 and the UTM3 that simulated it. The required values

of TD(n) and TU (n) (indicating number of steps for both machines) were measured

and used to create a ratio TU (n)
TD(n) representing how much slower the UTM3 is compared
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to the DTM3 it simulates. The upper bounds were computed using the expression

from Inequality 4 with q = 11 (mod5 ) and q = 13 (double). The results are shown

in Figure 4. We indeed observe that the average ratio is about 1
4 of the theoretical

upper bound.
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Figure 4. Comparison of theoretical upper bound and practical values of step ratio TU (n)
TD(n)

for two exemplary computable functions.

3. Dynamic computation model

The UTM3 model defined above is our own approach to the concept of the Universal

Turing Machine; therefore, on its own it provides no new properties. However, we will

now use this model and extend it to define a completely new model of computation,

one able to support and apply runtime code changes for any DTM3. This model will

be called the Dynamic UTM3, or simply the DUTM3.

3.1. Subtasks and repositions

Here, we will briefly and more formally describe the concept of subtasks introduced

in [14] as well as how we will use it to support runtime code changes. A subtask

is essentially a non-empty subset of states of a DTM (DTM3). A few additional

conditions might be necessary, depending on the specific model. For example, subtasks

should be disconnected; i.e., no state should be a part of more than one subtask.

This condition can be alleviated when we allow for parent-children subtasks; i.e., a

subtask that is a subset of another subtask. The second possible condition is that

the subtasks should form a weakly connected digraph (graphs for Turing Machine

transition functions are always directed graphs). One exception could be a subtask

that consists of all states not officially assigned to any subtask. A simple example
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of a DTM3 with defined subtasks is shown in Figure 5, with the subtasks taking the

form of rectangles.

Each subtask has a subset of states that can be used to enter a given subtask.

These states are called entries of that subtask. State e is an entry of a subtask S if

and only if there exists a state a from a subtask other than S and edge (a, e) exists. If

a subtask is not isolated (i.e., it can be accessed), then it contains at least one entry.

Entries are labeled with the letter e in Figure 5. Let us notice that subtask 2 has

multiple entries.

When a subtask entry is reached, the subtask is started, and it either continues

to run forever, halts the DTM3, or completes (another subtask is started). Also, let us

note that, at any given time (step), at most one subtask can execute (except parent-

children subtasks). This is in contrast to, for example, recursive procedures known

from programming languages like C/C++, where multiple procedures (functions) may

execute at a time via structures like the call stack.

Figure 5. Example of a DTM3 state diagram with subtasks, repositions, and entries.

Let us notice that subtask “Rep 1” in Figure 5 is composed of only one state.

Moreover, the state loops back into itself. This effectively means that this subtask can

be “started” multiple times (essentially every step of the DTM3) before it completes.

This will cause performance problems for our DUTM3, but the situation can be

alleviated by changing this subtask into a form similar to “Rep 3.” In this case, the

entry is reached only once, regardless of the number of steps spent in the loop. This

increases the number of states but will improve performance. This loop modification

can be done automatically.

Because of what was stated above, each subtask is started in some context (con-

tents of all tapes and positions of all tape heads) and then performs some process-

ing until it completes. Therefore, each subtask is always tied to some computable
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function (algorithm) it computes. That means that each subtask effectively defines

a (sub)DTM or, more precisely, a (sub)DTM3.

The main point and purpose of introducing subtasks is the ability to change

some of the subtasks with limited or no effect on some other subtasks. In general,

subtasks can be defined freely; however, for our approach to work, we impose one rule

that is used when dividing (decomposing) the original DTM3 into subtasks. The rule

states that the contents of the TDATA must follow the so-called expected format. In

essence, this means that each subtask has input and output protocols that describe the

expected contents of the tapes before the subtask starts and after it completes. The

specific definition of the expected format is left to the DTM3 designer (programmer).

Let us take the basic quick sort procedure as an example. We can divide quick

sort into four subtasks: 1) Choose the pivot element; 2) move all elements with less

value than the pivot before it and all elements with greater value after it; 3) sort the

elements before the pivot; and 4) sort the elements after the pivot. Let us assume

that steps 3 and 4 use unknown sorting algorithms (especially when the lists to sort

are small enough to use näıve sorting). With this, the expected format rule between

steps 3 and 4 is met: after step 3 is completed, the first half of the list is certainly

sorted. If we tried to divide step 3 into two subtasks (3a and 3b), then it would be

difficult since we do not know what the result would look like in the middle of subtask

3. Therefore, the choice of subtasks and their size is left to the designer.

The same rule also includes the fact that the tape heads must be placed in the

correct positions for the subtask to complete successfully. For this, a special class of

subtasks called repositions is used (indicated by “Rep” instead of “Sub” in Figure 5).

Reposition is used to move the tape heads between subtasks and is not allowed to

modify the tape contents (i.e., it writes the same symbol it read from the tape before

shifting). This effectively means that repositions always compute identity function

f(x) = x. A given non-reposition subtask can have multiple repositions preceding

and following it.

3.2. The DUTM3 model

Now, let us suppose that subtask “Sub 2” (dark gray in Figure 5) needs to change its

algorithm (i.e., it still computes the same function, but in different way). This means

that repositions “bound” to this subtask have to be altered as well (light gray in the

picture). This is the result of maintaining the cohesion of the DTM3, if “Rep 1”,

“Rep 2” and “Rep 4” are not altered correctly, then “Sub 2” might fail to compute

its function. Therefore, the original subtask change defines a wider range of subtasks

that need to be altered. Finally, we obtain a list of subtasks to change. The size of

the list depends on the original subtasks to change and the specific subtask graph of

the DTM3. In our case, this list contains “Rep 1”, “Sub 2”, “Rep 2” and “Rep 4”.

Now, we would like to develop a model of computation that will safely change these

subtasks at runtime.
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The first condition we assume is that the change can be performed safely only

when the subtasks from the list are not executing. Therefore, the list is termed the

forbidden subtasks list. Next, we assume that the subtasks are indexed with natural

numbers starting from 1 (numbers in the parentheses in Figure 5). Thus, our forbidden

list consists of subtasks 2, 3, 4, and 8.

Our next assumption is that the DUTM3 in its basic form will not question

the validity of the changes supplied to it. Change authorization could be easily

added, but even then the DUTM3 would not check the validity – as long as the

changes are authorized, the DUTM3 will apply them when ready. This means that

the responsibility for designing a valid change is left to the designer (i.e., programmers

and automation tools such as compilers). We are, therefore, only concerned with

applying valid changes effectively and safely.

The DUTM3 will need to be supplied with changes; therefore, a new tape is

needed. This tape will be called the change tape (TCH, HCH). This tape, unlike TIN

and TOUT, is not fully a stream, because the DUTM3 will need to move back and

forth along it. Thus, TCH will be treated as a normal tape and be included in the

space complexity of the DUTM3.

The changes supplied in the tape must follow a certain format. First is a forbidden

list of subtasks that cannot execute for the change to occur. For this, we will use a new

alphabet symbol C and encode subtasks numbers in a unary format, as with the state

numbers. Therefore, our forbidden list of 2, 3, 4, and 8 would be encoded as:

CAACAAACAAAACAAAAAAAA

The changes to be made must be specified after the forbidden list. The most

straightforward solution is to place the description of the entire new DTM3 on TCH.

Then, we can simply clear TPROG and replace it with the description on TCH when we

are ready to perform the change. With this, we define the final format of the changes:

1. Special symbol S indicating the beginning of the change description.

2. Forbidden states list.

3. Blank symbol.

4. New DTM3 program (with the adjustment described below).

5. Symbol S indicating the end of the change description.

If more than one change description will be needed, then the next one will be placed

after the previous one, separated by the blank symbol. For now, we ignore the issue

of how and when the change descriptions appear on TCH.

Let us notice that, for increasing the performance, the checks on whether the

changes can be applied or not should be done only when a new subtask is reached. To

this end, we need to mark the entries of each subtask by adding a state number for

each entry in the form of CA, CAA, etc. as shown in Figure 6. All non-entry states

remain as before.

The method of simulating a single step in the DUTM3 changes considerably

compared to the UTM3. At the beginning of the step, HPROG is placed directly past

the number of the current state. In the UTM3, this would mean that the head was
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over symbol I, O, H, 0, or 1 (the last two start the zero section for normal states). For

the DUTM3, this is true only for non-entry states. At this point, the entry states will

have symbol C, which starts the designation of subtask that was just entered. Thus,

for non-entry states, we proceed exactly as for the UTM3. If there is new subtask, we

check the current symbol on TCH. If the symbol is blank, then there are no pending

changes to apply. Thus, we shift TPROG to the right until we go past the subtask

number. Then, we are placed at the state indicator (symbols I, O, H, 0, or 1) and

proceed exactly as for the UTM3.

Figure 6. Example of a state description encoding for the DUTM3.

If the current symbol on the TCH was S, however, then there are pending changes

on this tape, and we will try to apply them. First, we need to check whether our

current subtask is on the forbidden list. The check will commence similarly to how

we checked whether the candidate state was the correct one. We start by copying the

entered subtask to one of the tapes. TSTAT is currently free, so we can use it without

attaching any additional tapes to the DUTM3. Thus, we shift HPROG to the right so

it is placed on the first A of the subtask number, and we copy it to the TSTAT. Next,

we shift HSTAT to the beginning and shift HCH one space to the right.

Now, both TSTAT and TCH are placed above the first A of the current/forbidden

subtask to check. We then commence the check. If we run out of A’s on TCH at

exactly the same moment that we run out of them on TSTAT, then this means that

the current subtask is indeed on the forbidden list. Thus, we shift TCH to the left

until we reach the S symbol, restoring the head to the position before the check, and

we clear TSTAT. After this, we continue as the regular UTM3 would (TPROG is placed

past the subtask designation – exactly where we will need it).

If we ran out of A’s on TCH or TSTAT before the other tape, then the current

subtask does not match the one on the forbidden list; but, the list may have another

forbidden subtask. Therefore, we shift HSTAT to the beginning of its tape, and we

shift HCH past the A symbols (if it is needed). After that, HCH will be placed either

over symbol C or #. If the symbol is C, then there are more subtasks on the list, and

we recommence the check immediately. If the symbol is #, however, then we have

reached the end of the forbidden list, and our current subtask was not on the list. We

shift HCH once to the right, so it is placed past the blank and above the first symbol

of the new program – the changes can be applied now.
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In order to apply a change, first we need to store the current state so the DUTM3

can resume its simulation after the change was performed. We start by clearing TSTAT,

which still holds the current subtask number. Thus, we shift HSTAT to the right,

clearing the symbols on our way, and then we shift back to the beginning. Next, we

shift TPROG back to the left until we reach symbol D, meaning we are back at the

state number. Now, we copy this number to TSTAT. Next, we clear the old program

from TPROG simply by shifting HPROG to the end of the tape and then shifting back

to the beginning, replacing all symbols with blanks.

After the program has been cleared, we simply copy the new program from TCH

to TPROG. This process ends when we reach symbol S on TCH. Then, we shift HCH

twice to the right. The first shift will place the head on the blank symbol in between

the change descriptions. The second shift will place the head at the beginning of the

next change description (if any). All that is left is to switch the DUTM3 to the state

it was in when performing the change. We do this by starting the already-known

candidate state search procedure with one exception – the intended state is already

on TSTAT, so we just start by searching for the next candidate. Moreover, HPROG is

conveniently placed past the program, so the procedure will quickly detect the end of

the program and will reverse the direction search, possibly reducing the average time

needed to find the intended state.

Figure 7. The structure of the 3-symbol on-line Dynamic Universal Turing Machine

(DUTM3).

Our last concern is how the contents of TCH are created. We assume that this

tape is shared by two machines. One machine is the DUTM3, and it can only read

the tape. After the change has been applied, the DUTM3 simply shifts HCH to the

place where next change description is supposed to be. The other machine will be

called the adviser and can only write to the tape. The adviser can decide to write to

TCH at any time. When it decides to do so, it writes down the entire description and

then leaves one blank symbol between descriptions, so any subsequent descriptions

will appear further on the tape. This means that the adviser has its own head to
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modify the tape. We can also assume that the adviser works at the same speed as

the DUTM3. The DUTM3 will never proceed faster than a space per step (especially

since forbidden-list checking takes many more steps), so the DUTM3 will never outrun

the adviser and read the parts of the description that the adviser has yet to write. We

also assume that the strategy of the adviser is generally unknown and may change,

even if the DUTM3 simulates the same DTM3. Moreover, the adviser can be thought

of as another DTM3, with TCH being its output tape. The final structure of the

DUTM3 model of computation is shown in Figure 7. Let us notice that this DUTM3

has a tape alphabet of ten symbols: Γ = {0,1,#, D,B,A,L,R,C, S}.
As a final note for this section, let us mention that our concept of the adviser and

its effect on the main DTM is different from the concept of advice known from the

literature. The original notion of advice (used by Arora and Barak [1], among others)

is described as an additional input to a Turing Machine and is allowed to depend on

the size of the input. Thus, for input x, the advice string is A = f(n), where n = |x|.
This notion of advice was used to define several complexity classes. In general, a

decision problem is described as being in class P/f(n) if there is a polynomial Turing

Machine M and advice A of length f(n) such that, for each input x, machine M

correctly decides the problem, given x and A.

While the above notion of advice has some similarities with our notion of the

adviser, these two concepts have fundamental differences that can be summed up as

follows:

• In our approach, the central Turing Machine has no restriction of being poly-

nomial. It is true, however, that polynomial Turing Machines are desirable in

general.

• It is possible for the adviser to produce “incorrect” advice, produce no advice at

all or produce advice more than once. It is even possible that a different (but

still “correct”) advice will be produced while running the Turing Machine twice

for the same input x. This is completely different from the advice described by

Arora and Barak, where the advice has to be constant for a given x.

• Our adviser approach is focused on providing the Turing Machine with dynamic

runtime change properties, while the original advice is treated as just additional

input and the entire Turing Machine remains static.

4. Properties

In this section, we will study several properties of the DUTM3, using the previously

researched information about the UTM3, including computer simulations and theo-

retical properties. Some parallels between the DUTM3 model and Oracle Machines

will also be drawn.

4.1. Runtime code changes

The initial research concerns the runtime-code-change mechanism itself. In particular,

we would like to show that such changes are indeed applied at runtime and that they
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have the intended effect. Since Turing Machines can become very complex (even for

common problems like sorting), we will restrict ourselves to very simple examples.

Assume we have a server that doubles every number it receives, called Double-

Server. In other words, we designed an on-line DTM3 that computes f(x̄) = 2x̄ for

a vector of inputs x̄. Therefore, for input x̄ = [2, 4], the output would be [4, 8]. In

our DTM3, we represent numbers in unary, with input numbers separated by blanks

and ending with 0. Input [2, 4] on TIN would, therefore, be 11#1111#0. Finally, let

the output numbers be concatenated without using blanks (we will use this property

in a moment); therefore, TOUT for the aforementioned input vector would simply be

the number 12 (4 + 8) in unary. This DTM3 has 12 states and consists of 4 subtasks:

input, double, output, and one reposition (the other repositions are simply empty).

Now, let us consider performing two runtime changes. The first change assumes

that the original function f(x̄) = 2x̄ was incorrect (not intended) and we would now

like to triple numbers instead of doubling them. The output without separating blanks

gives us a way to measure the correctness of our program. The closer the answer is

to 3x̄, the better. If the answer is exactly 3x̄, then all numbers were tripled correctly

(100% success). On the other side, if the answer is exactly 2x̄, then all numbers were

outputted incorrectly (0% success).

Thus, we designed a new version of this DTM3 with one additional state. The

forbidden list contains subtasks 2 and 3. Research was conducted for inputs with

a sum of 50 (thus 2x̄ yields unary 100 and 3x̄ yields unary 150). The runtime change

was performed when a certain number of steps have passed (the adviser placed the

change description on TCH at the designated time). The results are shown in Table 1.

Steps counted are DUTM3 steps and not the steps of the DTM3 being simulated.

Table 1

Results of the error-correcting runtime change.

Change step Output Change step Output

1 150 150 000 120

10 000 148 170 000 116

30 000 144 190 000 112

50 000 140 210 000 108

70 000 136 230 000 104

90 000 132 250 000 100

110 000 128 270 000 100

130 000 124 no change 100

From the table, we see that applying the change as soon as possible (step 1)

allowed us to receive the best possible result (output value 150). This is due to

subtask 1 not being on the forbidden list and the DTM3 program being changed

before the first doubling subtask was ever started. We also see that the later the

change was applied, the worse the result. Above about 250,000 steps, it is too late to

perform the change (all computations are already done), so the output is the same as
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for no changes at all. This proves that the DUTM3 model of computation allows us

to correct errors at runtime to some extent.

The second kind of change concerns performance. The original DoubleServer

doubles the number and then outputs each 1 to TOUT. This is redundant – it is

enough to output each 1 twice as soon as the input is read. Thus, we completely

remove the output subtask and modify the multiplying subtask to output the data

right away (this can be done even faster, but not with the subtasks we defined). The

new DTM3 has only nine states, and the forbidden list now contains subtasks 2, 3,

and 4. The research was done for ten instances, the input of each instance consisted

of the number x repeated a number of times (the same number x was used everywhere

for repeatability). The change description was placed in all cases on TCH after 500,000

steps had passed. These results are shown in Table 2. Step ratio is simply the number

of steps for the DUTM3 divided by the number of steps for the UTM3.

Table 2

Results of the performance-increasing runtime change.

# of inputs UTM3 steps DUTM3 steps Step ratio

1 654 690 670 987 1.025

2 1 308 998 709 222 0.543

3 1 963 306 747 457 0.382

4 2 617 614 785 692 0.300

5 3 271 922 823 927 0.252

6 3 926 230 862 162 0.220

7 4 580 538 900 397 0.197

8 5 234 846 938 632 0.179

9 5 889 154 976 867 0.166

10 6 543 462 1 015 102 0.155

For the first input, the DUTM3 works slower than the UTM3. This is because it

had only one input number, and at 500,000 steps, it was too late for the changes to

take effect. For all other cases, the DUTM3 works considerably faster, even though it

is generally slower than the UTM3 (as we will prove later on) and wasted some time

applying the change. For the last case, the DUTM3 was more than six times faster

than the UTM3. Of course, this value is thanks to the reduced time complexity of the

doubling algorithm after the change, but the DUTM3 was what allowed us to take

advantage of this at runtime. We conclude that the DUTM3 model of computation

allows us to affect the properties (like the time and space complexity) of the algorithms

used at runtime.

4.2. Time and space complexity

In this subsection, we will study the theoretical properties of the DUTM3 (like its time

and space complexity). Since the DUTM3 is a new model of computation (unlike the
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UTM3), we will establish these properties as theorems. Let us start with the space

complexity of the DUTM3 when no changes are assumed.

Theorem 3. Let M3 be a DTM3 with q internal states, s subtasks, and space com-

plexity SD(n) for input n. Then, the upper bound for space complexity SDU (n) of the

DUTM3 simulating M3 on input n is:

SD(n) + 3.5q2 + (4.5 + s)q. (7)

Proof. From Property 2, the space complexity for the UTM3 is SD(n)+3.5q2+3.5q−2.

Now, we simply add the space complexity that the DUTM3 itself adds. TDATA for the

DUTM3 works exactly as for the UTM3. TPROG, however, needs additional space to

hold the current subtask for the entry states. In the worst-case scenario, each state in

M3 can be an entry for the last subtask (whose number is equal to s), thus requiring

s+ 1 spaces. Therefore, all q states can require q(s+ 1) additional space on TPROG.

Now, let us consider TSTAT, which is responsible for holding the subtask number or

state number in the DUTM3 (but only one at a time). The maximal subtask number

is s, thus requiring at most s spaces in unary to hold it and one more space for the

blank symbol at the end (for s + 1 spaces in total). Since s cannot be larger than

q (each state can belong to at most one subtask), then this value can be reduced to

q+ 1. Since the UTM3 needed at most q spaces on TSTAT, then this is now increased

by one. As for TCH, we assumed no runtime changes; but the DUTM3 will still scan

TCH to check for them, so at least one space for the blank symbol is needed. To sum

it up, we require at most an additional q(s + 1) + 2 spaces compared to the UTM3,

so SD(n) + 3.5q2 + (4.5 + s)q in total.

Now, we would like to make upper bounds for the space complexity with changes

included. However, it is difficult to consider both the space of the current program

and the space of the new program at the same time, since both programs can have

a quite different number of states and subtasks. The resulting space complexity

would be dependent on many variables; thus, we decided to simply consider the space

complexity needed on TCH to store a series of changes.

Theorem 4. Let C̄ = {C1, C2, . . . , Cm} be a series of m runtime changes (change

descriptions) to be applied to a DTM3 M3. Change Ci has qi internal states and si
subtasks. Then, the upper bound for the space S(C̄) needed for C̄ on TCH is:

m(3.5q2
max + (3.5 + smax)qmax + 0.5s2

max + 1.5smax − 2)− 1, (8)

where qmax = max
i
qi and smax = max

i
si.

Proof. Let us consider description size for change Ci. From Theorem 3, we know that

the space needed for storing the program of a DTM3 with q states and s subtasks

takes up to

3.5q2 + 2.5q − 4 + (s+ 1)q = 3.5q2 + (3.5 + s)q − 4

spaces (minus the two blanks from TPROG needed to detect the program’s end). Next,

we need space to store the forbidden list. The list can contain at most s−1 subtasks (at
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least one subtask cannot be forbidden or the change will never be applied); therefore,

in the worst-case scenario, the list will contain subtasks from 2 to s. Subtask i needs i

spaces plus one space for symbol C, so i+ 1 spaces. Thus, the forbidden list will need

at most
s∑
i=2

(i+ 1) = 1
2 (s2 + 3s− 4) spaces. Next, we need one blank symbol between

the forbidden list and the program as well as one S symbol at the beginning and the

end of the description. Finally, the space needed for the description of change Ci is

at most:

3.5q2
i + (3.5 + si)qi − 4 +

1

2
(s2
i + 3si − 4) + 3 =

= 3.5q2
i + (3.5 + si)qi + 0.5s2

i + 1.5si − 3

spaces. From this, we apply the above formula for the biggest change in C̄: Cmax,

with q = qmax and s = smax. No other change in C̄ will need more spaces; thus, the

final space needed for all m descriptions is at most:

m(3.5q2
max + (3.5 + smax)qmax + 0.5s2

max + 1.5smax − 3) +m− 1 =

= m(3.5q2
max + (3.5 + smax)qmax + 0.5s2

max + 1.5smax − 2)− 1.

The m− 1 part comes from the fact, that we need a blank symbol between each pair

of adjacent descriptions (so, m− 1 blanks in total).

Next, we consider the time complexity. We start with the basic complexity of

the DUTM3 without assuming any changes. This will serve as a comparison to the

time complexity of the UTM3 researched in Property 5.

Theorem 5. Let M3 be a DTM3 with q internal states, s subtasks, and time com-

plexity TD(n) for input n. Then, the upper bound for time complexity TDU (n) of the

DUTM3 simulating M3 on input n with no changes is:

TD(n)(10q2 + (2s+ 22)q + s+ 9) + 1. (9)

Proof. From Property 3, the beginnings of any two adjacent states of the UTM3

are not further apart than 4q + 6 spaces on TPROG. On the DUTM3, a state can

have an additional s + 1 spaces for the subtask number. Then, if follows that the

beginnings of two adjacent states for the DUTM3 are not further apart than 4q+s+7

spaces. Therefore, in the DUTM3, the next state candidate can always be reached in

2(4q + s+ 7) + 2 = 8q + 2s+ 16 steps. Next, we add the candidate-check procedure,

and we get 10q + 2s + 18 steps in total. Now, this procedure will happen at most q

times (check all of the candidates before we find the correct state) for 10q2 +(2s+18)q

steps. As in Property 3, we add 2 (shift before we copy state), q − 1 (copy intended

state to TSTAT), and q+ 1 (clear TSTAT) steps. Consequently, reaching the next state

for the DUTM3 will take at most:

10q2 + (2s+ 18)q + (q + 1) + (q − 1) + 2 = 10q2 + (2s+ 20)q + 2.
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Now, the UTM3 was adding 2q+ 4 steps to omit subsections for zero and one (in the

worst case) and then added 2 to overwrite and shift HDATA. The only difference for

the DUTM3 is that we might also need to shift over the subtask number before we

reach the subsections, adding another s+ 1 steps (so 2q + s+ 7 in total). Therefore,

a single step of the DTM3 is simulated in:

10q2 + (2s+ 20)q + 2 + 2q + s+ 7 = 10q2 + (2s+ 22)q + s+ 9

steps of the DUTM3. Thus, the number of steps needed by the DUTM3 to fully

simulate M3 is at most:

TD(n)(10q2 + (2s+ 22)q + s+ 9) + 1.

The last of these four theorems concerns the upper bound for the number of

steps needed to apply a given change. This case is the most complicated, as the

current program and the change description might have a different number of states

(and subtasks). This means that the required number of steps is dependent on more

variables.

Theorem 6. Let Ci be a runtime change (change description) to be applied to

a DTM3 M3. Ci has qi internal states and si subtasks. M3 has qm internal states

and sm subtasks. Then, the upper bound for time T (C) needed for C to be applied to

the DUTM3 simulating M3 is:

2s2
m + 7q2

m + 13.5q2
i + 3sm + (7 + 2sm)qm + (21.5 + si)qi.

Proof. We start the change-applying procedure when the current symbol on TCH is

scanned and turns out to be S (first step). Then, we shift TPROG to the right to place

it above the first A symbol of the current subtask (second step). Now, copying of

our current (for M3) subtask number to TSTAT commences and will take at most sm
steps.

Checking each subtask on the forbidden list is composed of: 1) shifting HSTAT

back to the beginning of its tape (at most sm steps); 2) shifting HCH once to the right

(one step); and 3) checking whether the subtasks match (at most min{si, sm} ≤ sm
steps). Thus, checking each subtask on the forbidden list takes up to 2sm + 1 steps.

The forbidden list can have at most sm − 1 subtasks, so this process can happen at

most sm−1 times. Thus, the forbidden list check will take at most (sm−1)(2sm+1) =

2s2
m − sm − 1 steps and is independent from si.

If we passed the forbidden list, then HCH is now placed over the blank symbol

between the list and the new program, so we shift it once to the right (one step). Now,

we have to store the current state number on TSTAT, and we start by clearing this

tape (which still holds the subtask number). Since HSTAT can be anywhere between

the tape’s beginning and end, we need at most 2sm steps to clear it (sm to reach the

end, and another sm to shift to the beginning). Now, we need to shift HPROG back
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to the state number. This means shifting back to the subtask number (one step),

through subtask number and symbol C (sm+1 steps) and then through state number

(at most qm steps).

Now, HPROG is placed above the D symbol, so we shift once to the right and copy

the current state number to TSTAT in at most qm − 1 (states are numbered starting

with zero) steps. Now, we have to clear the old program from TPROG, and we do

this by reaching the end of the program (indicated by the double blank symbol),

clearing everything along the way, and then returning to the beginning of TPROG.

Thus, in the worst-case scenario, we have to travel the entire program on the tape

twice. As we know, the program with qm states and sm subtasks can take at most

3.5q2
m + (3.5 + sm)qm − 2 spaces (including the double blank), so clearing it will take

at most 7q2
m + (7 + 2sm)qm − 4 steps. Next, we copy the new program from TCH to

TPROG. This program will take up at most 3.5q2
i + (3.5 + si)qi − 4 spaces (without

double blanks), and copying will consequently take up the same number of steps.

Next, we shift HCH twice to the right so it is placed correctly to scan further

changes. Lastly, M3 needs to reach the internal state it was before the change, and we

achieve this by starting the next state-reaching procedure, which will take no more

than 10q2
i + 18qi + 2 steps. Thus, the final value is:

2s2
m + 7q2

m + 13.5q2
i + 3sm + (7 + 2sm)qm + (21.5 + si)qi.

We have previously assumed that each subtask should have at least one internal

state. From this, it is obvious that the number of subtasks is at most equal to the

number of internal states (s ≤ q). With this remark, we can present less-complicated

upper bounds:

Corollary 1. The space complexity from Theorem 3 is:

SDU (n) ≤ SD(n) + 4.5q2 + 4.5q. (10)

Corollary 2. The space complexity from Theorem 4 is:

S(C̄) ≤ m(5q2
max + 5qmax − 2)− 1, (11)

where qmax = max
i
qi.

Corollary 3. The time complexity from Theorem 5 is:

TDU (n) ≤ TD(n)(12q2 + 23q + 9) + 1. (12)

Corollary 4. The time complexity from Theorem 6 is:

T (C) ≤ 11q2
m + 14.5q2

i + 10qm + 21.5qi. (13)
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If we additionally assume that the number of states for the new version is equal

to the old version (i.e., qm = qi), then the Inequality 13 can be reduced to T (C) ≤
25.5q2

m + 31.5qi.

Now, we would like to make more-general conclusions on the time and space

complexity for the DUTM3 (similar as with Theorems 1 and 2). The proofs follow

immediately from Corollaries 1 and 3.

Theorem 7. Let TDU (n, q, s) be the time complexity for the DUTM3 that simulates

the DTM3 with q internal states and s subtasks on input n, and TD(n) be the time

complexity of that DTM3 on input n. Then:

TDU (n, q, s) ∈ O((q2 + sq + s)TD(n)). (14)

If we simplify with s ≤ q then

TDU (n, q) ∈ O(q2TD(n)). (15)

Theorem 8. Let SDU (n, q, s) be the space complexity for the DUTM3 that simulates

the DTM3 with q internal states and s subtasks on input n, and SD(n) be the space

complexity of that DTM3 on input n. Then:

SDU (n, q, s) ∈ O(SD(n) + q2 + sq). (16)

If we simplify with s ≤ q then

SDU (n, q) ∈ O(SD(n) + q2). (17)

From these properties, we conclude that the DUTM3 has asymptotically the

same time and space complexity as the UTM3 (when both simulate the same DTM3).

However, the DUTM3 is slower than the UTM3. We can use the Inequalities 4 and

12 to compare the time complexities of the UTM3 and DUTM3; with this, we state

the following theorem (which simply creates a rational function and then computes

its limit, with q approaching positive infinity).

Theorem 9. If TU (n) and TDU (n) are upper bounds for the time complexities of the

UTM3 and DUTM3, respectively, simulating a given DTM3 on input n, then:

TDU (n)

TU (n)
=
TD(n)(12q2 + 23q + 9) + 1

TD(n)(10q2 + 20q + 8) + 1
, (18)

lim
{q,TD(n)}→{∞,∞}

TDU (n)

TU (n)
=

6

5
, (19)

sup
TDU (n)

TU (n)
=

6

5
, (20)

inf
TDU (n)

TU (n)
=

15

13
. (21)
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The function from Eq. 18 is monotonically non-decreasing on both variables (for

positive integers). Moreover, the number of states q and execution time TD(n) cannot

be lower than 1, and the limit is as stated in Eq. 19. From this, we conclude that the

function is bounded as shown in Eq. 20 and 21. The infimum is computed based on

the smallest element i.e., T = q = 1. Thus, the execution time of the DUTM3 is no

more than 20% greater than the upper bound for the UTM3.

This 20% seems significant, but it is only an upper bound (and in practice, this

value will be much lower). For example, let us consider the function of two natural

numbers f(a, b) = (2a + 4)/3 + 3(b − 3)/2. A DTM3 for this function was designed,

with 47 internal states and 15 subtasks. During testing (via computer simulation), it

turned out that the DUTM3 simulating this DTM3 was only 3% slower than when

the UTM3 simulated it. Moreover,let us notice that this DTM3 had one subtask

every three internal states (close to the minimum of one state per subtask), which is

very impractical. In real-life applications, such a computable function is but a single

statement. Consequently, real-life subtasks would contain at least dozens of states,

though values in the thousands are very likely as well. To sum it up, the DUTM3

model of computation has little influence on the time complexity (as long as new

subtasks are not entered too often).

Now, we can establish a similar theorem for the space complexity using Inequal-

ities 1 and 10.

Theorem 10. If SU (n) and SDU (n) are upper bounds for the space complexities of

the UTM3 and DUTM3 respectively, simulating a given DTM3 on input n then:

SDU (n)

SU (n)
=

SD(n) + 4.5q2 + 4.5q

SD(n) + 3.5q2 + 3.5q − 2
, (22)

lim
q→∞

SDU (n)

SU (n)
=

9

7
, (23)

lim
SDU (n)→∞

SDU (n)

SU (n)
= 1, (24)

sup
SDU (n)

SU (n)
=

5

3
, (25)

inf
SDU (n)

SU (n)
=

9

7
. (26)

The function from Eq. 22 is monotonically non-increasing; but unfortunately,

a limit on either variable does not exist. We can still conclude that the largest

element is when S = q = 1; thus, yielding our infimum. The supremum is based on

the single-variable limits.In result, the DUTM3 simulating a given DTM3 will need

67% more tape space than the UTM3 (in the worst-case scenario).

Moreover, for practical values of S and q, this additional needed space quickly

approaches 2
7 (about 28.6%) or 0%, depending on the values of S and q. We conclude

that the DUTM3 simulating a given DTM3 will need only about 28.6% more space
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than the UTM3 simulating the same DTM3 (as long as q and SDU (n) are large

enough).

4.3. Oracle Machines and computational power

If we assume no changes done at runtime, then our DUTM3 is reduced to a slower

version of the UTM3. Since the UTM3 is capable of simulating any DTM3, the

DUTM3 is therefore capable of simulating any DTM3 as well. As proved in Property 1,

a DTM3 exists for every computable function. Thus, the DUTM3 is capable of

computing any computable function f(x) = y as long as we encode input x and output

y over alphabet {0,1,#} that is computed by Turing Machines. Let us denote this

set of functions as R (functions µ-recursive).

This means that the computational power od the DUTM3 model is no lower

than the computational power of a regular Turing Machine. Now, we would like

to determine whether the computational power of DUTM3 is greater than that of

a Turing Machine. In order to do this, let us consider a few possible classes of advisers.

4.3.1. Empty adviser

An empty adviser is one that does not generate any change descriptions whatsoever.

In this case, the adviser does not affect the way the DUTM3 simulates its DTM3

and, consequently, has no effect on its computational power. Thus, the DUTM3 with

an empty adviser has exactly the same computational power as the UTM3. The

DUTM3 model with an empty adviser is physically possible to construct (except for

the unbounded tape sizes).

4.3.2. Random adviser

A random adviser produces completely random (but valid) change descriptions. The

number of steps between descriptions is random as well. We can assume that all

change descriptions are equally likely or that the probability of a change description

is inversely proportional to its size (space complexity). In both cases, any change

description (including empty ones) is possible, so each DTM3 can receive a runtime

change that will “break” it; i.e., cause the DTM3 to produce incorrect output. In

result, no DTM3 can guarantee that it will produce the correct answer with a random

adviser, since the probability of receiving a “breaking” runtime change at any time

is greater than zero. Thus, the computational power of the DUTM3 with a random

adviser is no greater than for the regular UTM3. The DUTM3 model with a random

adviser is physically possible to construct as well.

4.3.3. Oracle adviser

Let us modify the DUTM3 a little so it is capable of writing to TCH as well (instead

of merely reading it). Thanks to this, the DUTM3 can fully communicate with the

adviser (of course, we can just add another tape that is writable by the DUTM3 and

readable by the adviser). Thus, the DUTM3 can now directly post requests to the
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adviser. This is a difference, because the original DUTM3 had no way of influencing

the decisions of its adviser.

Now, let us consider the halting problem. This problem is undecidable; i.e., it

cannot be solved (in general) by Turing Machines like the DTM3 or UTM3. However,

DUTM3 can now use TCH to “ask” specific “question”. In particular, DUTM3 can

“ask” the adviser by posting the data of the halting problem the DUTM3 is trying

to solve. Now, let us also assume that the adviser is capable of solving that problem

in a single step. In result, the adviser can create a runtime change (“answer”) that

will cause the DUTM3 to halt with the correct answer.

The outcome of the above modification is, in fact, a flavor of the Oracle Machine

introduced by Turing in one of his papers (now a part of the papers collection by

Martin Davis [5]). With this, our modified DUTM3 can now solve any problem

solvable by Oracle Machines, as long as the adviser (now called the Oracle adviser)

posts the appropriate runtime change. Since we currently have no means of creating

Oracle Machines, we are not able to construct the DUTM3 model with an Oracle

adviser either. Since this specific adviser transformed our DUTM3 into an Oracle

Machine, then the concept of advisers can be thought of as a form of generalization

of Oracle Machines.

4.3.4. Real-life advisers

The concept of adviser was originally introduced to model the behavior of the designer

of the simulated DTM3. Thus, if DTM represents the computer program (software),

then the adviser represents software developers (programmers). However, that also

means that the properties of a real-life adviser are difficult to gauge. We can assume

that such an adviser is neither empty nor an Oracle adviser. This leaves us with

a random adviser, though its probability distribution remains unknown. This effec-

tively means that the upper bound for the computational power of the DUTM3 with

a real-life adviser is the same as for a regular UTM3.

5. Discussion

In this section, we will discuss the practical implications of the results obtained,

including basic implementation possibilities. We start with a presentation of the key

theoretical features of the presented approach.

The DUTM3 model is defined based on the notion of computation and there-

fore it is a general solution. More accurately, the DUTM3 does not assume any

specific programming languages or paradigms, meaning that it is applicable for all

Turing-complete languages and paradigms. This is a progress compared to the most

of the practical solutions proposed in the literature, where a given solution is usually

applied to only a specific language (usually C/C++ or Java), and the possibility of

extending the solution to other languages is questionable at best. Moreover, some

solutions are not only designed to allow changes to specific programming paradigms

(usually object-oriented programming), but sometimes require other paradigms to
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work properly (like aspect-oriented programming or software agents). The DUTM3,

on the other hand, does not rely on any such paradigms and, therefore, has the po-

tential of being applied to a wide array of languages (including declarative/functional

languages like Haskell). Actually, functional languages are closer to the original

notion of computation than imperative ones, so implementing the DUTM3 model

in these languages could prove easier. In result, the DUTM3 can be viewed as

an entirely independent programming paradigm.

In Section 1, we mentioned the features of the dynamic programming languages.

While such features are great tools that make runtime changes easier, they still differ

fundamentally from the DUTM3. By using the graphs of subtasks, the DUTM3

allows for a convenient way of determining the range of a given dynamic change and

when and how that change can be applied. The programmer only needs to define

the subtasks, and these subtasks can correspond to an arbitrary piece of code (it can

be an entire method or only some instructions). Moreover, it is possible to make

the subtask definitions automatically, reducing the effort of the programmer. In

comparison, using the Java reflection on its own would be problematic, as this would

require the programmer to determine whether the insertion of a given class at a given

moment is possible or not. In short, features like reflection mechanism can be used

to implement the idea behind the DUTM3. The difference between the two is that

the DUTM3 already provides the complete method for safe and coherent applying

of properly defined dynamic changes, while reflections is just a low- level method for

code inspection and modification with no inherent awareness of dynamic changes,

their possibility of happening and requirements.

Finally, the DUTM3 model is uniform, meaning not only can it be applied to

a wide array of languages, but it can also be applied to all of them with the same

principle. This, in turn, means that the theoretical overhead and other properties

should hold for all such cases. In practice, however, performance will also depend

on the instruction set of the processor, the operating system, and the language type

(compiled or interpreted languages).

Let us now proceed to a discussion about the practical implementation of the idea

behind the DUTM3. The first problem is the fact that the DUTM3 model treats the

computation the same way as a typical Turing Machine does – using a graph of states

and the transition function. Thus, programs for the DUTM3 are vastly different than

real-life software. In conclusion it would be easier to apply the DUTM3 with some

intermediary step.

Fortunately, such a step exists – in the form of a Random Access Machines

(RAM) model [4]. Such machines are equivalent to Turing Machines, with Random-

access Stored-Program machines (RASP) serving as equivalents to Universal Turing

Machines [7]. The benefits of using RAM/RASP models is that the structure and be-

havior of these models are similar to real computer systems; i.e., the RASP model uses

registers that correspond to the processor and memory registers. Moreover, RASP

programs are defined as sequences of instructions and closely resemble programs writ-

ten in typical assembler language, with instructions such as ADD reg1 reg2, etc.
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Thus, we should try to extend the DUTM3 idea by defining it in the form of

a RASP machine. Such an extension requires additional research and was outside the

original scope of this paper; nonetheless, the research was carried out, and the result

is the Dynamic RASP (DRASP) model proposed in [15]. With such a model, we can

now propose a way to implement the DUTM3 idea in a real-life computer system.

First, we need some way to implement the adviser. While simply establishing a

network connection between a given application and the website providing dynamic

changes (similar to typical software update) is possible, we would like to try a slightly

modified approach by introducing a proxy present on the system where the appli-

cation is executed. This proxy could either be a part of the operating system (this

requires changes to the OS, but can be more beneficial, because the OS is capable

of directly altering the memory) or a dedicated standalone application. The proxy

should be provided with information about the installed applications, their versions,

and IP addresses for the update sites for each application. Thus, the proxy can query,

download, and store the dynamic changes. It can also perform some additional oper-

ations, like uncompressing and decrypting the changes using well-known algorithms.

This can improve performance and take care of some safety issues, providing some

guarantee that the obtained dynamic changes were not tampered with.

Next, let us also notice that the default DUTM3 model presented in this paper

does not verify obtained dynamic changes (whether they are syntactically and se-

mantically correct); but with the proxy, such verification can be done automatically.

Finally, all of the operations done by the proxy are completely independent from the

target application; i.e., the proxy can download and prepare changes, even when the

application is not running. Thus, when the application finally asks the proxy for

dynamic changes, the proxy will either immediately supply it with a verified change

or do nothing. The last issue concerning the proxy is the way it communicates with

a target application. A variety of inter-process communication methods can be used

for this purpose, including sockets, message queues, shared memory, and so on. How-

ever, if the proxy is a part of the OS, then it can simply write the change to the system

memory and then assign that part of the memory (in a form of memory pages) to the

target application. We surmise that the OS approach will be the most efficient and

natural, though it might be harder to implement.

With the proxy defined, we can now move on to actually implementing the

DUTM3 idea in programming languages. First, it is obvious that some changes will

be necessary to the language itself; (e.g., a new keyword that will be used to define

subtasks). Next, we consider three different types of languages: a) interpreted lan-

guages with virtual machines; b) interpreted languages without virtual machines; and

c) compiled languages. As a side note: in theory, any language can be implemented

in any of these three ways, but usually only one method is chosen (and it affects some

properties of the language, like performance or portability).

First, let us consider languages with virtual machines (VMs). In this case, the

implementation is the easiest, as VMs are very similar to the DRASP model men-

tioned above – the intermediary code (bytecode) used by VMs is usually some flavor
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of assembly language. Moreover, it can include some high-level features not normally

used in typical assembler languages. This, in turn, makes it easy to add new instruc-

tions that will signify that a new subtask has been reached. The bytecode resides

in the memory of VM as regular data, so it is easy to modify without the need to

rely on the OS. Of course, the VM needs to comply with DUTM3 rules, applying the

change only when new subtasks are reached and after determining whether a change

is currently possible or not. Once the code has been altered, the built-in interpreter

can execute it as usual. Let us also notice that a Just-In-Time compilation can be

used after dynamic changes have been applied (which can increase performance).

In the case of interpreted languages that lack a VM, the situation is a bit more

difficult, because the input is a source code that is less convenient than bytecode. Still,

the interpreter will either execute source code instruction-by-instruction or transform

the source code into some structure like an abstract syntax tree (AST). In the first

case, the DUTM3 idea can be implemented by replacing the source code in the memory

of the interpreter with the source code obtained from the proxy adviser. In the second

case, the proxy needs to supply the interpreter with the dynamic change that is already

in the form of the AST, or the interpreter will have to transform the change on its own.

Aside from that, the interpreter behaves similarly to the VM, because the program

is treated by interpreter as regular data.

The last and most problematic case is compiled languages. Two issues are: a) how

to execute the code that will perform the change; and b) how to alter the program

that is already compiled and loaded into memory. The first issue can be solved by

changing the compiler so that it will include a special code (a function) to every

program it generates and will call this code every time a new subtask is reached.

While it is possible to add such a function to each program, it would be more efficient

to make it a system function that is the part of the runtime library – then, there is

only one such function, and it is simply shared by many programs in the form of a

dynamic library (DLL in Windows or .so in Linux, for example).

The second issue is more difficult, as the memory pages marked as executable

are not marked as writable (and thus, cannot be easily changed). On the other hand,

pages marked as writable cannot be marked as executable, so it is difficult to simply

write data to memory and then execute it. However, while regular programs cannot

do this, the OS can. We have already used the runtime library to solve the first issue,

so we can simply add a function to the OS that will be called as a part of this runtime.

Since this is a system function, it can alter the memory freely. Because of this, it is

beneficial to implement the proxy as a part of the OS – the communication between

the function and the proxy can be simply done in the kernel of the OS. A basic outline

of this idea is shown in Figure 8. Of course, this approach will require some changes

to both the existing compiles and the OS.

Thus, we have presented the basic methods for implementing the DUTM3 idea

in real-life computer systems and programming languages. Let us note that this

implementation is possible for any language. However, the implementation would

require some changes to existing languages, which may be inconvenient. In such
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a case, it is possible to create two dialects of the same language (one capable of

supporting the dynamic changes, and the other, not).

Figure 8. General structure of the dynamic changes system for the compiled languages.

6. Conclusions

We would like to start the conclusions by providing a short summary of the models

defined in this paper as well as their relationships with other models existing in the

literature. Figure 9 can be consulted for a visual representation of these relationships.

For clarity, we will use the full names of the models once again.

We start with the standard Deterministic Turing Machines (DTMs) that can be

designed to compute any µ-recursive function (the R-class). The DTM works for

any tape alphabet; but for simplicity, we have defined a special case of the DTM

that works only for a 3-symbol alphabet. This model was called the on-line 3-symbol

Deterministic Turing Machine (DTM3) and was proven to have the same computa-

tional power as the original DTM, since any input can be encoded over our 3-symbol

alphabet. Thus, in Figure 9, the DTM3 is shown as a special case of DTM.

Regular DTMs or DTM3s can compute only small portion of the R-class, but

it is possible to define so-called Universal Turing Machine (UTM) that can simulate

any other DTM simply by encoding its program (transition function). The resulting

UTM can substitute any other DTM and compute any problem in R-class as long

as its supplied a proper program. Moreover, UTM only needs to slower that the

DTM it simulates by a constant factor, as the program size is independent from the

size of input. For our research we defined the on-line 3-symbol Universal Turing

Machine (UTM3) that can simulate any DTM3. In Figure 9 the UTM3 is a special

case of the UTM and UTM (UTM3) is a special case of DTM (DTM3) that adds

universality to it.
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Figure 9. Relations between the Deterministic Turing Machine and similar models.

The main finding of this paper is the definition of the on-line 3-symbol Dynamic

Universal Turing Machine (DUTM3) that is connected to an adviser that is capable

of supplying the DUTM3 with change descriptions at runtime. We have proven that

the DUTM3 needs only 2
7 more space and 1

5 more time than the UTM3 to simulate

the same DTM3, and that it indeed allows for runtime code changes. In Figure 9,

the DUTM3 is a special case of the UTM3 that adds dynamic code properties. We

also see that the general version of the DUTM3 that works for any tape alphabet –

DUTM – still remains undefined.

We have also discussed that the adviser is similar to Oracle Machine – the Oracle

can be understood as a special case of adviser and would allow us to compute problems

beyond the R-class – the Oracle-class or O-class. Thus, dynamic models like the

DUTM and DUTM3 stand somewhere between the R- and O-classes. However, with

Oracle being physically impossible to construct, their practical computational power

is restricted to the R-class.

To sum it up, we introduced a dynamic universal model of computation for

3-symbol deterministic Turing Machines (DUTM3) with the capability of applying

code changes at runtime in this paper. We defined runtime codes changes and the algo-

rithm for applying them at the level of models of computation; therefore, this concept

can be used with any programming language or paradigm based on a model of compu-

tation equivalent to a deterministic Turing Machine, including procedural program-

ming (C), functional programming (Haskell), aspect-oriented programming, object-

oriented programming (C++, Java), prototype-based programming (JavaScript), etc.
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We have also discussed how the DUTM3 model could be implemented in real-life pro-

gramming languages.

We confirmed the ability of the DUTM3 to perform runtime changes, and we es-

tablished and proved a set of properties of the DUTM3 (including its computational

power as well as its time and space complexity). In particular, the computational

power of the DUTM3 minus the Oracle adviser was proven to be no less than that

of the Universal Turing Machine. With the Oracle adviser, on the other hand, the

computational power of the DUTM3 matches the computational power of Oracle Ma-

chines. In terms of time and space complexity, we proved that, compared to the

3-symbol deterministic Turing Machine it simulates, the DUTM3 model of computa-

tion imposes no asymptotic penalties on time and space complexity dependent on the

input or its size. However, the model imposes time and space complexity penalties

dependent on the number of internal states and subtasks defined in the simulated

machine. The upper bound on the computation time of the DUTM3 model of com-

putation compared to the UTM3 – introduced in this paper as well – is 20%, while

empirical research suggests a much lower overhead of about 3%. This overhead is also

dependent on the density of subtasks in the final program. Moreover, the DUTM3

uses up to 28.6% more space than the UTM3 in the worst-case scenario; in a practical

case, this is also dependent on the density of the subtasks.
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