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MONTE CARLO FITTING OF DATA
FROM MUON CATALYZED FUSION EXPERIMENTS
IN SOLID HYDROGEN

Applying the classical chi-square fitting procedure for multiparameter systems is in some
cases extremely difficult due to the lack of an analytical expression for the theoretical func-
tions describing the system. This paper presents an analysis procedure for experimental data
using theoretical functions generated by Monte Carlo method, each corresponding to definite
values of the minimization parameters. It was applied for the E742 experiment (TRIUMF,
Vancouver, Canada) data analysis with the aim to analyze data from Muon Catalyzed Fusion
experiments (extraction muonic atom scattering parameters and parameters of pd fusion in
pdμ molecule).

Keywords: data fitting, Monte Carlo simulation, chi-square estimator, gradient calculation,
diffusion simulation, muonic atoms and molecules

DOPASOWYWANIE METODA̧ MONTE CARLO DANYCH
Z EKSPERYMENTÓW KATALIZY MIONOWEJ
W ZESTALONYM WODORZE

Zastosowanie klasycznej procedury fitowania przy użyciu estymatora chi-kwadrat jest
w pewnych przypadkach bardzo trudne z powodu braku analitycznych wyrażeń na teo-
retyczne funkcje opisujące system. W pracy zaprezentowano procedurę analizy danych
eksperymentalnych przy użyciu teoretycznych funkcji generowanych metodą Monte Car-
lo, odpowiadających zdefiniowanym wartościom szukanych parametrów. Analiza została za-
stosowana dla eksperymentu E742 (TRIUMF, Vancouver, Kanada) w celu opisu danych
pochodzących z syntezy jądrowej katalizowanej mionami (uzyskanie parametrów opisujących
rozpraszanie atomów mionowych i parametrów syntezy pd w molekule pdμ).

Słowa kluczowe: dopasowywanie danych, symulacja Monte Carlo, estymator chi-kwadrat,
obliczenia gradientu, symulacja dyfuzji, atomy i molekuły mionowe
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1. Introduction

For a wide range of physical problems the only applicable way to compare experiment
with theory is via the Monte Carlo (MC) method. Problems of this type are often
multiparameter, with nontrivial interdependencies between the parameters, such as
averaging arising from spatially discrete effects. Thus, only an exact simulation of
the experimental system allows us a possible analysis, and hence we rely on the MC
method.
However, the MC method has several limitations, mostly related to the calcula-

tion time and nature of random sampling. Provided the simulation has been correctly
established to analyze all competitive processes, the modeling of events which are fair-
ly rare and hidden inside many other processes often requires long calculation time
to establish sufficient statistics for comparison. The intrinsic nature of random num-
bers and the generators presently in use cause that any two simulations of the same
system can give different results. Normally, for large numbers of generated statistics
these differences are small and completely insignificant. Such limitations are not very
important when we carry on a single simulation for one experiment, i.e., when there
are no variable parameters and one output result is sufficient. However, the limitations
are amplified when we apply the MC method to fitting procedures.
As is fairly well known, finding the best fit parameters describing a multitude

of data requires repeated calculation of some statistical estimator. Most often, the
estimator is χ2, which is defined as the difference between the theoretical description
and the experimental data, see Eq. (3). The theoretical description of the data depends
on several parameters and thus χ2 is calculated as a function of those parameters.
Finally, the result is the set of parameters for which the χ2 is minimal.
Classical fitting algorithms, e.g., the minimization package Minuit [1], calculate

χ2 from the model parameters (see Fig. 1). When the χ2 minimum depends on two
or more variables, the error determination on the parameters as well as the study of
the possible occurrence from several minima require calculations of several thousands
theoretical functions, and hence, the calculations becomes extremely time-consuming.
However, the MC evaluation of the theoretical function, just for one set of parameters,
is very time exhaustive (measured in hours or even days): thousands of iterations are
not possible. Even if the calculation time were acceptable, the intrinsic nature of MC
simulations makes such an approach impossible since instabilities will arise resulting
from the statistical nature of the results. When fitting, the minimization procedure
examines the behaviour of differences in χ2 for differing values of the parameter set.
The minimization procedure then calculates the internal gradient of χ2 and uses it
to control the minimum searching procedure. The gradient is obtained from a set of
partial derivatives for each variable parameter where the derivatives are calculated
numerically from difference quotients. Normally, the minimum should be reached when
all the gradients converge to zero. Clearly, the statistical fluctuations of the MC
method can cause entirely false gradients, and thus such a minimization procedure is
not suitable for our problem.
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Fig. 1. Diagram of fitting procedure using grids. Modifications are marked with by red line.
The dashed line denotes the procedure defined by users

The work of Zech [2] presents methods for comparing MC generated histograms
to experimental data when the analytic distribution is known. In our case we compare
the experimental data with MC simulations [3] which including all parameters of the
apparatus, such as the spatial separation of processes, detector resolution, dead time,
etc, and therefore, we can directly compare experimental and Monte Carlo spectra.
If we ask “given a data distribution, and a set of MC distributions, what is the

best estimate of the fraction of each MC distribution present in the data distribution?”
a standard set of subroutines [4], are available to solve that problem. However, the
experimental histograms in our case are not equivalent to assuming of discrete MC
spectra, and the method above cannot be applied. The aim our paper is to describe
such algorithms and to show via example that it is fully applicable. As examples the
scattering of muonic atoms on a structure of crystalline hydrogen and fusion in a pdμ
molecule are presented.

2. Description of Method

2.1. Modified fitting procedure

We proposed a modification to the calculation of the theoretical functionsM(�p) which
describe the data for a given parameter vector �p = (p1, p2, . . . , pn). Before fitting,
one generates a set of theoretical functions {M} = {Mγ,δ,...,φ, Mγ′,δ′,...,φ′ , . . .} for
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all permutations of a chosen discrete set of parameter values (pγ1 , p
δ
2, . . . , p

φ
n) where

γ, δ, . . . , φ are the function indexes in the set. The parameter vector �p is allowed
to assume only discrete values which gives the grid of theoretical functions a size
γ × δ × . . . × φ, and means that the time-consuming calculations are only executed
for a selected and limited parameter set {p} = {(pγ1 , pδ2, . . . , pφn), (pγ

′
1 , p

δ′
2 , . . . , p

φ′
n ), . . .}.

The resulting set of function values, {M}, is used to calculate any theoretical function
M for any arbitrary parameter vector �p (provided all pi values in �p are between
some calculated values of pγi and p

γ′
i contained in the grid) using the interpolation

procedure described in Sec. 2.3. Once the {M} set is known, the interpolation is
relatively fast, and the results, M(�p), can be used to calculate the χ2. Note that none
of the above precludes M from depending on other variables, such as time or space,
and hence the generated Mγ,δ,...,φ could just as well be written Mγ,δ,...,φ(t, �x), so the
generated functions may very well, themselves, be multidimensional. Figure 1 presents
schematically the fitting procedure with these modifications.
The number of functions in the set {M} depends on each analysis case and should

depend on the behaviour of the function M(�p) for a given parameter pi. One should
note that using too few grid points will give only a weak expression of the function’s
behaviour, whereas using a too fine division will, for small parameter changes, falsi-
fy the gradient calculations due to the statistical MC fluctuations. Properly chosen
distances between grid points eliminate the statistical fluctuations of the theoretical
function because the values between grid points are interpolated.

2.2. Description of the χ2 calculation

We choose MC statistics on average about ten times greater than the statistical uncer-
tainty in experimental data (less than that and we are insensitive to our parameters
while fitting; more we use more MC calculation time for essentially no gain in sen-
sitivity). Therefore, we neglect the statistical errors connected with the MC and use
the classical χ2 definition where the fits of the analytical functions are applied. Very
sophisticated definitions of χ2, including MC statistical fluctuations, are presented in
Ref. [5], however, they are most useful in the case where experiment and simulation
have similar statistics.
It is possible to use many sets of data from different experimental conditions,

provided they can all be modeled by the same �p parameters, and define the total χ2

as the sum of the individual χ2k calculated separately for a single data set k. Thus,
the total χ2, calculated when we perform simultaneously fits to m sets of data, is:

χ2 = m
∑

k

wk · χ2k, (1)

where k is the histogram index running over a single set of data, and wk is the
corresponding weight.
The weights, wk are calculated as a count ratio in each histogram relative to the

total counts in all histograms, such that histograms with more counts give a greater
share in the total χ2:
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wk =

∑
i

N i(k)

m∑
l=1

∑
i

N i(l)
, (2)

where N i is the number of events in channel i of the experimental spectrum.
The partial χ2k is calculated as:

χ2k =
∑

i

[
ck ·M i(k)−N i(k)

]2

N i(k)
, (3)

where ck is a factor matching the kth experimental N i with its corresponding MC
histograms M i and is given by:

ck =

∑
i

N i(k)
∑
i

M i(k)
. (4)

2.3. The interpolation method

The grids are generated only for a finite and discrete set of parameters for all per-
mutations of the parameters. However, as follows from the minimization procedure,
theoretical functions are necessary from a continuous parameter space (p1, p2, . . . , pn)
and the interpolation procedure using the grids is applied to generate such functions.
A well known method called ’the cubic spline interpolation’ is used. In the presented
analysis, the second derivatives for the first and last values of M ′′ are set to zero,
the so-called natural cubic spline interpolation. This method has ability to reproduce
the M function at any [p1, p2] inside the four neighboring points (for two-dimensional
interpolation). In our method we had to perform a multidimensional interpolation,
which was reduced to series of one dimensional interpolations. Each one-dimensional
interpolation is well defined.
Detailed description of the used method can be found, for example, in [6, 7].

3. Application of the method

3.1. Description of the experiment

In this section we apply our analysis method to the data obtained in the E742 exper-
iment performed at TRIUMF, Vancouver (Canada). The experiment was dedicated
to the study of μ-atomic processes occurring in solid hydrogen isotopes. The aim of
the measurement was:

• reconstruction (theoretically calculated [8]) energy dependence of the elastic
scattering cross-sections for muonic atoms in the process: dμ + p → dμ + p on
crystalline hydrogen at a temperature of 3 K,

• determination pdμ molecule formation rate and rate of fusion in this molecule.
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To analyze the experiment, we used MC simulations because other processes are
competing with the scattering and pdμ molecule formation, as well as the complica-
tions coming from the geometry of the experiment. Figure 2 presents the diagram of
the simulation of the processes taken into account [3]. The initial time is given when
a muon enters the apparatus. The outputs of the simulation are:

• a X–ray time spectrum (see ’processes in external layers’),
• spectra of γ and converted μ (see ’muonic processes’),

which can be directly compared with the experimentally measured ones.

Fig. 2. Diagram of FOW program used to simulate the E742 experiment. Four process blocks
are shown, namely the processes in external layers, the muon stopping, the diffusion, and

the muonic processes. The output of the simulation: X-ray, μ and γ is visible

Detailed information about the experiment can be found in Ref. [9] and references
therein.

3.2. Grid construction

One-dimensional grid. This grid concerns the formation rate of the pdμ molecule, the
formation rate was rescaled by scaling factor in range 0.0–2.0 with step equal to 0.2.
The grid size is 11 and �p = r [10].

Two-dimensional grid. We assumed only that the general shape of the cross-section
curve was valid. We vary only the depth and the position of the minimum of the R–T
region. The theoretical dependence of the cross-section from the collision energy was
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parametrized using parameter vector defined as: �p = (ΔE, s) (energy shift ΔE and a
scaling factor s).

The grid size is γ × δ = 11 × 11. The shift values, p1 = ΔE, were defined
as 11 points between −0.5 eV to 0.5 eV, in steps of 0.1 eV. The curves for the
depth parametrization have a rescaled minimum cross-section σ(ER) = s · σ(ER).
The rescaling took place in the energy range 0.5–6 eV, with 11 values of the rescaling
parameter p2 = s: s ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.25, 1.4, 1.7, 2.0}.
The parametrisation example can be seen in Fig. 3a.

a) b)

Fig. 3. An example of two-dimensional parametrization of the R-T minimum depth (a). In
this case the parameter vector �p = (ΔE, s). Some values of ΔE and s, which concern the min-
imum cross section σΔE,s(ER) are indicated. An example of the grid –Mα,β(ΔE, s) function,
for the parametrisation given in the left, for chosen and indicated values of α and β (b)

To preserve the smooth form of the cross sections, values within the 0.5–6 eV
range were not globally scaled by s, but were scaled by a factor which ranged from 1
at the borders, to s at the energy of the R–T minimum. The s values (except the
minimum value) were selected numerically to reproduce the characteristic shape of
the cross-section function inside the R–T region.

An example of grid obtained for such a parametrisation is presented in Fig. 3b.

In the presented simulations it was assumed that good events should be about
50–100 thousand (then, it is possible to accept that statistical error of MC spectrum
is considerably smaller than in the case of experimental spectra). This necessitated to
simulate for one single analysis (one point on the ”grid”) very large number of events
(we simulated 5 million events). It should be mentioned, that interesting events have
small probability of incident, for example: the probability of dμ escaping from US layer
is order of 0.05 and the probability of reaching the neon layer (on DS) is ca. 0.01 and
the pdμ formation probality is ca. 0.07. The computational time necessary for realiza-
tion of such a single simulation was equal to ca. 2h of the CPU on SGI2800 computer,
for programme in Fortran 77, in scalar version, optimized under calculations speed.
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For the grid with size 11×11 the time of generation would take theoretically ca. two
weeks of the CPU time, but simultaneous run of the 3 jobs was sometime possible, so
practically real time of one grid generation was ca. one week. For the final analysis, it
was necessary to have generated six such grids (three for hydrogen-deuterium mixture
and three for hydrogen-tritium mixture). Additionally, it was necessary to generate
some test grids in order to choose the simulation statistics and the number and values
of grid points.

3.3. The results

An example of the experimental data fits using the MC time spectra (see the example
in Fig. 3) is presented in Figure 4 (example for one-parameter fitting) and in Figure 5
(example for two-parameter fitting).

a) b)

Fig. 4. Example of a one-dimensional fit (for one set of data) (a). Example of a χ2 scan, the
grid points are marked by blue circles (b)

For the presented examples we obtained the following results:

• One parameter fitting: fusion rates in pdμ molecule (for details see [10]). The
formation rate were scaled and the obtained value is 6.7 · 106 s−1 (scaling factor
equal 1.19) (see Fig. 4). The results are consistent (within the error range) with
the simplified analytical calculation.

• Two parameter firring: ΔE = 0.19± 0.03 eV and s = 1.09± 0.03.
The errors of the fitting are connected with low experimental statistics, some

background problems, and also with the grid steps (0.10 eV for ΔE and 0.1–0.2 for s)
and finally with the interpolation procedure.

4. Conclusion

The method allowed us to perform a correct comparison of experimental data with
theoretical predictions based on MC calculations. Although the experimental data
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a) b)

Fig. 5. Example of a two-parameter fit. In this case three sets of experimental data (called
expositions 1-3) were fitted simultaneously (the scattering cross-section does not depend on
experimental conditions and fitting spectra obtained at three different conditions with the

same parameters should reduce systematics) (a). Example of a contour (b)

was obtained only in a few weeks of muon beam usage, the grid construction was
a time-consuming step requiring more than six months of calculation (SGI2800 in
ACK Krakow). The fitting procedure was quick (on PC computer one single fitting
took ca. half an hour) and allowed us to prepare many fits for any combination of the
data and perform a more complex analysis of the data themselves, e.g., χ2-contour
and error calculations.

To establish a more precise set of mathematical rules, which test the correctness
of this method, one needs to perform further studies but such was not the aim of
this work. This paper do not present a formal mathematical proof of the method,
however the procedure based of the method was able to give us useful results. The
grid method, as demonstrated here, is fully acceptable for analyzing systems with
a complex multiparameter dependences and we believe that can be very useful for
such class of data analysis. Moreover, our procedure was internally checked by com-
paring results of fitting single and summed data, and in some cases, comparison was
performed with analytical calculations.

As a further step we plan to perform analysis of the errors of this procedure
and determine errors connected e.g. with: limited number of the grid points, distance
between the grid points or number of simulated events. Test of some modification of
classical χ2 estimator will be also performed.
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