
Maciej Woźniak
Maciej Paszyński

APPLICATION OF PROJECTION-BASED
INTERPOLATION ALGORITHM
FOR NON-STATIONARY PROBLEM

Abstract In this paper, we present a solver for non-stationary problems using L2 projec-

tion and h-adaptations. The solver utilizes the Euler time integration scheme

for time evolution mixed with projection-based interpolation techniques for

solving the L2 projection problem at every time step. The solver is tested on

the model problem of a heat transfer in an L-shape domain. We show that our

solver delivers linear computational cost at every time step.

Keywords L-Shape, h-adaptivity, parallel, L2 projection, non-stationary

Citation

2016/09/21; 22:36 str. 1/23

Computer Science • 17 (3) 2016 http://dx.doi.org/10.7494/csci.2016.17.3.297

Computer Science 17 (3) 2016: 297–319

297

http://journals.agh.edu.pl/csci/

1. Introduction

In this paper, we present how the projection-based interpolation algorithm (originally

introduced by Leszek Demkowicz [2]) can be used for efficiently solving non-stationary

problems. This is possible when the non-stationary problem is solved with the Euler

scheme and reduced to a sequence of L2 projections. Classical algorithms dealing

with solving this problem (such as multi-frontal solvers [4, 5]) have O(N1.5) compu-

tational cost for each time step, in the case of a regular grid. The possible parallel

implementation can reduce the cost to O(N) [1]. Additionally, for grids with point

or edge singularities, it is possible to reduce the computational cost to O(N) using

a sequential multi-frontal solver [6, 9, 14]. The parallelization of these techniques

for grids with point or edge singularities allow us to reduce the cost to O(logN). In

this paper, we present an alternative projection-based interpolation solver that re-

duces the computational cost to O(N) in the case of sequential execution and even

further to O(Nc) when we use c cores. The projection-based interpolation technique

has been successfully used for generating continuous approximations of two- or three-

dimensional bitmaps, with applications to material science [10, 11, 12, 15] or modeling

of the human head [8]. In this paper, we focus on utilizing the Projection-Based Inter-

polation (PBI) algorithm for solving a sequence of projection problems arising from

the Euler scheme used for time discretization of non-stationary problems.

2. Issues to be addressed in this work

In this chapter, we are going to indicate the algorithmic challenges as well as the

functional and non-functional issues related to the problem of constructing an efficient

sequential and parallel projection-based interpolation method solver.

2.1. Challenges

There are two key challenges in the algorithm. The main one is to enable explicit

L2 projections from the previous time step. The second challenge is to design a new

error estimation and the element dividing rules.

Most implementations are parallelized using MPI or PVM. Both solutions are very

effective, but they cannot run on GPU. In terms of rationalization, the major change

would be the use of CUDA. This will bring the ability to run on massively parallel

machines with shared memory as new generations of graphic cards. Last but not

least, an important challenge is to achieve straightforward parallel implementation,

based on the loop parallelization.

2.2. Architectural design principles

In this section, we compare the architectural design principles to those presented in

state-of-the-art adaptive codes [10] and [7]. All changes in 2.1 imply the following

architectural design principles. For efficient parallelization on a GPU architecture,

2016/09/21; 22:36 str. 2/23

298 Maciej Woźniak, Maciej Paszyński

we give up the refinement trees and utilize flat data structures more suitable for

multi-core processing.

3. Functional requirements

1. Range of equations

(a) Solves Partial Differential Equations in 2D with the Finite Element Analysis

i. Supports h-adaptive refinements

ii. Allows Dirichlet, Cauchy, and Neumann Boundary Conditions

iii. Uses hierarchical basis functions

iv. Uses Euler time discretization method

2. Provides visualization

(a) Plots current solution in each time step

(b) Plots current mesh in each time step

(c) Prints to standard output current error in time step/adaptation step

4. Non-functional requirements

1. Ability to be understood by an average programmer

(a) Easy algorithm

(b) Simple data structures

2. Ability to perform on massive parallel machines

(a) Easy scalability in shared memory model

(b) Ability to run on GPU

5. Basis functions used for the solution

of the L2 projection problem

The projection problem is solved over a finite element mesh. To the mesh that we

used in our simulation is presented in Figure 5a, as well as the master element is

presented in Figure 5a, while an exemplary element is presented in Figure 1. At the

element vertices, edges, and interiors, we define the so-called basis functions used for

the approximation of the projection problem solution.

5.1. 1D case

Over the 1D element, we define the following set of two nodal and one edge functions.

See Figures 2a–2c.

χ1(ε) = 1− ε (1)

χ2(ε) = ε (2)

χ3(ε) = (1− ε) (3)

2016/09/21; 22:36 str. 3/23

Application of projection-based interpolation algorithm (...) 299

ϕ9

ϕ4 ϕ3

ϕ1 ϕ2
ϕ5

ϕ8

ϕ7

ϕ6

Figure 1. Element functions.

5.2. 2D case

Over the 2D element we define the following set of four vertex, four edge, and one

internal bubble function.

φ̂1(x1, x2) = χ1(x1)χ1(x2) = (1− x1)(1− x2) (4)

φ̂2(x1, x2) = χ2(x1)χ1(x2) = x1(1− x2) (5)

φ̂3(x1, x2) = χ2(x1)χ2(x2) = x1x2 (6)

φ̂4(x1, x2) = χ1(x1)χ2(x2) = (1− x1)x2 (7)

φ̂5(x1, x2) = χ3(x1)χ1(x2) = (1− x1)x1(1− x2) (8)

φ̂6(x1, x2) = χ2(x1)χ3(x2) = x1(1− x2)x2 (9)

φ̂7(x1, x2) = χ3(x1)χ2(x2) = (1− x1)x1x2 (10)

φ̂8(x1, x2) = χ1(x1)χ3(x2) = (1− x1)(1− x2)x2 (11)

φ̂9(x1, x2) = χ3(x1)χ3(x2) = (1− x1)x1(1− x2)x2 (12)

Element basis functions are presented in Figures 3a–3i.

6. L2 projection

6.1. Definition

Here, we define the L2 projection that will be used hereafter.

2016/09/21; 22:36 str. 4/23

300 Maciej Woźniak, Maciej Paszyński

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

x

ε

(a) Function χ1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

x

ε

(b) Function χ2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

x

ε

(c) Function χ3

Figure 2. 1D basis functions.

The L2 projection u = PhB ∈ Vh of a function of two variables B ∈ L2(Ω) is

defined by [13]:

∀v ∈ Vh :

∫

Ω

(B − u)v dx = 0 (13)

We seek for approximation u ≈∑i aiei where ei are basis functions over the compu-

tational mesh, such as the u approximates a given function B.

6.2. Solution of the L2 projection problem
by projection-based interpolation

The projection problem can be solved by using the so-called projection-based in-

terpolation technique originally introduced by Leszek Demkowicz in the context of

error estimations for hp adaptive finite element method [3]. The method solves the

projection problem locally over each element, starting from vertices:

uvert =

4∑

i=1

aiφ̂i (14)

2016/09/21; 22:36 str. 5/23

Application of projection-based interpolation algorithm (...) 301

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

φ

x1

x2

φ

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

φ

x1

x2

φ

(a) Function φ1

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

φ

x1

x2

φ

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

φ

x1

x2

φ

(b) Function φ2

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

φ

x1

x2

φ

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

φ

x1

x2

φ

(c) Function φ3

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

φ

x1

x2

φ

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

φ

x1

x2

φ

(d) Function φ4

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

φ

x1

x2

φ

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

φ

x1

x2

φ

(e) Function φ5

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

φ

x1

x2

φ

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

φ

x1

x2

φ

(f) Function φ6

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

φ

x1

x2

φ

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

φ

x1

x2

φ

(g) Function φ7

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

φ

x1

x2

φ

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

φ

x1

x2

φ

(h) Function φ8

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

φ

x1

x2

φ

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

φ

x1

x2

φ

(i) Function φ9

Figure 3. 2D basis functions.

2016/09/21; 22:36 str. 6/23

302 Maciej Woźniak, Maciej Paszyński

through edges:

uedge =

8∑

i=5

biφ̂i (15)

and finishing with interior:

uint = c9φ̂9 (16)

finally:

u = uvert + uedge + uint (17)

Let us assume that ut+1 = B(ut), where ut and ut+1 are solutions at time steps t and

t+ 1. Let p be an arbitrary point in Ω, then ∀p ∈ Ω : ut+1(p) = B(ut(p)).

6.3. Vertices

Let us start with a simple fact that, for approximation at a given point, we can simply

use the value of the function at the point:

ai = B(vertexi) (18)

6.4. Edges

We minimize the L2 norm; namely, the difference between function B and it’s approx-

imation over edge:

‖(B − uvert)− biφ̂i‖L2 → 0 (19)

By rewriting the norm, we obtain:

∀v ∈ Vh
∫

edge

[(B − uvert)− biφ̂i]v dx = 0 (20)

in our case, v = φ̂i and Ei is edge:

∫

Ei

[(B − uvert)− biφ̂i]φ̂i dx = 0 (21)

∫

Ei

[(B −
4∑

j=1

aj φ̂j)− biφ̂i]φ̂i dx = 0 (22)

bi

∫

Ei

φ̂i
2
dx =

∫

Ei


B −

4∑

j=1

aj φ̂j


 φ̂i dx (23)

2016/09/21; 22:36 str. 7/23

Application of projection-based interpolation algorithm (...) 303

bi =

∫
Ei

(
B −

4∑
j=1

aj φ̂j

)
φ̂i dx

∫
Ei

φ̂2
i dx

(24)

All integrals can be simply calculated by Gaussian Quadratures. Similar considera-

tions can be made for all of the remaining edges.

6.5. Internal bubble node

We minimize norm L2; namely, the difference between function B and it’s approxi-

mation over an interior:

‖(B − uvert − uedges)− c9φ̂9‖L2 → 0 (25)

In our case, v = φ̂9 and Fi is element

∫

Fi

[(B − uvert − uedges)− c9φ̂9]φ̂9 dx
2 = 0 (26)

∫

Fi

[(B −
4∑

i=1

aiφ̂i −
8∑

j=5

bj φ̂j)− c9φ̂9]φ̂9 dx
2 = 0 (27)

c9

∫

Fi

φ̂9
2
dx2 =

∫

Fi


B −

4∑

i=1

aiφ̂i −
8∑

j=5

bj φ̂j


 φ̂9 dx

2 (28)

c9 =

∫
Fi

(
B −

4∑
i=1

aiφ̂i −
8∑
j=5

bj φ̂j

)
φ̂9 dx

2

∫
Fi

φ̂2
9 dx

2
(29)

All integrals can be simply calculated by Gaussian quadratures.

6.6. Error estimation

In the classical FEM, we estimate error by calculating the solutions for fine mesh and

coarse mesh. In that case, error estimation is:

error = ‖B(ufine)−B(ucoarse)‖L2 (30)

error =

∫

F

[B(ufine)−B(ucoarse)] dx (31)

In the projection method, we can estimate error without calculating fine mesh:

error = ‖B(ut)− ut+1‖L2 (32)

2016/09/21; 22:36 str. 8/23

304 Maciej Woźniak, Maciej Paszyński

error =

∫

F

[B(ut)− ut+1] dx (33)

where B(ut) denotes applying B in each point and ut+1 is FE-interpolant with FEM.

All integrals can be calculated by Gaussian quadratures, which simplifies calculating

B(ut) to points of quadrature.

7. H-adaptations

There are different types of adaptations to mention; the most important ones being

h and p adaptations. In the algorithm, we take a closer look only at h-adaptations.

There are two basic rules for h-adaptations one has to follow [7.1–7.2].

7.1. Single irregularity

The element can be divided into smaller elements only if its neighbors are not greater

in size than the element itself. This means that, if element has a bigger neighbor, we

first have to divide the neighbor. For example, the upper neighbor has two bottom

neighbors. This means that it is bigger and has to be divided first. See Figure 4.

Figure 4. Left Panel: Initial elements. Middle panel: Attempt of breaking element. Right

panel: Single irregularity rule applied.

7.2. Breaking of edges

In classical h-adaptation, the edge can be divided only if the neighbor sharing the

edge is divided. As long as we use a different algorithm than the traditional one, we

can change this rule. The edge can be divided even if its neighbor sharing the edge is

not divided. Then, we have to enforce the values on the broken edge to make it act

as if it is not divided until we divide the neighbor. The same rule applies to vertices

on broken edges.

8. Data structures

In this section, we will show the data structures we used in the algorithm. See record

definitions 1, 2, and 3. We will refer to them in Sections 9 and 10.

2016/09/21; 22:36 str. 9/23

Application of projection-based interpolation algorithm (...) 305

vertex

integer x
integer y
float a

Record definition 1

Vertex data structure

edge

vertex begin
vertex end
float b

Record definition 2

Edge data structure

element

element upperNeighbor[2]
element bottomNeighbor[2]
element leftNeighbor[2]
element rightNeighbor[2]
integer upperNeighborsCalculate
integer bottomNeighborsCalculate
integer leftNeighborsCalculate
integer rightNeighborsCalculate
vertex upperLefVertex
vertex upperRightVertex
vertex bottomLeftVertex
vertex bottomRightVertex
edge upperEdge
edge bottomEdge
edge leftEdge
edge rightEdge
double c
double error

Record definition 3

Element data structure

8.1. Time step

Each time step is represented by a bitmap of floats. Each initial element has a reso-

lution of several pixels to enable adaptation. Furthermore, after tests, it turned out

that the resolution of an element below 10 pixels doesn’t make sense for interpolation

and error estimation.

2016/09/21; 22:36 str. 10/23

306 Maciej Woźniak, Maciej Paszyński

9. Algorithm

In this section, we will describe in pseudo-code basis of algorithm. The serial imple-

mentation of the computations performed in a single time step can be expressed by

the following pseudo-code, using the loop parallelization paradigm Listing 1.

Listing 1. Serial version.

1 BEGIN

2 work = true

3 while work

4 for i = 0, vertices number − 1 :

5 vertices[i].a = B(vertices[i])

6 end loop

7 for i = 0, edges number − 1 :

8 edges[i].b = calculate b(edges[i])

9 end loop

10 for i = 0, element number − 1 :

11 elements[i].c = calculate c(elements[i])

12 end loop

13 current max error = 0(* for i = 0, element number − 1 :

14 elements[i].error = compute error(elements[i])

15 if elements[i].error > current max error

16 current max error = elements[i].error

17 end if

18 end loop

19 if current max error > max error

20 for i = 0, element number − 1 :

21 if elements[i].error > 0.3 ∗ current max error
22 break elements[i]

23 end if

24 end loop

25 else

26 work = false

27 end if

28 end loop

29 for i = 0, element number − 1 :

30 interpolate(elements[i])

31 end loop

32 END

Algorithms for calculating coefficients a, b, and c can be easily obtained from 6.

2016/09/21; 22:36 str. 11/23

Application of projection-based interpolation algorithm (...) 307

10. Parallel algorithm

In this section, we will describe in pseudo-code basis of algorithm. The parallel

implementation of the computations performed in a single time step can be expressed

by the following pseudo-code, using the loop parallelization paradigm Listing 2.

Listing 2. Parallel version.

1 BEGIN

2 work = true

3 while work

4 parallel for i = 0, vertices number − 1 :

5 vertices[i].a = B(vertices[i])

6 end loop

7 parallel for i = 0, edges number − 1 :

8 edges[i].b = calculate b(edges[i])

9 end loop

10 parallel for i = 0, element number − 1 :

11 elements[i].c = calculate c(elements[i])

12 end loop

13 current max error = 0

14 for i = 0, element number − 1 :

15 elements[i].error = calculate error(elements[i])

16 If elements[i].error > current max error

17 current max error = elements[i].error

18 end if

19 end loop

20 if current max error > max error

21 for i = 0, element number − 1 :

22 if elements[i].error > 0.3 ∗ current max error
23 break elements[i]

24 end if

25 end loop

26 else

27 work = false

28 end if

29 end loop

30 parallel for i = 0, element number − 1 :

31 interpolate(elements[i])

32 end loop

33 END

10.1. Breaking element

See Listing 3.

2016/09/21; 22:36 str. 12/23

308 Maciej Woźniak, Maciej Paszyński

Listing 3. Element breaking rule.

1 BEGIN

2 enforce single irregularity rule

3 create new elements, vertices and edges in the center of old

↪→ element

4 for each edge

5 if edge was not broken

6 break edge

7 if edge is not edge of domain

8 enforce values at new edges and vertices

9 end if

10 else

11 get broken edges and vertices

12 end if

13 end loop

14 set neighbors

15 END

11. Problem formulation

Let us take a closer look at the heat transfer in the L-shaped domain. The transfer

can be represented with the following equation:

∂u

∂t
−∆u = f (34)

In our case, the upper left edge of the domain is heated to temperature 1. The bottom

right edge is cooled to temperature −1. None of the other edges are cooled nor heated.

f =





1− ut where x = 0

−1− ut where y = 0

0 where x 6= 0 and y 6= 0

(35)

We can transform the equation by using the Euler method with ∂u
∂t = ut+1−ut

δ , where

δ → 0 in the following way:

ut+1 − ut
δ

−∆u = f (36)

ut+1 − ut −∆uδ = fδ (37)

ut+1 = ut + ∆uδ + fδ (38)

Finally, we solve the above equation in the following time step as a sequence of

projection problems.

2016/09/21; 22:36 str. 13/23

Application of projection-based interpolation algorithm (...) 309

12. Results

In this section, we will present the results of testing the algorithm on a benchmark

heat transfer in the L-Shape domain. Both for meshes and heat distribution, we used

an initial mesh of 1 × 1 element, resolution 640 × 640 per element, max error 0.001,

and time step 0.5.

The resulting meshes are presented in Figures (5a–5f).

Heat distribution is presented in Figures (6a–6f).

12.1. Error decrease rate

We calculated error rates for meshes of 1 to 1024 elements without adaptation as

well as with (see Fig. 7). The total bitmap size is 20480 pixels. In the plot, we

treat adaptation levels as a constant mesh (the same size as the smallest elements).

Relative error is estimated in the manner shown in Subsection 6.6.

12.2. Calculating time

We calculated error rates for meshes of 1 to 1024 elements without adaptation as

well as with. The total bitmap size is 20480 pixels. In the plot, we use the same

the initial mesh for both versions of algorithm (with and without adaptations). Since

interpolation should take most of the calculating time, we tested the algorithm with

different number of elements (each of size 10 pixels). For bitmap of size 10240×10240

and constant mesh total calculating time takes 68.49 seconds while interpolation 34.81

seconds. This means that interpolation can take 50% of the total calculating time:

see Figures 8 and 9.

13. Computational cost estimates

13.1. Solve

Each element is approximated by a set of polynomials: 4 polynomials order 1 on

vertices, 4 polynomials order 2 on edges, and 1 polynomial order 2 in the center

on element. Solving the element includes calculating the weights of polynomials over

element. Calculating vertex weights is constant and takes Φvertex. Calculating weights

of the edges requires the use of a Gauss quadrature with 2 points and takes 2Φedge,

while calculating the weight of the center requires the use of a Gauss quadrature with

4 points and takes 4Φcenter. Take a closer look at Φvertex, Φedge, and Φcenter. We

can see that these are constants. Calculating weights over element takes

tsolve = Φvertex + 2Φedge + 4Φcenter (39)

This means each element is being solved in constant time and complexity O(1).

2016/09/21; 22:36 str. 14/23

310 Maciej Woźniak, Maciej Paszyński

(a) Mesh in time step 0 (b) Mesh in time step 10

(c) Mesh in time step 40 (d) Mesh in time step 130

(e) Mesh in time step 400 (f) Mesh in time step 5860

Figure 5. Mesh in different time steps.

2016/09/21; 22:36 str. 15/23

Application of projection-based interpolation algorithm (...) 311

(a) Heat distribution in time step 0 (b) Heat distribution in time step 10

(c) Heat distribution in time step 40 (d) Heat distribution in time step 130

(e) Heat distribution in time step 400 (f) Heat distribution in time step 5860

Figure 6. Heat distribution in different time steps.

2016/09/21; 22:36 str. 16/23

312 Maciej Woźniak, Maciej Paszyński

10 -6

10 -5

10 -4

10 -3

10 -2

1 4 16 64 256 1024

re
la

tiv
ce

 e
rr

o
r

initial elements

10 -6

10 -5

10 -4

10 -3

10 -2

1 4 16 64 256 1024

re
la

tiv
ce

 e
rr

o
r

initial elements

10 -6

10 -5

10 -4

10 -3

10 -2

1 4 16 64 256 1024

re
la

tiv
ce

 e
rr

o
r

initial elements

10 -6

10 -5

10 -4

10 -3

10 -2

1 4 16 64 256 1024

re
la

tiv
ce

 e
rr

o
r

initial elements

constant mesh step 21

adaptive mesh step 21

constant mesh, step 1

adaptive mesh, step 1

Figure 7. Error decrease rate.

30

35

45

60

70

 1 10 100 1000

tim
e[

s]

initial elements

30

35

45

60

70

 1 10 100 1000

tim
e[

s]

initial elements

30

35

45

60

70

 1 10 100 1000

tim
e[

s]

initial elements

30

35

45

60

70

 1 10 100 1000

co
m

p
ut

at
io

n
im

e[
s]

initial elements

constant mesh in step 21

constant mesh in step 1

adaptive mesh in step 1

adaptive mesh in step 21

Figure 8. Calculating time.

13.2. Interpolation

Interpolating an output bitmap for each element includes calculating all 9 polynomials

multiplied by weights. Let us assume that bitmap over element has resolution of

Resw ×Resh, which gives Resw ×Resh points. Calculating the value of each vertex

2016/09/21; 22:36 str. 17/23

Application of projection-based interpolation algorithm (...) 313

polynomial in point costs φvertex. It is similar to other polynomials with costs of φedge

and φcenter. This means that approximating the value of one point in an element costs

4φvertex + 4φedge + φcenter. Interpolating the whole element then costs:

tinterpolate =
(
4φvertex + 4φedge + φcenter

)
ReswResh (40)

Complexity of interpolating element is O(ReswResh)

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000

tim
e[

s]

bitmap size

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000

tim
e[

s]

bitmap size

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000

tim
e[

s]

bitmap size

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000

co
m

p
ut

at
io

n
im

e[
s]

bitmap size

constant mesh in step 21

constant mesh in step 1

adaptive mesh in step 1

adaptive mesh in step 21

Figure 9. Interpolation time.

13.3. Error estimation

In this problem, we make use of several error estimators.

The first one requires the use of a Gauss quadrature with 4 points. Each point

requires interpolating by element polynomials with previously calculated weights and

calculate exact values for points as in. The cost of calculating polynomials is the same

as proven in 13.2: 4φvertex+4φedge+φcenter in each point. Calculating exact values is

the same as calculating weights for vertices (same operations): Φvertex. Furthermore,

calculating values for a Gauss quadrature requires more operations with constant cost

φgauss; therefore, the total cost of error estimation is terror = 4(4φvertex + 4φedge +

φcenter + Φvertex + φgauss). The complexity of error estimation over element is O(1).

If errorelelemt exceeds errormax, the element is broken.

A second estimator checks errors in Gaussian quadrature points. If the error

exceeds 0.25errormax at a given point, the element is broken.

The last estimator estimates errors in points of 0.1sizeelelemt and 0.9sizeelement.

If the error exceeds 0.25errormax at a given point, the element is broken.

2016/09/21; 22:36 str. 18/23

314 Maciej Woźniak, Maciej Paszyński

13.4. H-adaptations

In each step of the adaptation, we divide 30% of elements with the highest error rate

until reaching a given error level. In practice, it makes no sense to make more than

five adaptations in one time step. Adaptation over one element takes θ, where θ is

constant. Let us assume that we execute all of the five possible steps of adaptation,

each time on 30% of elements. At the very beginning, we have Nx × Ny elements,

which gives 0.3NxNy adaptations. Adapting one element gives 4 elements in the

end. After the first step, we will have NxNy − 0.3NxNy + 0.3 ∗ 4NxNy = 1.9NxNy
elements. Adaptations in first step will take 0.3NxNyθ. As one can see, the total cost

of adaptations is

tadaptations = 7.92033NxNy.θ (41)

This is the only part that is too hard, too expensive, or even impossible to run in

parallel. That is why we will stay here with serial cost and complexity, which is

O(NxNy).

14. Serial implementation

14.1. Solving static mesh

Assume that we have a mesh of Nx × Ny elements of Resx × Resy resolution. The

cost of serial solving, interpolation, and error estimation will be:

tserial = NxNy(tsolve + tinterpolate + terror) (42)

and the complexity is

O (NxNyReswResh) (43)

14.2. Solving adaptive mesh

Assume that we add h-adaptivity to step 14.1 just like in 13.4. Then we will have

264011NxNy elements to solve all together. Interpolation in each adaptation step will

still strictly depend on the output bitmap resolution and will cost:

tallinterpolation = NxNyReswResh(4φvertex + 4φedge + φcenter)

in each adaptation step.

All together, solving the adaptive mesh will cost:

tadaptationsolve = 26.4011NxNy(tsolve + terror) (44)

with a total cost of:

tadaptation = NxNy(26.4011(tsolve + terror)+

+ReswResh(4φvertex + 4φedge + φcenter))
(45)

and complexity O (NxNyReswResh)

2016/09/21; 22:36 str. 19/23

Application of projection-based interpolation algorithm (...) 315

15. Parallel implementation

15.1. Solving static mesh

Assume that we have a mesh of Nx ×Ny elements of Resx × Resy resolution and U

CPUs with zero time communication. Each element can be solved and interpolated

independently. The cost of parallel solving, interpolation, and error estimation will be:

tparallel = NxNy(tsolve + tinterpolate + terror)

U
(46)

while complexity is O
(
NxNyReswResh

U

)
.

If U is grater or equal to NxNy, then the mesh can be solved in

tsolve + tinterpolate + terror = ResxResy
(
4φvertex + 4φedge + φcenter

)
(47)

(we assume that error estimation and solve times are too minor to include them in

the equation).

15.2. Solving adaptive mesh

Assume that we add h-adaptivity to step 15.1 just like in 13.4. Then, we will have

264011NxNy elements to solve all together. Interpolation in each adaptation step will

still strictly depend on output bitmap resolution and will cost:

tallinterpolation =
NxNyReswResh(4φvertex + 4φedge + φcenter)

U
(48)

in each adaptation step. All together, solving the adaptive mesh will cost:

tadaptationsolve =
26.4011NxNy(tsolve + terror)

U
(49)

with total cost of:

tadaptation =
NxNy(26.4011(tsolve + terror)

U
+

+
ReswResh(4φvertex + 4φedge + φcenter)

U

(50)

and complexity

O

(
NxNyReswResh

U

)
(51)

15.3. Communication

Since solving on a GPU requires sending and receiving data from a device and usually

involves a bottleneck, we have to include this in the total cost and complexity. If the

2016/09/21; 22:36 str. 20/23

316 Maciej Woźniak, Maciej Paszyński

algorithm is optimized, it requires one send and receive of the output bitmap, one

send of the input bitmap per time step, and one send and receive per adaptation. Let

us assume that each time step consists of 5 adaptation steps (like in 13.4). Let αdouble

be the time of sending one double to or from the GPU. Then, sending the bitmap

will take tbitmap = (NxResw + 1)(NyResh + 1)αdouble. Let αelement be the time of

sending one element to or from the GPU. Then, sending the set of NxNy elements

will take telements = NxNyα
element. The total communication cost will be:

tcommunication = 2(NxResw + 1)(NyResh + 1)αdouble+

+ 52.8022NxNyα
element

(52)

With complexity O(NxNyReswResh).

15.4. Total parallel cost and complexity

The total cost will be the sum of communication, solving, and interpolation on the

adaptive mesh. The total cost will be:

ttotal =
NxNy(26.4011(tsolve + terror)

U
+

+
ReswResh(4φvertex + 4φedge + φcenter))

U
+

+ 2(NxResw + 1)(NyResh + 1)αdouble + 52.8022NxNyα
element

(53)

and total complexity:

O

(
NxNyReswResh

U
+NxNyReswResh

)
(54)

As we were able to test the application only on a GPU with 16 cores (which is much

smaller than a reasonable amount for testing speed), we will rely only on theoretical

values.

16. Conclusions and future work

With respect to the results presented in section 12 and theoretical complexity in

section 15, we tend to think that code and algorithm is not mature enough to be

applicable in industrial solutions. It needs the development of efficient parallel element

splitting. However, both parallel and serial implementations are extremely efficient

and ready for 1D, 2D, and 3D application. As we were able to observe, interpolation

of the bitmap can take half (about 50%) of the computation time. We can assume

that the goal of this work was reached and the algorithm has logarithmic complexity

according to the element number and ideal implementation. Since this work is only

a Proof Of Concept, multiple ways of improvement and research exist for 2D problems.

There are three basic categories of the possible future work. Since this is a new

2016/09/21; 22:36 str. 21/23

Application of projection-based interpolation algorithm (...) 317

approach to h-adaptive FEM, different error estimation methods should be tested;

for example, different norms as well as norms used to estimate basis function weights.

Furthermore, classical error estimation for hp-adaptive FEM and other approaches

should be tested. We didnt manage to define an efficient parallel method of splitting

elements. This is part of the algorithm that should be further developed. To improve

the algorithm and make it more efficient, p-adaptations should be tested. According

to Prof. Demkowicz, adding p-adaptations to h-adaptations increases efficiency and

improves estimation. It is not obvious how to add p-adaptations to this algorithm,

since it is different from a classical FEM.

Acknowledgements

The research presented in this paper was supported by Polish National Science Center

grant no. DEC-2012/07/B/ST6/01229

References

[1] Calo V.M., Collier N.O., Pardo D., Paszyński M.: Computational complexity and

memory usage for multi-frontal direct solvers used in p finite element analysis.

Procedia Computer Science, vol. 4, pp. 1854–186, 2011.

[2] Demkowicz L.: Computing with hp Adaptive Finite Element Method Part I. One

and Two Dimensional Problems. CRC Press, Taylor & Francis, 2006.

[3] Demkowicz L.: Polynomial Exact Sequences and Projection-Based Interpolation

with Application to Maxwell Equations. Lecture Notes in Mathematics, vol. 1939,

pp. 101–158, 2008.

[4] Duff I.S., Reid J.K.: The multifrontal solution of indefinite sparse symmetric

linear systems. ACM Transactions on Mathematical Software, vol. 9, pp. 302–

325, 1983.

[5] Duff I.S., Reid J.K.: The multifrontal solution of unsymmetric sets of linear

systems. SIAM Journal on Scientific and Statistical Computing, vol. 5, pp. 633–

641, 1984.

[6] Goik D., Jopek K., Paszyński M., Lenharth A., Nguyen D., Pingali K.: Graph

Grammar based Multi-thread Multi-frontal Direct Solver with Galois Scheduler.

Procedia Computer Science, vol. 29, pp. 960–969, 2014.

[7] Goik D., Sieniek M., Paszyński M., Madej L.: Employing an Adaptive Projection-

based Interpolation to Prepare Discontinuous 3D Material Data for Finite Ele-

ment Analysis. Procedia Computer Science, vol. 18, pp. 1535–1544, 2013.

[8] Goik D., Sieniek M., Woźniak M., Paszyńska A., Paszyński M.: Hypergraph

Grammar based Adaptive Linear Computational Cost Projection Solvers for Two

and Three Dimensional Modeling of Brain. Procedia Computer Science, Interna-

tional Conference on Computational Science, Cairns, Australia, 10–12.06.2014,

vol. 29, pp. 1002–1013, Elsevier, 2014.

2016/09/21; 22:36 str. 22/23

318 Maciej Woźniak, Maciej Paszyński

[9] Gurgul P.: A linear complexity direct solver for h-adaptive grids with point

singularities. Procedia Computer Science, vol. 29, pp. 1090–1099, 2014.

[10] Gurgul P., Sieniek M., Magiera K., Skotniczny M.: Application of multi-agent

paradigm to hp-adaptive projection-based interpolation operator. Journal of

Computational Science, vol. 4(3), pp. 164–169, 2011.

[11] Gurgul P., Sieniek M., Paszyński M., Madej L.: Three-dimensional adaptive

algorithm for continuous approximations of material data using space projection.

Computer Methods in Materials Science, vol. 13(2), pp. 245–250, 2013.

[12] Gurgul P., Sieniek M., Paszyński M., Madej L., Collier N.: Two dimensional hp-

adaptive algorithm for continuous approximations of material data using space

projections. Computer Science, AGH University of Science and Technology Press,

vol. 14(1), pp. 97–112, 2013.

[13] Larson M.G., Bengzon F.: The Finite Element Method: Theory, Implementation,

and Practice. Springer, 2010.

[14] Paszyńska A., Paszyński M., Jopek K., Woźniak M., Goik D., Gurgul P.,

AbouEisha H., Moshkov M., Calo V.M., Lenerth A., Nguyen D., Pingali K.:

Quasi-Optimal Elimination Trees for 2D Grids with singularities. Scientiffic Pro-

gramming, vol. 2015(Article ID 303024), 2015.

[15] Sieniek M., Paszyński M., Madej L., Goik D.: Adaptive Projection-Based In-

terpolation as a pre-processing tool in the Finite Element workflow for elastic-

ity simulations of the dual phase microstructures. Steel Research International,

vol. 85, pp. 1109–1119, 2014.

Affiliations

Maciej Woźniak
AGH University of Science and Technology, Krakow, Poland, macwozni@agh.edu.pl

Maciej Paszyński
AGH University of Science and Technology, Krakow, Poland, paszynsk@agh.edu.pl

Received: 3.04.2015

Revised: 16.01.2016

Accepted: 18.01.2016

2016/09/21; 22:36 str. 23/23

Application of projection-based interpolation algorithm (...) 319

