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Abstract The equation for nonlinear diffusion can be rearranged to a form that imme-

diately leads to its stochastic analog. The latter contains a drift term that is

absent when the diffusion coefficient is constant. The dependence of this coef-

ficient on concentration (or temperature) is handled by generating many paths

in parallel and approximating the derivative of concentration with respect to

distance by the central difference. This method works for one-dimensional diffu-

sion problems with finite or infinite boundaries and for diffusion in cylindrical

or spherical shells. By mimicking the movements of molecules, the stochas-

tic approach provides a deeper insight into the physical process. The parallel

version of our algorithm is very efficient. The 99% confidence limits for the

stochastic solution enclose the analytical solution so tightly that they cannot

be shown graphically. This indicates that there is no systematic difference in

the results for the two methods. Finally, we present a direct derivation of the

stochastic method for cylindrical and spherical shells.
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1. Introduction

Heat and mass diffusion occur in many situations, both natural and industrial. The

diffusion coefficient is often treated as a constant if its variation with temperature or

concentration (respectively) is not very large. The transient case is then represented

by a linear second-order partial differential equation (PDE), which has an analytical

solution. Results for many such cases are summarized and organized in the defini-

tive book by Crank [2]. If the variation is substantial, the transient case requires a

numerical treatment, such as the Finite Element Method (FEM).

The relationship between the stochastic and differential equation approaches was

established by Kolmogorov [6]. His forward equation was anticipated by the Fokker-

Plank equation; his backward equation was new. Thus, it is well known [7, 10] that

such a linear PDE can be recast (via the Fokker-Planck equation) as a first-order

stochastic differential equation (SDE). Laso [7] emphasized the simplicity of the SDE

and noted that it provides a more natural interpretation of transport phenomena. This

is especially true in mass diffusion, where the random movement of the “particles”

in the simulation mimic one component of the random movement of the molecules

in the diffusion process. The principal contribution of his paper was to supply the

stochastic equivalencies of all of the usual boundary conditions.

We showed how the one-dimensional nonlinear PDE could be converted to an

SDE [1]. We extend this treatment by stating the general equation for nonlinear

diffusion and converting it to an SDE. This leads to easy solutions of linear problems

and new solutions of nonlinear. In particular, some common problems in two or

three dimensions can be solved as one-dimensional SDEs by appropriately defining

the physical regions corresponding to bins in the simulation. These examples were

chosen to facilitate comparisons with transient solutions of the linear problem and

steady-state solutions of the nonlinear.

2. Nonlinear diffusion

The general equation for diffusion is

∂θ

∂t
= ∇ · [α(θ)∇θ] (1)

where θ is concentration or temperature, α is the diffusion coefficient, ∇· is the di-

vergence and ∇ is the gradient. To convert this to an SDE, we note that

∇2 [α(θ) θ] = ∇ · ∇ [α(θ) θ] = ∇ ·
[
α∇θ + θ

dα

dθ
∇θ
]

(2)

where ∇2 is the Laplacian. Thus

∇ · (α∇θ) = −∇ ·
[
θ
dα

dθ
∇θ
]

+∇2 [α(θ) θ] (3)
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where the RHS of Equation (3) has the form of Laso’s Equation (1).

We apply this equation in Cartesian, cylindrical, and spherical coordinates where

the dependence is only on x, r, and r respectively.

When α is constant, Equation (1) reduces to

∂θ

∂t
= α∇2θ (4)

which greatly simplifies the problem.

3. One-dimensional nonlinear diffusion into an infinite medium

In our earlier paper [1], we derived the stochastic equivalent of the nonlinear second-

order partial differential equation (PDE)

∂θ

∂t
=

∂

∂x

[
α(θ)

∂θ

∂x

]
(5)

The one-dimensional version of Equation (3) is

∂

∂x

[
α(θ)

∂θ

∂x

]
= − ∂

∂x

[
θ
dα

dθ

∂θ

∂x

]
+

∂2

∂x2
[α(θ) θ] (6)

which yields

dX(t) =
dα

dθ

∂θ

∂x
dt+

√
2α(θ) dW (t) (7)

from Laso’s Equations (2) and (3). The origin of the terms in Equation (7) is obvious

from Equation (6).

Equation (5) is a Cartesian version of Equation (1). In Equation (7), W is a one-

dimensional Wiener process [5], so X is a random variable. This equivalence depends

on the generation of a great many paths in parallel [1] to yield θ(x, t).

Though computations were time consuming, we were able to demonstrate proof

of concept. A remarkable increase in the speed of computation has made this simple

method fast and accurate. We first demonstrate the speed and accuracy by studying

nonlinear diffusion into an infinite medium.

4. Stochastic algorithm

Table 1 defines the variables and shows their values. For diffusion into an infinite

medium, the algorithm corresponding to Equation (7) is

1. Set Nbin, Nb, ∆xb, ∆x, ∆t (see Table 1), and θj = 0, j = 1, . . . , Nbin (according

to initial condition, Equation (10)). This implies placing zero particles in the

inner bins.
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Table 1

Simulation parameters.

Parameter Symbol Value

Number of bins Nbin 100

Number of particles in boundary region Nb 100,000 (196,608)†

Width of bin ∆x 0.01

Width of boundary region ∆xb 0.05

Time step ∆t 10−5 (10−6)
† For parallel version

2. Calculate N0 = (∆x/∆xb)Nb.

3. Distribute Nb particles uniformly in [−∆xb, 0].

4. For each particle in the system, generate a random number ξi from the standard

normal distribution and move each particle according to

Xi(t+ ∆t) = Xi(t) +

(
θj+1 − θj−1

2∆x

)
dα

dθ

∣∣∣∣
θj

∆t+
√

2αj∆t ξi (8)

where αj and θj are the values of α and θ for the bin in which the ith particle is

located. From the boundary condition (Equation (9)), θ0 = 1.

5. For each bin, (xj−1, xj ], xj = j∆x, calculate θj = Nj/N0, and hence αj = f(θj).

6. If any particle has reached the last bin, terminate the program; otherwise, return

to 3.

The last step provides a termination in a finite time.

Our earlier work [1] showed that the central difference is, by far, the most accurate

approximation of ∂θ/∂x. In all of our examples, α increases with θ. Consider the

one-dimensional flow of heat from left to right. In (8), dα/dθ > 0 and θj+1 < θj−1,

so the additional term slows the rate of diffusion compared to the case where the

conductivity is constant.

To demonstrate that our method can handle extreme variations in α(θ), we ex-

amine the case where α(θ) = eθ and compare the results with those of Crank [2]. The

boundary and initial conditions are

θ = 1, x = 0, t ≥ 0 (9)

θ = 0, x > 0, t = 0 (10)

Our Equation (5) corresponds to Equation (7.5) of Crank and our Equations (9)

and (10) to his Eqs. (7.15) and (7.16). His iterative solution involving a change of

variables is described starting on page 105 (7.2.1. Boltzmann’s transformation). The

next subsection (7.2.2. Numerical iterative methods) describes the solution of the

resulting ODE via a double integration.
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5. Speed and accuracy

Figure 1a shows the essentially perfect agreement between the average values from

the stochastic method with a step-size of 10−6 and Crank’s solution. This was also

true for

α(θ) = (1− λθ)−1, λ = 1/2

and

α(θ) = (1− λθ)−2, (1− λ)−2 = 2

with that step-size and the same initial and boundary conditions. The results with a

step-size of 10−5 were just as regular, but often showed a tendency to underestimate

Crank’s solution very slightly as shown in Figure 1b. In a few instances, this step-size

produced results that were as good as (and sometimes better than) the smaller. Of

course, the runs with the larger step-size took roughly 1/10 of the time.
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Figure 1. θ vs. x/(4t)1/2, α(θ) = eθ: a) ∆t = 10−6; b) ∆t = 10−5.

6. Parallel version of the algorithm

Trajectories of individual particles are independent, so the parallel version of the

algorithm is straightforward. It is sufficient to distribute the trajectories (equally)

among available processors (cores). Moreover, in the linear case (constant diffusion

coefficient), the whole process can run asynchronously. For the nonlinear case (when

the diffusion coefficient is a function of dimensionless concentration or temperature),

consecutive time-steps have to be synchronized in the sense that the concentration

vector α at time t must be known to calculate trajectories at time t+∆t according to
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Equation (8). Then the time-step run on node k, k = 1, . . . ,K, entails the following

steps:

1. Distribute Nb/K particles uniformly in [−∆xb, 0].

2. For each particle in the system, move the particle according to Equation (8) and

calculate new partial concentrations θkj (t+ ∆t).

On completion, when all the values of θkj (t + ∆t) are known, the main core

calculates and distributes the total concentration θj(t+ ∆t) =
∑K
k=1 θ

k
j (t+ ∆t) and

αj(t+ ∆t) = f(θj(t+ ∆t)).

For optimal performance, the number of particles Nb should be a multiple of the

number of cores, K. The program was written in C++ with OpenMPI Infiniband

library. The tests were performed on a Hewlett-Packard Cluster Platform BL with a

total of 17516 cores (12 cores per node); processors Intel Xeon (L5420, L5640, X5650,

E5645, depending on the node), 2.26 - 2.66 GHz, 16 - 24 GB operating memory per

node running under Scientific Linux 6.

Table 2

Execution times (average value from 10 runs, Nb = 196, 608) for α(θ) = eθ.

Number of cores Time ([s] per iteration step)

1† 0.0554

1 0.1095

2 0.0508

4 0.0252

12 0.0078

24 0.0048
† Sequential version

Table 2 shows benchmarks for α(θ) = eθ. The times are in seconds per iteration

step (average value from 10 runs). The number of particles, Nb, was 196,608. Thus,

a time-step of 10−5 seconds implies a run time of approximately 105 × 4.8 × 10−3

seconds = 8 minutes to reach t = 1 (dimensionless units), which is very practical.

7. Nonlinear heat conduction

in a one-dimensional homogeneous solid

After checking that our solutions to linear problems agreed with those of Laso [7], we

used Equation (8) to calculate the transient solutions that approach the steady state.

The initial and boundary conditions are

θ = 0, 0 < x ≤ 1, t = 0

θ = 1 at x = 0, θ = 0 at x = 1 for t ≥ 0

A simple change of variable leads to the convenient boundary conditions shown

above [7]. Our intervals are (xj , xj+1], so our initial condition differs slightly from
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that of Laso. In particular, the initial condition θ = 0, 0 < x ≤ 1 does not violate the

boundary condition θ = 1 at x = 0. As noted by him, θ = 0 at x = 1 is an absorbing

boundary [4, 9]. All trajectories that reach the absorbing boundary are terminated.

The algorithm for this case is:

6. Remove all particles that exit the last bin.

7. If the preset time has expired, terminate the program; otherwise, return to 3.

Many other boundary conditions are possible [7], but we will use only the absorbing

boundary for the rest of the examples. This facilitates comparison with other methods.

Figure 2 shows the close agreement with results calculated by the Finite Element

Method (FEM).
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Figure 2. Plane sheet, α(θ) = eθ.

8. Diffusion in a hollow cylinder

In our variables (assuming cylindrical symmetry of the diffusion, i.e. ∂θ/∂φ =

∂θ/∂z = 0), Crank’s equation (1.7) is

∂θ

∂t
=

1

r

∂

∂r

[
r α(θ)

∂θ

∂r

]
(11)
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To facilitate comparisons with the plane-sheet (one-dimensional) case, we use the

boundary and initial conditions

θ = 1, r = 1, t ≥ 0

θ = 0, r = 2, t ≥ 0

θ = 0, 1 < r ≤ 2, t = 0

Completing the differentiation on the RHS of Equation (11), we get

∂θ

∂t
= α(θ)

∂2θ

∂r2
+

[
dα

dθ

∂θ

∂r
+
α

r

]
∂θ

∂r
(12)

which has the form of Kolmogorov’s backward equation [3]. Thus, the corresponding

stochastic equation is

dR(t) =

(
dα

dθ

∂θ

∂r
+
α

r

)
dt+

√
2α(θ)dW (t) (13)

This equation may also be derived by applying Itô’s formula [3] to change coordinates

in Equation (7) from rectangular to polar (see Section 11).
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Figure 3. Hollow cylinder: a) α(θ) = eθ; b) α(θ) = 1 + 0.2θ.

We note that Equation (13) contains a drift term that is not present in Equation

(7). This extra term pushes the process away from the origin. The influence of noise

tends to move the process away from any concentrically confined area.

The algorithm corresponding to Equation (13) is as described in Sections 4 and

7, with the exception that we change Equation (8) to

Ri(t+ ∆t) = Ri(t) +

[(
θj+1 − θj−1

2∆r

)
dα

dθ

∣∣∣∣
θj

+
αj
Ri

]
∆t+

√
2αj∆tξi (14)
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We applied our method to solve the SDE with α(θ) = 1, α(θ) = eθ and α(θ) = 1+0.2θ.

For constant diffusion coefficient, α, the results were compared to the exact ones given

by Crank [2, Equation (5.62)]. When α was a function of concentration, the steady-

state solution was calculated from Crank’s Equation (9.11), while the approximate

solutions were obtained numerically using FEM. Figure 3 shows the close agreement

with the curves calculated using FEM.

9. Diffusion in a hollow sphere

We applied our method to the problem of heat conduction in a hollow sphere with

the inner surface r = 1 and outer surface r = 2. The concentration is a function of

radius r and time t. The boundary and initial conditions are the same as those for the

hollow cylinder. The diffusion equation in spherical coordinates, assuming symmetry,

is [2, Equation (1.8)]

∂θ

∂t
=

1

r2

∂

∂r

[
α(θ) r2 ∂θ

∂r

]
(15)

This is equivalent to

∂θ

∂t
= α(θ)

∂2θ

∂r2
+

[
dα

dθ

∂θ

∂r
+

2α

r

]
∂θ

∂r
(16)

which is Kolmogorov’s backward equation corresponding to the SDE

dR(t) =

(
dα

dθ

∂θ

∂r
+

2α

r

)
dt+

√
2α(θ) dW (t) (17)

The derivation of Equation (17) using Itô’s formula is given in Section 11.

The extra drift term is similar to that for a cylinder but twice as strong. Thus,

Equation (8) takes the form

Ri(t+ ∆t) = Ri(t) +

[(
θj+1 − θj−1

2∆r

)
dα

dθ

∣∣∣∣
θj

+
2αj
Ri

]
∆t+

√
2αj∆t ξi (18)

We used our method to solve the SDE with α(θ) = 1, α(θ) = eθ and α(θ) = 1 +

0.2θ. The results for the first case agreed closely with the exact values given by

Crank’s Equation (6.50). When α varied with θ, approximate solutions were obtained

numerically using FEM. Figure 4 shows the very close agreement.
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Figure 4. Hollow sphere: a) α(θ) = eθ; b) α(θ) = 1 + 0.2θ.

10. Steady-state solutions

Crank [2] provides steady-state solutions for the case where the diffusion coefficient

depends on concentration. His Equation (9.1) is

d

dx

(
α
dθ

dx

)
= 0 (19)

and his solutions for the one-dimensional plane sheet, cylindrical shell, and spherical

shell are given by his equations (9.7), (9.11), and (9.12) respectively. Our steady-state

solutions were obtained by running the simulations until no further changes occurred.

Figures 5a, b show the steady-state solutions for α(θ) = eθ and α(θ) = 1 + 0.2θ

respectively for the three cases.
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Figure 5. Steady state: a) α(θ) = eθ; b) α(θ) = 1 + 0.2θ.
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11. Direct derivation of the SDEs for cylindrical and spherical

coordinates

A vector-valued stochastic process (Xt)t≥0 is called a vector Itô process if dXt =

(dX1,t, . . . , dXn,t) is related to an underlying n-dimensional standard Brownian mo-

tion (W t)t≥0 = (W1,t, . . . ,Wn,t) by

dXi,t = ai,tdt+

n∑

j=1

bij,tdWj,t (20)

Let f = f(x, t) be some sufficiently differentiable function on Rn+1 = Rn × R, x =

(x1, . . . , xn). Then Itô’s lemma for vector processes states that [8]

df(Xt, t) =
∂f

∂t
dt+

∑

j

∂f

∂xj
dXj,t +

1

2

∑

j,k

∂2f

∂xjxk
dXj,t dXk,t (21)

where dWi dWj = δijdt, dWi dt = dt dWi = 0.

11.1. Cylindrical coordinates

In cylindrical coordinates, x = r cosφ and y = r sinφ. Then

f1(x, y) = r = (x2 + y2)
1
2 (22)

and

f2(x, y) = φ = arctan
y

x
(23)

We have

∂f1

∂x
=

x

(x2 + y2)
1
2

,
∂2f1

∂x2
=

y2

(x2 + y2)
3
2

(24)

∂f1

∂y
=

y

(x2 + y2)
1
2

,
∂2f1

∂y2
=

x2

(x2 + y2)
3
2

(25)

Let (W1, W2) be a two-dimensional Wiener process, and let a two-dimensional Itô

process be defined via

dX = a(t, x, y)dt+ b(t, x, y)dW1 (26)

and

dY = a(t, x, y)dt+ b(t, x, y)dW2 (27)
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A coordinate transformation is specified by functions f1 and f2 defining two new

coordinates r, φ. Inserting (22) into (21) we get the expression

dR =
∂f1

∂x
dX +

∂f1

∂y
dY +

1

2

∂2f1

∂x2
dXdX +

1

2

∂2f1

∂y2
dY dY (28)

All of the other terms in the Itô formula are zero. Inserting (24)–(27) into (28) we

get

dR =
x

(x2 + y2)
1
2

(a dt+ b dW1)

+
y

(x2 + y2)
1
2

(a dt+ b dW2) +
1

2

b2

(x2 + y2)
1
2

dt
(29)

which is equivalent to

dR = cosφ (a dt+ b dW1) + sinφ (a dt+ b dW2) +
b2

2r
dt (30)

In our case, the concentration is a function of radius r and time t only and does not

depend on the choice of φ. Hence, we can assume φ = 0 simplifying (30) to

dR = (a+
b2

2r
) dt+ b dW1 (31)

11.2. Spherical coordinates

In spherical coordinates,

x = r sinψ cosφ, y = r sinψ sinφ, z = r cosψ

Then

f1(x, y, z) = r = (x2 + y2 + z2)
1
2 (32)

f2(x, y, z) = ψ = arccos
z

r
(33)

f3(x, y, z) = φ = arctan
y

x
(34)

and

∂f1

∂x
=

x

(x2 + y2 + z2)
1
2

,
∂2f1

∂x2
=

y2 + z2

(x2 + y2 + z2)
3
2

(35)

∂f1

∂y
=

y

(x2 + y2 + z2)
1
2

,
∂2f1

∂y2
=

x2 + z2

(x2 + y2 + z2)
3
2

(36)

∂f1

∂z
=

z

(x2 + y2 + z2)
1
2

,
∂2f1

∂z2
=

x2 + y2

(x2 + y2 + z2)
3
2

(37)
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In the spherical case, we consider the three-dimensional Wiener process (W1, W2,

W3) defined by

dX = a(t, x, y, z)dt+ b(t, x, y, z)dW1 (38)

dY = a(t, x, y, z)dt+ b(t, x, y, z)dW2 (39)

dZ = a(t, x, y, z)dt+ b(t, x, y, z)dW3 (40)

Then

dR =
∂f1

∂x
dX +

∂f1

∂y
dY +

∂f1

∂z
dZ+

+
1

2

∂2f1

∂x2
dXdX +

1

2

∂2f1

∂y2
dY dY +

1

2

∂2f1

∂z2
dZdZ

(41)

Inserting (35)–(40), we get

dR =
x

(x2 + y2 + z2)
1
2

(a dt+ b dW1) +
y

(x2 + y2 + z2)
1
2

(a dt+ b dW2)

+
z

(x2 + y2 + z2)
1
2

(a dt+ b dW3) +
b2

(x2 + y2 + z2)
1
2

dt
(42)

which is equivalent to

dR = sinψ cosφ(a dt+ b dW1) + sinψ sinφ(a dt+ b dW2)+

+ cosψ(a dt+ b dW3) +
b2

r
dt

(43)

Assuming ψ = π/2 and φ = 0,

dR =

(
a+

b2

r

)
dt+ b dW1 (44)

12. Conclusions

The stochastic method can solve any of the problems typically handled by separation

of variables plus others that require numerical methods (such as FEM). The stochastic

approach has the advantage of simplicity and clarity. It replaces a second-order partial

differential equation with a first-order stochastic one. Linear and nonlinear diffusion

are treated in the same way. The only difference is an added term in the latter.

Stochastic solutions show clearly why nonlinear transfer is slower than linear. Unlike

the classical approach (which is essentially a mathematical exercise), the simulation

mimics the flow of heat or mass in the actual problem. Pedagogically, it reminds us

that the actual process is random.

The stochastic approach is well-suited for parallel computation. Computing re-

quirements are already modest, and further improvements in speed and capacity can

be expected.
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