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TYPE-DRIVEN DEVELOPMENT OF
CONCURRENT COMMUNICATING SYSTEMS

Abstract Modern software systems rely on communication; for example, mobile appli-

cations communicating with a central server, distributed systems coordinating

a telecommunications network, or concurrent systems handling events and pro-

cesses in a desktop application. However, reasoning about concurrent programs

is hard since we must reason about each process and the order in which commu-

nication might happen between processes. In this paper, I describe a type-driven

approach to implementing communicating concurrent programs using the de-

pendently typed programming language Idris. I show how the type system can

be used to describe resource access protocols (such as controlling access to a file

handle) and verify that the programs correctly follow those protocols. Finally,

I show how to use the type system to reason about the order of communica-

tion between concurrent processes, ensuring that each end of a communication

channel follows a defined protocol.
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1. Introduction

Implementing communicating concurrent systems is hard, and reasoning about them

is even more so. Nevertheless, the majority of modern software systems rely to some

extent on communication, whether over a network to a server (such as a web or

mail server), between peers in a networked distributed system, or between processes

in a concurrent desktop system. Reasoning about concurrent systems is particularly

difficult; the order of processing is not known in advance since the processes are

running independently.

In this paper, I describe a type-driven approach to reasoning about message

passing concurrent programs using a technique similar to Honda’s Session Types [13].

A Session Type describes the state of a communication channel; in particular, the

expected sequence of communication over that channel. I will use the dependently

typed programming language Idris [4] to implement typed communication channels,

parameterized by their state, exploiting the Idris type checker to verify that systems

communicating over those channels correctly implement a communication protocol

and correctly coordinate with the other processes.

By type-driven, I mean that the approach involves writing an explicit type descri-

bing the pattern of communication and verifying that the processes follow this pattern

by type-checking. Communication channels are explicitly parameterized by their state;

operations on a channel require a channel in the correct state and return a channel

with an updated state. Hence, a well-typed program working with a communication

channel is guaranteed to follow the correct protocol for that channel.

1.1. The Idris programming language

Idris is a purely functional language with dependent types. The syntax is heavily

inspired by Haskell [19]. Like Haskell, Idris supports algebraic data types with pattern

matching, type classes, and syntactic conveniences such as list comprehensions and

do notation.

Unlike Haskell, however, Idris is evaluated eagerly by default and supports full

spectrum dependent types. This means that types may be predicated on any value;

hence, the properties of a program can be expressed in a type and verified by type

checking. Furthermore, in an experimental extension, Idris supports uniqueness types.

A value with a unique type has the property that is guaranteed to be at most

one reference to that value at run-time. As such, a value with a unique type can be

used to represent a reference to a resource in a specific state. Throughout this paper,

I will introduce features of Idris as necessary; a full tutorial is available elsewhere [22].

1.2. Contributions

I will show how combining dependent types and uniqueness types (as those imple-

mented in Idris) can support type-safe message passing concurrent programs.
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I make the following specific contributions:

• I present a method for describing resource access protocols in the type system,

using dependent types to capture resource state and uniqueness types to guaran-

tee the non-aliasing of resources.

• I present a language for describing multi-party communication protocols and

show how protocols are translated into resource protocols for each participant.

• I outline a library of type safe concurrent programming primitives built on the

protocol description language.

The overall approach involves implementing the domain specific languages

(DSLs) embedded in Idris using the type system to capture properties of programs

in those DSLs, which are then verified by the Idris type checker. The type system

itself is expressive enough to describe and formally verify properties of concurrent

programs without any plugins or extensions. The code and examples in this paper

are available in full online at http://github.com/edwinb/ConcIO.

1.3. Introductory example: an echo server

Consider a form of an “echo” protocol in which a client sends a server a string, and

the server responds by echoing the string back, followed by the length of the string as

a natural number. In our communication protocol DSL, this protocol can be described

as in Listing 1.

Listing 1. Echo Protocol.

echo : Protocol [’C, ’S] ()

echo = do msg <- ’C ==> ’S | String

’S ==> ’C | Literal msg

’S ==> ’C | Nat

A Protocol description is parameterized on a list of participants, here labeled

’S for the server and ’C for the client. In the echo protocol, we have bound msg to

the string sent from the client to the server, meaning that we can refer to the string

later in the protocol. Type Literal s represents a literal string that is required to

have value s, meaning here that server must echo the string back to the client. There

are no restrictions on the natural number.

A sample implementation of the server end of this protocol is shown in Listing 2.

I will briefly summarize this implementation; full details are deferred until Section 3.

The server begins by listening on channel chan. If there is a value waiting on the

channel, the protocol can proceed; otherwise, the server will wait. Throughout this

implementation, we use chan to refer to the communication channel. Each operation

that uses the channel returns a new channel, for example:

(msg @@ chan) <- recv chan
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Listing 2. Echo Server Implementation.

echo_server : Server ’S ’C echo

echo_server chan

= do (True @@ chan) <- listen chan

| (False @@ chan) => echo_server chan

(msg @@ chan) <- recv chan

chan <- send (MkLit msg) chan

chan <- send (length msg) chan

let chan = reset chan

echo_server chan

The result of recv chan is a message, msg, paired with a new channel chan.

The type system ensures that there is at most one use of each instance of chan; once

a value has been sent or received over a channel, it cannot be used again.

A sample client is given in Listing 3. The client connects to a server channel,

reads a message from the keyboard, then follows the client end (’C) of the echo

protocol and outputs the results received from the server. Finally, it must close the

connection to the server.

Listing 3. Echo Client Implementation.

echo_client : Client ’C ’S echo

echo_client s

= do chan <- connect s

print "Message: "

msg <- getLine

chan <- send msg chan

(MkLit msg @@ chan) <- recv chan

(len @@ chan) <- recv chan

print (msg ++ " (" ++ show len ++ "\)n")

close chan

In both cases (client and server), any violation of the protocol or repeated use of

a communication channel would result in a type error. For example, if we attempt to

close the channel before the final recv, Idris reports an error such as:

echo.idr :25:16:

When elaborating the right -hand side of case block in

echo_client:

When elaborating argument c to function Channels.close:

End of channel used when Recv from ’S required
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Finally, we can write a concurrent main program running from the point of view

of a client (’C), which starts a server running according to the echo protocol, then

repeatedly sends requests to the server via the echo client:

conc_main : Conc ’C ()

conc_main = do h <- start_server echo echo_server

client_loop h

where client_loop h = do echo_client h

client_loop h

In the rest of this paper, I will describe a domain-specific language for concurrent

programs. Before we deal with concurrency itself, however, we will need to establish

how to manage the resources with the associated state and resource access protocols.

2. Resource management in Idris

Consider a state machine representing the states and actions on a door (as shown in

Figure 1). A door can be in one of two states, OPEN or CLOSED, with the following

actions available:

• Knock, which is valid when the door is closed, and does not change the state.

• OpenDoor, which is valid when CLOSED, and changes the state to OPEN.

• CloseDoor, which is valid when OPEN, and changes the state to CLOSED.

Figure 1. State machine representing a door.

In this section, we explore how to represent and implement this state machine

in Idris. Our goal is to ensure via the type system that no program can violate the

protocol.

2.1. First attempt: parameterized handle

We will use a handle (much like a file handle) to access a door’s current state. As a first

attempt, let us try explicitly capturing the state in the type of the handle (we keep

the definition of DoorH abstract):

data DoorState = Opened | Closed

data DoorH : DoorState -> Type
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We describe the possible actions on a door using the DoorCmd data type below.

data DoorCmd : Type -> Type where

OpenDoor : DoorH Closed -> DoorCmd (DoorH Opened)

Knock : DoorH Closed -> DoorCmd ()

CloseDoor : DoorH Opened -> DoorCmd (DoorH Closed)

Each action is restricted to running on handles in the valid state: we can only

open a closed door or close an open door. We use a data type here rather than

directly implementing these as functions for one principal reason: it allows us to

implement the actions in different ways for different execution contexts. For example,

in this case, one implementation may send an electronic signal to an automatic door;

another implementation may be a computer simulation. This follows the algebraic

effects and handlers [20, 14, 5, 6] approach to implementing side-effecting programs

in a pure language. These actions are then included in a DoorLang DSL, which

essentially allows us to sequence operations on a door handle:

data DoorLang : Type -> Type where

Return : a -> DoorLang a

Action : DoorCmd a -> DoorLang a

(>>=) : DoorLang a -> (a -> DoorLang b) -> DoorLang b

Aside: Like Haskell, Idris supports do notation that desugars to >>=. Unlike

Haskell, Idris does not require this to be part of a Monad instance. While type classes

(including Monad) are available, we often require more flexibility in the type of the

>>= operator.

The following program is a valid use of the door protocol; the program knocks,

opens the handle, then closes it, before finally returning:

doorOK : DoorH Closed -> DoorLang ()

doorOK h = do Action (Knock h)

h <- Action (OpenDoor h)

h <- Action (CloseDoor h)

Return ()

Unfortunately, there is a problem. The following program is also a valid program

in DoorLang despite not being a valid use of the door protocol:

doorBad : DoorH Closed -> DoorLang ()

doorBad h = do Action (Knock h)

hbad <- Action (OpenDoor h)

h <- Action (CloseDoor hbad)

h <- Action (CloseDoor hbad)

Return ()

The handle hbad has been closed twice! If the handle is implemented as a direct

link to a real world resource, this is an invalid operation and may lead to an invalid

state. Once the handle has been used, it should be considered no longer valid.
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2.2. Second attempt: unique handles

For our second attempt, we still use a handle but declare it as a UniqueType:

data DoorH : DoorState -> UniqueType

The full typing rules for UniqueType follow those in the Clean language [23] and

are outside the scope of this paper. Intuitively, however, if there is a variable x : t,

and t : UniqueType, then x can be referred to at most once after it is bound. As

a result, we can be certain that there is at most one live reference to x at run-time.

The commands and language are declared as before, with two minor variations:

data DoorCmd : Type* -> Type* where

OpenDoor : DoorH Closed -> DoorCmd (DoorH Opened)

Knock : DoorH Closed -> DoorCmd (DoorH Closed)

CloseDoor : DoorH Opened -> DoorCmd (DoorH Closed)

data DoorLang : Type* -> Type*

...

First, the types are parameterized by Type* rather than Type; second, the Knock

operation returns a handle rather than a value of the unit type ().

Type Type* can be read as “either UniqueType or Type.” Conservatively, the type

checker assumes that any polymorphic variable with type Type* will be instantiated

by a UniqueType and, therefore, must also be referenced one time at most. We now

write doorOK as follows, returning the handler after Knock:

doorOK : DoorH Closed -> DoorLang ()

doorOK h = do h <- Action (Knock h)

h <- Action (OpenDoor h)

h <- Action (CloseDoor h)

Return ()

This program is valid: h appears several times but is reassigned after each action

to the result of the action, so every use is unique. A program such as doorBad above,

however, no longer type checks, giving the following error:

Door.idr :22:10: Unique name hbad is used more than once

This is a big improvement: by preventing aliasing using a uniqueness type, we

are required to follow the door protocol by always using the handle output from one

operation as the input to the next. However, there are still some unanswered questions

that arise when using protocols in practice:

1. What happens if an operation fails? For example, what if the door jams when

we try to open it?

2. We have ensured that operations are valid, but how do we ensure that a protocol

is run to completion?
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2.3. Third attempt: managing failure

The resulting state of a handle may be different depending on the success or failure

of an operation. For example, if a door might be jammed, then OpenDoor may result

in one of two states (depending on the result) according to the following rules:

1. If the door opens successfully, the state is Opened.

2. If the door jams, the state is Closed.

Therefore, OpenDoor should not only return whether the operation was successful

as well as the new handle, but it should also guarantee that the result and new handle

are consistent with these rules. We use the following dependent pair type to capture

pairs of values where the type of the second element is computed from the value of

the first:

data Res : (a : Type*) -> (a -> Type*) -> Type* where

(@@) : (val : a) -> k val -> Res a k

For example, we can have a Bool paired with either an Int or a String, depen-

ding on the value of the Bool:

intOrString : Type*

intOrString = Res Bool (\ok => if ok then Int

else String)

If the first element is True, the second element must be an Int; otherwise, it must

be a String. Therefore, (True @@ 42) and (False @@ "No") are valid elements of

this type, but (True @@ "Yes") and (False @@ 94) are not. We can use this type

to calculate the resulting state of a door handle based on run-time information about

whether OpenDoor has succeeded or not:

data DoorCmd : Type* -> Type* where

OpenDoor : DoorH Closed ->

DoorCmd (Res Bool

(\ok => if ok

then DoorH Opened

else DoorH Closed ))

Knock : DoorH Closed -> DoorCmd (DoorH Closed)

CloseDoor : DoorH Opened -> DoorCmd (DoorH Closed)

In order to use the result from OpenDoor, we must inspect the first (Bool) element

of the pair, which will determine the state of the handle. If opening the door fails,

we return; otherwise, we continue with the protocol as previously:

doorOK : DoorH Closed -> DoorLang ()

doorOK h = do h <- Action (Knock h)

hres <- Action (OpenDoor h)

case hres of

False @@ h => Return ()
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True @@ h => do

Action (CloseDoor h)

Return ()

Idris provides a notation for pattern matching in do notation, which can be more

convenient when dealing with failure, as follows:

doorOK : DoorH Closed -> DoorLang ()

doorOK h = do h <- Action (Knock h)

(True @@ h) <- Action (OpenDoor h)

| (False @@ h) => Return ()

Action (CloseDoor h)

Return ()

This is exactly equivalent to the definition with the explicit case. In general, in

a do-block, the syntax. . .

do pat <- val | <alternatives >

p

. . . is desugared to. . .

do x <- val

case x of

pat => p

<alternatives >

Finally, we can ensure the protocol is run to completion by changing the type

of doorOK to return the door handle. There are only two ways for doorOK to return

a closed door handle: returning immediately, or running the protocol to completion:

doorOK : DoorH Closed -> DoorLang (DoorH Closed)

doorOK h = do h <- Action (Knock h)

(True @@ h) <- Action (OpenDoor h)

| (False @@ h) => Return h

Action (CloseDoor h)

Return h

3. Concurrent communication protocols

Idris supports concurrent programming by allowing processes to send messages to each

other on a channel. In this section, I will show how to use the approach described in

Section 2 to track the state of a channel in a communicating concurrent system. The

goal is to ensure that all participants in the system are working to the same overall

script. When spawning a new process, we ensure that communication between it and

its parent is synchronized.
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3.1. Channels

A Channel is parameterized by its end points (the local and remote processes), and

the remaining messages to be transmitted on the channel (the Actions):

data Channel : (src : proc) -> (dest : proc) ->

Actions -> UniqueType

This is a UniqueType, meaning that a channel in a particular state can be used

one time at most. The local (src) and remote (dest) processes have type proc,

which is a type variable, and essentially serves as a way of labeling the processes.

The Actions, defined below, describe the current state of a Channel, which explains

the sequence of messages that are still to be sent over that channel. When creating

a server, we may also wish to have several client processes connecting to a single

server. For this case, we allow replicable channels, declared as follows:

data RChannel : (dest : proc) -> Actions -> Type

No message can be sent directly on an RChannel; however, an unlimited num-

ber of Channels can be created from an RChannel. Each Channel and RChannel is

parameterized by the remaining actions in a process; Actions is declared as follows:

data Actions : Type where

DoListen : (client : proc) -> Actions -> Actions

DoSend : (dest : proc) ->

(a : Type) -> (a -> Actions) -> Actions

DoRecv : (src : proc) ->

(a : Type) -> (a -> Actions) -> Actions

DoRec : Inf Actions -> Actions

End : Actions

This type declares that, at each stage, a Channel can accept one of the following

operations:

• DoListen c k: check whether a message is waiting from a client c, then continue

with actions k. This is to allow a server to accept a new connection from a client.

• DoSend d a k: send a message of type a to destination d, then continue with

actions k x, where x (of type a) is the message sent. Note that this means

a protocol can change according to the value transmitted!

• DoRecv s a k: receive a message of type a from source s, then continue with

actions k x, where x (of type a) is the message received.

• DoRec k: recursively continue with actions k. Inf indicates that this is a poten-

tially infinite argument.

• End: no more messages may be sent on this channel.

Aside: The Inf type, used in DoRec, means that the list of actions is potentially

infinite; for example, a server is allowed to run indefinitely. In practice, this means

that the Idris type checker will evaluate potentially infinite Actions lists at compile
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time. The full details are beyond the scope of this paper (and not necessary to un-

derstand how to use Cmd and Actions), but Inf arises from Idris’s support for mixed

inductive and coinductive [9] definitions. For our purposes, it suffices to know that

any recursive protocol definition must be guarded by the DoRec constructor.

3.2. Operations

Listing 4 shows the operations available on channels. These include sending and re-

ceiving values, listening for an incoming message, connecting to a server process, and

closing a connection to a server process. Like DoorCmd, each action is restricted to

running on channels in the appropriate state: we can only send on a channel in the

DoSend state, receive from a channel in the DoRecv state, and so on.

The Cmd structure also supports some basic I/O (Print and GetLine), though

in a complete implementation, we would parameterize over a flexible set of effects [5].

Listing 4. Operations on Channels.

data Cmd : proc -> List proc -> List proc ->

Type* -> Type* where

Connect : RChannel srv p ->

Cmd me xs (srv :: xs) (Channel me srv p)

Close : Channel me srv End ->

{auto prf : Elem srv xs} ->

Cmd me xs (dropElem xs prf) ()

Listen : Channel me t (DoListen t k) ->

{auto prf : Elem t xs} ->

Cmd me xs xs (Res Bool (\ok =>

if ok then Channel me t k

else Channel me t (DoListen t k)))

Send : (val : a) -> Channel me t (DoSend t a k) ->

Cmd me xs xs (Channel me t (k val))

Recv : Channel me t (DoRecv t a k) ->

Cmd me xs xs (Res a (\v => Channel me t (k v)))

Print : String -> Cmd me xs xs ()

GetLine : Cmd me xs xs String

As well as the value it returns (the Type* argument), Cmd is parameterized over:

• A process of type proc (typically referred to as me). This ensures that all

Channels used have the correct local process.

• An input and output list of remote processes, of type List proc.
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By looking at these parameters for each operation, we can see how that operation

affects the state of a communication channel and the overall state of the communica-

ting system:

• Connect connects to a server, and extends the list of remote processes:

Connect : (c : RChannel srv p) ->

Cmd me xs (srv :: xs) (Channel me srv p)

That is, before Connecting to a process srv, the remote processes are xs; after-

wards, the remote processes are extended with srv and become srv :: xs.

• Close disconnects from a process, and removes that process from the list:

Close : (c : Channel me t End) ->

{auto prf : Elem t xs} ->

Cmd me xs (dropElem xs prf) ()

Proof argument (Elem t xs) ensures that the Channel being closed has previ-

ously been connected, with the auto keyword meaning that Idris will attempt to

construct the proof automatically at compile-time. It can be helpful to think of

arguments marked auto as side conditions on an operation, stating some infor-

mation that must be statically known.

• Listen returns whether a message is waiting from a client process on a server’s

channel. If so, the Channel state can move on to the next step; otherwise, it

remains in the DoListen state, as described in its return type:

Res Bool (\ok => if ok then Channel me t k

else Channel me t (DoListen t k))

• Send sends a message on a channel, as long as that channel is in a state where

the next action is to send a message:

Send : (val : a) -> Channel me t (DoSend t a k) ->

Cmd me xs xs (Channel me t (k val))

It returns a new Channel where the continuation of the protocol is computed

from the value sent.

• Recv receives a message on a channel:

Recv : Channel me t (DoRecv t a k) ->

Cmd me xs xs (Res a (\v => Channel me t (k v)))

Like Send, it returns a new Channel, but where the continuation of the protocol

is computed from the value received.

We now have channels parameterized by a valid list of actions as well as the

commands that act on those channels. However, we do not yet have any way of

guaranteeing that concurrent processes are running according to a corresponding

communication protocol. We will achieve this by defining a language of protocol

descriptions.
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3.3. Protocol descriptions

Listing 5 introduces a Protocol DSL, which describes an overall communicating sy-

stem between several processes (each labeled by a proc). A Protocol is parameterized

by a list of processes involved in the protocol and the type of the value being trans-

mitted by a protocol action. Parameterizing over this value means that later parts

of a protocol can depend on earlier communications. For example, we could write

a protocol in which we begin by sending a number that gives the number of messages

still to come.

Listing 5. Protocol DSL.

data Protocol : List proc -> Type -> Type where

Initiate : (c : proc) -> (s : proc) ->

{auto prfc : Elem client xs} ->

{auto prfs : Elem server xs} ->

Protocol [c, s] () -> Protocol xs ()

Send : (from : proc) -> (to : proc) -> (ty : Type) ->

{auto prf : SendOK ty from to xs b} ->

Protocol xs b

Rec : Inf (Protocol xs a) -> Protocol xs a

Return : a -> Protocol xs a

(>>=) : Protocol xs a -> (a -> Protocol xs b) ->

Protocol xs b

This DSL supports two commands (Initiate and Send) as well as three con-

trol structures (Rec, Return, and a >>= operator). The control structures support

recursion and do notation; the commands are:

• Initiate c s: A client process c initiates a communication with a server process

s by sending it a message. There are two side conditions: c and s must each be

in the list of processes in the overall protocol.

• Send from to ty: A process from sends a message of type ty to process to.

Again, there is a side condition to ensure that it is valid to send the message.

We omit the details of this condition for brevity1.

Idris allows us to define syntactic sugar (to a limited extent). Here, we define the

protocol syntax that resembles security protocol notation [21]:

syntax [from] "==>" [to] "|" [ty] = Send from to ty

1Essentially, a message is valid if both participants are in the protocol; however, if there are
more than two participants, then future messages cannot depend on this message since only two
participants can know the message that was sent.
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Recall the echo protocol example briefly described in Section 1.3

echo : Protocol [’C, ’S] ()

echo = do msg <- ’C ==> ’S | String

’S ==> ’C | Literal msg

’S ==> ’C | Nat

A Protocol description can be translated into the corresponding Actions on

a Channel for each participant in the protocol, using protoAs:

protoAs : (x : proc) -> Protocol xs () ->

{auto prf : Elem x xs} -> Actions

In the case of echo, we can calculate the Actions for client ’C at the Idris REPL

as follows:

*echo > protoAs ’C echo

DoSend ’S String (\cmd =>

DoRecv ’S (Literal cmd) (\cmd =>

DoRecv ’S Nat (\x => End ))) : Actions

That is, a client for the echo protocol must send a String, then receive a String

that is guaranteed to be identical to the String that was sent, then receive a Nat. For

a given protocol, we can calculate the protocol actions that a server for that protocol

will take as follows:

serverLoop : (c : proc) -> Protocol [c, s] () ->

Protocol [c, s] ()

serverLoop c {s} proto

= Initiate c s (do

proto

Rec (serverLoop c proto))

A serverLoop waits for a connection to be initiated by a client, runs the protocol,

then recursively calls the serverLoop. The s parameter to serverLoop is left implicit

in the type so that, when we use serverLoop, we only need to give the client’s identity.

We can see this in the echo example, where the protocol server becomes:

*echo > protoAs ’S (serverLoop ’C echo)

DoListen ’C

(DoRecv ’C String (\cmd =>

DoSend ’C (Literal cmd) (\cmd =>

DoSend ’C Nat (\x =>

DoRec (serverLoop ’C echo )))))

That is, it must wait for a connection from a client, then receive a String, send

back an identical String, send back a Nat, then start again.
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3.4. A DSL for communicating concurrent programs

We are now in a position to define a domain specific language for concurrent interactive

programs, supporting commands on channels, forking processes, and starting server

processes. This DSL is defined by a data type, CIO, that allows for the sequencing of

commands as defined by Cmd.

The top-level functions for this language are given in Listing 6. Note that we are

presenting top-level functions here rather than the full definition of the language; the

full language is available online2.

Listing 6. Concurrent IO language.

data CIO : proc -> List proc -> List proc -> Type* -> Type*

fork : (proto : Protocol [c,s] ()) ->

(Channel s c (protoAs s proto) ->

CIO s (c :: xs) xs ()) ->

CIO c xs (s :: xs) (Channel c s (protoAs c proto))

start_server

: (proto : Protocol [c,s] ()) ->

(Channel s c (protoAs s (serverLoop c proto)) ->

CIO s (c :: xs) (c :: xs) Void) ->

CIO c xs xs (RChannel s (protoAs c proto))

send : (val : a) -> Channel me t (DoSend t a k) ->

CIO me xs xs (Channel me t (k val))

recv : (c : Channel me t (DoRecv t a k)) ->

CIO me xs xs (Res a (\v => Channel me t (k v)))

listen : (c : Channel me t (DoListen t k)) ->

{auto prf : Elem t xs} ->

CIO me xs xs (Res Bool (listenRes me t k))

connect : (c : RChannel t p) ->

CIO me xs (t :: xs) (Channel me t p)

close : (c : Channel me t End) ->

{auto prf : Elem t xs} ->

CIO me xs (dropElem xs prf) ()

reset : Channel s t (DoRec act) -> Channel s t act

(>>=) : CIO me xs xs ’ a ->

(a -> CIO me xs’ xs ’’ b) -> CIO me xs xs ’’ b

In practice, many of the commands are direct calls to commands in the Cmd

structure. By defining (>>=) for CIO, we can sequence operations with do notation.

2http://github.com/edwinb/ConcIO
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Note, in particular, the type of fork and start server. Each ensures that

the process being spawned has a communication structure that corresponds to the

Channel it uses as well as the Channel being returned. To start a worker process:

fork : (proto : Protocol [c,s] ()) ->

(Channel s c (protoAs s proto) ->

CIO s (c :: xs) xs ()) ->

CIO c xs (s :: xs) (Channel c s (protoAs c proto))

This works according to a protocol, proto. The spawned process takes a Channel

working from the point of view of s, whereas the returned channel works from the

point of view of c. To start a server process:

start_server : (proto : Protocol [c,s] ()) ->

(Channel s c (protoAs s (serverLoop c proto )) ->

CIO s (c :: xs) (c :: xs) Void) ->

CIO c xs xs (RChannel s (protoAs c proto))

This also works according to a protocol but differs in that the server process

loops. Note that, by returning Void (the empty type), it is clear from the type that

the server process can never stop because it can never create an element of the empty

type. The server returns an RChannel; we cannot transmit over an RChannel, but we

can use it to create a valid communication channel using connect:

connect : (c : RChannel t p) ->

CIO me xs (t :: xs) (Channel me t p)

To provide more-convenient notation for the types of concurrent programs with

client and server processes, there are type synonyms Conc, Server, and Client, for

top level processes, server processes, and client processes, respectively. These are all

specialized cases of CIO. A top-level program is a CIO program that preserves the list

of channels:

Conc : Type -> Type -> Type

Conc p r = {xs : _} -> CIO p xs xs r

A server process receives a client channel as input and returns Void, meaning

that it is expected to loop forever:

Server : (s, c : proc) -> Protocol [c, s] () -> Type*

Server s c p = {xs : _} ->

Channel s c (protoAs s (serverLoop c p)) ->

CIO s (c :: xs) (c :: xs) Void

A client process receives a replicable server channel as input:

Client : (c, s : proc) -> Protocol [c, s] () -> Type*

Client c s p = {xs : _} ->

RChannel s (protoAs c p) -> CIO c xs xs ()
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The reset function resets a server to its starting state before making a recursive

call to the server:

reset : Channel s t (DoRec act) -> Channel s t act

Consider the last step in the echo protocol, for example: DoRec (serverLoop C

echo). By calling reset, we reset the state of the channel to serverLoop ’C echo,

which allows the server to continue serving requests. Listing 7 shows how we can use

CIO to implement a server for the echo protocol.

Listing 7. An echo server in the Concurrent IO language.

echo_server : Server ’S ’C echo

echo_server chan

= do (True @@ chan) <- listen chan

| (False @@ chan) => echo_server chan

(msg @@ chan) <- recv chan

chan <- send (MkLit msg) chan

let chan = reset chan

echo_server chan

Note that, at the end, we need to use reset before calling echo server

recursively.

4. Client/server example

Listing 8 gives the protocol for a simple server that accepts three commands: Mul,

which expects to receive two integers and sends back the product of those integers;

StrLen, which expects to receive a String and sends back the length of the String;

and Uptime, which sends back the number of cycles the server has been running.

Listing 8. Simple Utility Protocol.

data UtilCmd = Mul | StrLen | Uptime

utils : Protocol [’C, ’S] ()

utils = do cmd <- ’C ==> ’S | UtilCmd

case cmd of

Mul => do ’C ==> ’S | (Int , Int)

’S ==> ’C | Int

StrLen => do ’C ==> ’S | String

’S ==> ’C | Nat

Uptime => ’S ==> ’C | Int

Note how the protocol can vary depending on the first message sent to the server.

An implementation of the server, therefore, will need to check which command was
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sent and use the appropriate protocol for sending and receiving to and from the client.

A sample implementation is given in Listing 9. One interesting feature of this server

is that it maintains a state, the number of cycles it has been running, by recursively

calling itself with an updated state. As such, we can use this pattern to maintain safe

concurrent access to some program state.

Listing 9. Sample Server Implementation.

utils_server : Int -> Server ’S ’C utils

utils_server uptime chan

= do (True @@ chan) <- listen chan

| (False @@ chan) => utils_server uptime chan

(cmd @@ chan) <- recv chan

case cmd of

Mul => do ((x, y) @@ chan) <- recv chan

chan <- send (x * y) chan

utils_server (uptime + 1) (reset chan)

StrLen => do (str @@ chan) <- recv chan

chan <- send (length str) chan

utils_server (uptime + 1) (reset chan)

Uptime => do chan <- send uptime chan

utils_server (uptime + 1) (reset chan)

One possible way to use such a concurrent server would be to treat it as a module,

providing services concurrently for a number of worker threads in an application. We

might write functions such as mul, given in Listing 10, to access features of the server

via a replicable channel.

Listing 10. Sample Client Function.

mul : RChannel ’S (protoAs ’C utils) -> Int -> Int -> Conc ’C Int

mul s x y = do chan <- connect s

chan <- send Mul chan

chan <- send (x, y) chan

(res @@ chan) <- recv chan

close chan

pure res

By implementing the client and server in an embedded DSL for managing chan-

nel state and protocol actions, we can be sure that each channel is accessed only by

a process that is allowed to send and receive on that channel and that the proto-

col actions are synchronized between the communicating threads. However, what if

there is a compile-time error? For example, what if in the server implementation in

Listing 9, we swap the Uptime and StrLen cases?



Type-driven development of concurrent communicating systems 237

In our library implementation, Idris reports:

When elaborating argument c to function Channels.recv:

Channel Error: Recv from ’C used when

Send to ’C required

Idris has been designed with the intention of implementing embedded DSLs;

therefore, it supports several features to help with building and using DSLs. Here, we

have used error message reflection [8], which allows us to rewrite error messages before

reporting them to the user. In practice, error messages arising from DSL programs

take a very similar form, so intercepting and rewriting messages can present very

helpful diagnostics to the DSL programmer.

5. Related work

The Idris virtual machine has message-passing concurrency as a primitive, following

Erlang style concurrency [16] and Scala actors [12]. The underlying implementation in

Idris is untyped; library support is required to give types to communicating programs.

Our approach is closely related to Session types [13, 17]. Like our Channel type,

Session Types provide static guarantees that communicating systems respect a given

protocol. In a dependently typed language supporting uniqueness types, we have the

flexibility to implement a Session Typed approach to communication by embedding

in the type system. No extensions are required, and in particular, we can exploit

features of the type system to express dependencies in protocols, such as a protocol

depending on the transmitted command in the server in Section 4.

Our approach relies on uniqueness types [23] to enforce the non-aliasing of re-

sources. Uniqueness types are similar to linear types [24], except variables must be

referenced at most once, rather than exactly once. The interaction of dependent and

linear types, while possible [15], is difficult, since we need to establish whether a use

is in a type or a value. Nevertheless, recent work by McBride [18] has successfully

combined linear and dependent types in an elegant fashion, enabling reasoning about

the usage of variables. Indeed, there is a recent experimental extension to Idris that

implements McBride’s linear type system, and it is likely that, in the longer term,

linear dependent types will form a theoretically sound basis for the kind of concurrent

system described in the present paper. Combining linear and dependent types leads

to a system related to Typestate [1] in that they allow us to express a state in a type

but with the expressivity of a full purely functional language at the type level.

Previous work in Idris has used handlers of algebraic effects [3, 5, 14, 20] to

describe side-effecting computations and, furthermore, to describe resource access

protocols [6]. However, when there are increasing numbers of communication chan-

nels, tracking each in a separate effect becomes unwieldy. The protocol description

language is inspired by the security protocol notation introduced for Kerberos [21].

Ultimately, we hope to be able to apply our approach over a network, and particularly

to reason about secure communication in the type system [10, 11].
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6. Conclusion

This paper documents the first experiments in implementing typed communicating

programs in Idris. We have seen how to build resource access protocols using depen-

dent uniqueness types and how to use this technique to build a library of communi-

cation primitives. Overall, we have followed a type-driven approach to implementing

concurrent systems. We write the type of the system as a whole (as a Protocol),

calculate resource protocols for each participant, and ensure that the program cor-

responds to each protocol by type checking. This technique allows us to implement

some common concurrent patterns, specifically spawning worker and server processes.

There is still much to explore. Perhaps most importantly, we have assumed

throughout that communication succeeds. This is fine within the Idris run-time sy-

stem (as long as we do not run out of memory!) since we have expressed in the types

that each process completes its part of the protocol. However, across a network, in

a distributed concurrent system, we cannot make this assumption. By giving more

expressive types to send and recv, we should be able to establish whether there are

errors in transmission (e.g., whether a channel remains open or a value of the correct

type has been transmitted.) We can learn a lot from Erlang [2] about managing failure

in distributed systems, and we hope to apply these techniques within our system.

Communication occurs in many contexts not only in distributed concurrent sy-

stems, but also in network application protocols (web servers, DNS, etc.) and in

secure communication protocols. Our approach of implementing communication pri-

mitives in a DSL means that we can apply a variety of interpretation functions to

programs. For example, one may communicate between internal Idris processes, and

another may communicate over a network. In this way, we hope to be able to apply

our Protocol DSL to reason about secure network protocols as well as concurrent

programs.

Finally, we have implemented some useful models of concurrency in that we can

spawn a worker process that communicates with a parent thread, and we can spawn

a server process that accepts connections from multiple clients; however, there are

many models of concurrency and programming patterns. In future work, we intend

to explore which programming patterns (e.g., Skeletons [7]) fit within our system.
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