COMPUTER SCIENCE e 17 (2) 2016 http://dx.doi.org/10.7494/csci.2016.17.2.143

WoJCIECH FRACZ
JACEK DAJDA

SOURCE CODE REVIEWS
ON MOBILE DEVICES

Abstract | This paper presents the results of an experiment-driven investigation on the
efficiency of source code review practice performed on mobile devices. In par-
ticular, the conducted investigation tries to verify whether or not the small
screens of mobile devices influence the speed and quality of the review process.
Besides presenting the experiment itself and discussing the obtained results,
this paper also describes the dedicated Android application for mobile code
reviews that was implemented for research purposes.

Keywords | source code review, code quality, experimental evaluation, Android

Citation | Computer Science 17 (2) 2016: 143-161

143

http://journals.agh.edu.pl/csci/

144 Wojciech Fracz, Jacek Dajda

1. Introduction

The practice of source code reviewing is one of the techniques utilized by modern
software development teams in order to maintain code quality. While some tools are
available (e.g., Checkstyle for Java or JSHint for Javascript programming languages),
regular code reviews (in its various forms) still seem unbeatable in the context of code
readability and clarity [1].

As with every practice, this technique has its flaws. Probably the greatest is the
lack of proper process support and management encouragement. Most of the software
methods developed in the past 20 years (including the popular Agile Methods) do not
include source code reviews as a core practice. One of the few exceptions is eXtreme
Programming that introduces a controversial practice of Pair Programming, which
is meant to sustain a process of continuous code review. Fortunately, current trends
in the software industry seem favorable for code review by providing tools such as
Gerrit [8] or technique of Pull Requests, both of which not only technically facilitate
the review but also impose it into the development process.

This paper contributes to these trends with the idea of mobile code reviews
performed on mobile devices such as a smartphone, or better, a tablet. Doing a review
while sitting on a comfortable sofa in a company social space seem definitely more
attractive to the average software developer than a typical review performed at his
desk. Another important benefit is the higher communication comfort. It is much
easier to discuss specific code fragments with nearby developers just by passing them
the device instead of inviting them to the reviewer’s desk. In addition, mobile code
review can make the practice more available during business trips, especially when
the offline mode is available. These aspects seem vital in encouraging developers to
bring more focus to code quality and frequent reviews.

On the other hand, several questions arise regarding whether or not the physical
limitations of mobile devices (in particular, small screens and uncomfortable virtual
keyboards) can affect the quality and efficiency of such reviews, not to mention other
aspects (such as developer fatigue and general attitude). This paper provides prelimi-
nary answers to these questions by presenting early findings on mobile reviews based
on the experimental comparison of mobile and classic desktop-based reviews.

The paper is organized as follows: the next section briefly introduces code reviews
and gives a summary of the related work and current software support. Section 4
describes the applied research method, including the presentation of the developed
tool and organized evaluation experiments. Section 5 provides the experimental results
with corresponding charts (which are commented upon in the next section). The final
section summarizes the conducted research and introduces plans for future work.

2. The practice of source code review

The origins of code review practice can be found in the formal inspections proposed
by M. Fagan [2]. Fagan defined inspection as a stage-based process that can be applied

Source code reviews on mobile devices 145

not only to source code but also by other artifacts of every software project, including
requirement specification, system design, or even documentation. The process is driven
by meetings (repeated endlessly until the artifacts are considered complete), which
are attended by team members assigned to specific roles (including authors, reviewers,
and moderators). According to Fagan, code inspections require us to spare 54 hours for
each 1000 lines of code. These claims are confirmed by other, much more contemporary
studies as well [9, 1]. Code inspections are also praised [10] for their learning and
knowledge sharing effects, which greatly speed up development and reduce project
risk (in case core developers leave the team).

The benefits of the inspections are valuable, but they do not come without a
cost. Such a process as most formalized approaches must be expensive. [9, 4] indicate
costs as one of the main reasons for which inspections are not widely used in softwa-
re development. To cut costs, developers experiment with more lightweight variants
of Fagan’s inspections. This results in different types of inspections leading to new
terminology [1], in which inspections are replaced by code review or peer review.

The more lightweight and nowadays-common peer reviews do not assume any
phases of development. They are instead performed in a code-assess-respond style.
Each piece of work that is done must be reviewed by a peer — strictly speaking,
another developer on a team. This approach is more flexible and can be adjusted to
internal team processes and preferences. Even though peer reviews are less expensive
and more flexible than formal Fagan inspections, they are not widely used either. [9]
suggests that the fundamental reason for this may be the fact that they are not the
most enjoyable engineering task when compared to design and coding.

It is also worth mentioning that maintaining code quality is not the only use of
code reviews. This technique can also be used to estimate existing code nature. Such
estimations are invaluable when it comes to legacy code.

Defects injection is one of the code quality estimating techniques [3]. The me-
thod starts by selecting a legacy code system fragment. One developer analyzes it to
understand it completely. Then, he introduces (injects) a few defects into the code.
They must not be obvious, as their aim is to compare injected and existing source
code problems. The next step is to give the “enhanced” version of the code to another
developer. After reviewing it, he found some defects that were artificially created and
some that were in the code before the injection of defects. Having these numbers, we
can calculate the approximate number of defects in the reviewed source code as

E-D

f=== (1)

f — estimated number of defects in a fragment
E — the number of existing (not injected) defects found in review
D — the number of defects injected by the first developer
I — the number of injected defects found in review
For example, if D = 10 new defects are injected into the source code fragment
and the second developer finds I = 8 of them and E = 3 others, then analyzed code

146 Wojciech Fracz, Jacek Dajda

is expected to have one more existing flaw.

f:'T=3.75m4 (2)
Having estimated one fragment of a legacy system source code, the rest of it might be
evaluated further. Comparing the size of the chosen fragment to the size of the whole
system, the expected total number of bugs can be estimated as follows:

F=*.L (3)

f — estimated number of defects in a fragment
l — length of a fragment (lines of code)
L — length of the whole system
If the fragment from the example above had 800 lines and was chosen from a
200k-line system, the expected number of bugs in all of the software would be

3.75

F= 300 - 200000 = 937.5 (4)
This technique is strongly based on the assumption that a representative fragment
of a system source code contains approximately the same amount of defects as any
other fragment with the same length. Therefore, special care must be taken when
choosing the software source code part for the estimation process. Of course, it is
difficult to evaluate the accuracy of this technique (no research on its evaluation is
reported in literature), however it gives some insights on how the quality can be

measured.

3. Code review tools

Over recent years, the software industry has developed a more positive approach to
code reviews. To make the developer’s life easier, several dedicated tools are widely
used, such as Gerrit [8], Attlasian Stash, CodeRemarks®, and others. They facilitate
the process by displaying code with an ability to review it by publishing comments.
Added remarks are sent to the code’s author, who can respond to them and fix the
mistakes.

Both Gerrit and Attlasian Stash ease the code review process by allowing the
creation of many versions of one logical change to the source code. The author changes
the code to complete the issue on which he is currently working. Modifications are
published to the selected reviewer in order to have them assessed. When the reviewer
flags some of them, he writes his remarks as text comments. They are then returned
back to the author. This creates the possibility of increasing code quality until the
peer review is successful.

Thttp://www.coderemarks . com

Source code reviews on mobile devices 147

Another major benefit of using such tools is that they ensure that no unchecked
code sneaks into the production version of a piece of software. Source code without
a review is blocked until a designated reviewer approves or rejects it. Obviously, this
has the disadvantage of slowing work down, but it comes with a major gain of being
certain about system quality.

Specialized code review applications are not the only choice these days. Patches
or pull requests (PR) from a version control system can be subject of reviews too.
Version control systems like Git [5] or SVN allow us to create excerpts with a list of
changes to be made to the code. Such a list can be reviewed before it is merged into
the code, incorporating all code review benefits.

This technique is often used in open source software. The vast majority of fre-
eware source code libraries have their repositories publicly available. Whenever a
developer need an improvement to such a library, he can suggest the author intro-
ducing it. Whether or not the change will be made is completely up to the library
developer. When time matters, there is often no possibility to wait for his decision. It
is a place for creating a PR. An outside developer makes the modifications he desires
and sends it to the library owner. Actually, it changes the developer situation, as he
is not asking somebody to do the work for him. He shows his effort by having the
work already finished and asks the author only to introduce his changes in the next
library release.

PRs can and should be reviewed before they reach the open source project reposi-
tory. It can be done either by the source code owner or a community. There are many
platforms that support creating and reviewing PRs, including Github? and Bitbuc-
ket?. The major flaw when using this method is the process of improving PRs when
they do not pass the review. In such a situation, the author of the PR is supposed to
create a new PR with all of the detected defects fixed. This process results in creating
series of subsequent PRs, which are difficult to compare with each other and analyze.

Another trend in code review tools is a community peer review. It can be wide-
ly used even by single-user development teams or freelancers. The author publishes
source code to review on the Internet. It can be either a publicly available forum or
any other web application that allows the publication of source code (for example,
CodeRemarks — as mentioned before). The only requirement for successful community
review is to have volunteers who are willing to read through the published code and
assess it. This is not as difficult as it seems to be. Developers may expect a decent
code review in less that one hour when posting the code on one of the most popular
community review designed platforms — Code Review Stack Exchange?.

It seems that the proper tooling support improves the enjoyment factor of the
reviews, and developers are more keen to perform it. Thus, this paper proposes that we
go one step further: to support code reviews on mobile devices that are common these

2http://github.com
Shttp://bitbucket.org
4http ://codereview.stackexchange.com

148 Wojciech Fracz, Jacek Dajda

days. It is observed that all existing solutions are designed for the typical developer
environment, which is desktop or laptop. On the other hand, code review is more
about reading than writing and, therefore, can have more in common with studying
a book than coding. Taking the developer out of his usual workplace to a social room
or comfortable sofa should have a positive impact on his/her attitude to this practice.
However, a question arises whether or not mobile code review will be as efficient as
if performed on a desktop. This paper aims at providing preliminary experimental
findings in this matter. No other similar or even related research is reported in the
literature so far.

4. Experimental comparison of mobile and desktop reviews

To examine the effectiveness of mobile reviews, a comparison of mobile and desktop
reviews needs to be performed. That is why the applied research method consists of
the two following elements:

1. dedicated review tool for mobile device created for the purpose of the research,
2. experimental comparison of the results obtained from mobile reviews and desktop
reviews.

Both elements are described in detail in the consecutive subsections.

4.1. Tool for mobile code reviews

The developed tool is targeted towards the Android platform (the most popular plat-
form in Poland at the moment). This popularity was crucial for experimental purposes
to make sure we will got a good balance between mobile and desktop reviews. A scre-
enshot of the working application is presented in Figure 1.

002 il 1 21:26

public Line(Context context, SourceFile sourceFile,
int lineNumber,

String lineOfCode, boolean syntaxColor) {

s.sourceFile = sourceFile:

lineNumber = lineNumber;

this. lineOfCode = lineOfCode;
setOrientation(LinearLayout.HORIZONTAL) ;

7 lineNumberView = new TextView(getContext());
. lineNumberView.setText(String.format(
lineNumber):):

lineNumberView.setSingleLine();

Figure 1. Source code displayed in mobile application.

Source code reviews on mobile devices 149

The most important functions can be summarized as follows:
e displaying source code with syntax coloring and line numbering,
o selecting lines (see item #7 in Figure 1) and attaching comment to it (by using

buttons from #1 to #5 in Figure 1),

e marking lines that have comments (green background of line number — see item

#6 in Figure 1),

e sharing comments with others.

To overcome the lack of a physical keyboard and improve the comfort of a re-
viewer’s work, some innovations have been introduced to the presented solution. The
most important one is predefined comments. This feature enables the reviewer to add
comments with one-finger touch on top of the application menu (buttons #1 to #3
in Figure 1). A list of the predefined comments that were available during the expe-
riment is presented in Table 1. In addition, it is possible to record voice comments
and hook them to specific lines of code (button #5 in Figure 1). These features are
created in order to benefit as much as possible from the capabilities of modern mobile
devices. They also minimize the inconvenience of typing in the comments when using
a virtual on-screen keyboard (button #4 in Figure 1).

Table 1
List of predefined comments.

Button #1

Button #2

Button #3

Magic number

Syntax error

Typo

Find a better name

Code duplication

Too complicated

Extract constant

Unhandled exception

Use existing library

Extract method

Unused argument / variable

Useless comment

Introduce explaining variable

Unused code

Invalid format

As for sharing comments, they are distributed in a ZIP archive that contains
added remarks in JSON files. They can be sent with any Android service that allows
file sharing — including e-mail, Bluetooth, or Wi-Fi. When such a file is being opened
with the created tool, comments are automatically extracted and displayed in the
source code.

4.2. Experimental comparison

The prepared experiment was designed specifically for comparison between classic
(desktop) and mobile reviews.

4.2.1. Participants

The participants were Computer Science students from their third and fourth years
of a BSc Studies degree from the University of Science and Technology. The study
involved 55 programmers, 23 of whom performed code review using their own mobile
devices (mainly smartphones). This allowed us to obtain some diversity in screen
resolution and inspect its influence on work comfort.

150 Wojciech Fracz, Jacek Dajda

All participants were familiarized with code smells detection and review process.
They were also fluent with the Java language, which is the main language taught
in the Computer Science Department at the University of Science and Technology.
The choice of Java was therefore deliberate, as this allowed us to minimize the risk
of situations in which participants fail the review task due to a lack of syntax or
semantic knowledge of a language. As for the utilized tools, both of them (desktop
and mobile) were a novelty to all participants. Also, a short introduction and demo
of tool handling were performed before the experiment.

To conclude, we put an emphasis on obtaining comparable conditions for both
desktop and mobile reviews: participants at the same level of education and random
distribution among the two tested tools and environments.

4.2.2. Compared tools

Each participant performed a code review either on a mobile device or a PC computer
using a CodeRemarks online tool for code review. The decision whether a particular
student should use a mobile device or PC was left to him/herself so as not to impose
a specific environment in which he/she could feel uncomfortable. Both mobile phones
and tablets were allowed.

CodeRemarks was chosen for desktop reviews because it does not need any in-
stallation or configuration on a reviewer’s device. It offers features comparable to
the mobile application (display one source file, add text comments). Each reviewer
was given a unique URL address where he/she could review the code. It made both
distributing the task and collecting the results simple.

Obviously, a developed Android application was prepared for the experiment
needs. The prepared version could only display source code that was the subject
of study. After the timeout had been reached, the application automatically sent
comments to the author, including the screen size and orientation of the device when
the code review was performed.

4.2.3. Timing

Organizing volunteers for an experiment is always a problem for researches. Therefore,
to obtain a reasonable number of participants, we decided to carry out the review task
during student class time. This enforced a strict time limit. Based on a few initial
(testing) reviews without a timeout, it was decided that seven minutes should suffice
for the needs of the preliminary evaluation. It is far less time that should be dedicated
for a review of such code but should be enough for an initial comparison of the PC
and mobile code review efficiency.

4.2.4. Gathered data

The following data was gathered for each participant:
e list of review comments including line number, type, and content of the comment,
e timestamp of comment creation,

Source code reviews on mobile devices 151

e screen resolution (for Android reviews only),
e screen orientation (for Android reviews only),
e review duration.

4.2.5. Task

Each participant obtained the same task, which was a prepared Java class to be revie-
wed. The source code of the Java class that was the subject of the study is presented
in Appendix 1. The code is a fragment of a real program and was deliberately “en-
hanced” to contain more defects (code smells). As a result, 120 lines of code contain
30 code smells, 26 of which were known before the experiment (the remaining 4 were
identified by the participants). The injected code smells were based on a list published
in Clean Code [6] as well as on the authors’ experience.

5. Results

The experiment reviews were collected and analyzed after the experiment had been
finished. Each of the reviewer’s comments was labelled as valuable (when it pointed
to a recognized code smell) or worthless (when the comment could not be understood
or did not point to any code smell). Several different aspects were inspected during
experiment analysis. The most interesting ones are presented here.

5.1. The number of comments

The first aspect is the average total number of comments added in one review session.
The average number of comments per review for Android tool is 8, while for desktop,
it is below 6. However, when only valuable comments are taken into consideration, the
difference is much smaller and fluctuates around 4.5 comments per review. Quantities
are visualized in Figure 2.

In All comments
In Valuable comments

Average comments count

Mobile reviews PC reviews

Figure 2. Average number of comments.

152 Wojciech Fracz, Jacek Dajda

While the number of detected code smells in one review is comparable for both
types of review, it cannot be argued that mobile devices introduce unnecessary clutter
by many worthless remarks. Only 57% of mobile review comments are considered
valuable.

It might be expected that the usability of mobile applications for code reviews
is relatively small when compared to a large PC screen. In order to verify this state-
ment, we inspected the number of comments that were misplaced (i.e., assigned to a
wrong line number, but the comment’s content would still allow the programmer to
understand it).

The results do not differ much in either type of reviews. There are 9.3% and 9.9%
misplaced remarks in mobile and PC reviews, respectively.

5.2. Mobile application usage

The majority of examined Android reviewers performed reviews in vertical screen
orientation (75.8%). Devices that were held vertically are tablets with high screen
resolution. They still allowed the display of whole lines of code without breaking
them.

We tried to investigate the relationship between screen resolution and comment
quantity or value, but the results have not revealed any pattern.

As for the type of comments that were attached to the source code, their fre-
quency is visualized in Figure 3. The vast majority of students used the predefined
comments feature. There were a few participants that added voice comment.

[Predefined comments
[Text comments

B Voice comments

Figure 3. Type of comments added when using mobile application.

5.3. Detected code smells

Four of the code smells that had been injected into the reviewed source code were not
found. These smells are:
e long list of imports not shortened with wildcard import (smell #2 from Appen-
dix 2),
e overridden safety by unnecessary definition of serialVersionUID (#4)
o flag argument (#10),
e hidden temporal coupling (#14).

Source code reviews on mobile devices 153

However, the reviewers managed to find four new flaws that were unknown at
the time of preparing the task:

o “reinventing the wheel” (smell #21 from from Appendix 2),
e inconsistent code formatting (#25 and #27),
e no defensive copy (#29).

The most conspicuous flaws were found the most frequently. Three of the most
recognizable code smells are shown in Table 2.

Table 2
Code defects with the highest detection rate.
Smell no. Defect Detection (mobile) | Detection (PC)
#6 unnecessary field name encoding 61% 47%
#24 commented out code 52% 31%
#18 ambiguous method name 43% 66%

Smells #13, #21 and #29 (see Appendix 2) were found only in PC reviews.
However, PC reviewers were not able to find #3, #23 and #25 (which mobile reviewers
managed to do).

In order to find further differences between PC and mobile reviews, we also
analyzed the order in which reviewers found defects. This might reveal a pattern in
which reviews are performed with each tool. We aimed at distinguishing elements that
were paid attention to more in mobile reviews than in PC reviews. Figure 4 shows
how many times a particular smell was found as the first one.

In Mobile
I pPC

#5 #1 #22 #18 #24 #7

Figure 4. The first detected smells in reviews.

detection frequency

Surprisingly, there are only 7 first-smells on mobile code reviews, whereas on PCs,
there are 12. First-smells that were detected only in PC reviews are #11 (3 times)
and #12, #17, #20, #30 (once).

154 Wojciech Fracz, Jacek Dajda

6. Discussion

The summarized results presented in Section 5 allow us to make several interesting
observations.

6.1. Code reviews are effective regardless
of the method of their performing

When we ignore worthless comments, it occurs that the quantity of found code smells
in one session is similar for both PC and mobile reviews. This means that mobile
reviews are not worse than PC reviews.

As for the efficiency of code reviews, the average number of code smells found in
both types of reviews is equal to 4.68. Comparing it to the total number of known
defects of the reviewed code, we get the amount of 15.6% code smells found in one
review.

[7] suggests that code reviewers are expected to find more than 50% of defects in
the code during one session. Our results are much worse; however, when a time limit
is taken into consideration, it is clear that the reviewers were not able to find the
expected number of code smells. The most efficient reviews need to last 88 minutes
per 188 lines of code [7]. Therefore, a reviewer would need 56 minutes for 120 lines
of code. The experiment allowed for only 7 minutes, so we can calculate the expected
number of defects found in the conducted study as:

7
= — =1
=~ 13% (5)

The value is much more appropriate now and proves both code reviews’ efficiency and
the described ideal speed of performing them.

6.2. Mobile code reviews are not uncomfortable

This statement is formed mainly based on almost the same frequency of misplaced
comments in PC and mobile reviews. The main reason for gathering such information
about the remarks added to the code was the belief that results of mobile reviews
would contain many comments that were added to a wrong line. However, the perfor-
med analysis did not prove this expectation. It turns out that it is equally easy to tap
the wrong line on a touch display as to click it on a PC screen. With the predefined
and voice comments available, mobile application can be an even more comfortable
review tool to use.

However, it needs mentioning that the method of displaying the source code
to the reviewer is crucial. The vast majority of respondents used horizontal screen
orientation during their reviews. Only high-resolution mobile devices allowed them to
perform these vertically (tablets). Undoubtedly, it is harder to read source code when
its lines are wrapped. Therefore, such results had been expected. Still, they led to the
conclusion that allowing more customizations of code appearance would increase tool
usability.

Source code reviews on mobile devices 155

It cannot be overlooked that mobile reviewers added more than 50% more com-
ments to the code than the PC reviewers. This may be the result of trying out the
application. There were comments like “test” that introduced nothing into the review
process. Also, predefined comments may encourage a reviewer to add meaningless
remarks, as it is so easy to add them. Therefore, they must be selected very carefully.

6.3. Predefined comments are promising

Predefined comments were most frequently added when using a mobile application.
It is surprising that such a feature is not common in existing tools supporting code
reviews. Participants were excited about the possibility of adding a comment to the
code by a single tap. In this way, they can make the review much quicker and in a
more comfortable manner.

There were cases when a predefined comment added to the code did not address a
code smell exactly. As an example, predefined comment “Find a better name” added
to the line with the useless TWO = 2 constant does not clearly express the intention
of the reviewer on how to improve the code. However, there is a high probability that
the author of the code reading such a remark would think about this poor naming
comment, which should lead to its removal (or renaming). Therefore, such comments
in the study were marked as valuable.

During the experiment, the application had the predefined comments hardco-
ded. Many participants suggested allowing the ability to add their own predefined
comments on the basis of each project. Such enhancement would allow us to adjust
vocabulary and common types of defects to the reviewer, which would make them
even more useful.

6.4. Voice comments introduce communication problems

There were only three voice comments added by three participants in the experiment.
They were nothing more than simple “fix it” phrases. This undoubtedly indicates
some problems with this technique.

Firstly, the way of performing the study should be taken into account. Most
of the reviews were done simultaneously in a group of students. Recording a voice
comment in public can be perceived as weird behavior when everybody hears what a
reviewer thinks about a particular fragment of a code. Moreover, if each participant
would start to record a voice comment, they would be hard to understand.

It seems that this can also affect real developers who work in co-located teams.
However, for freelance, open-source, or distributed developers, this way of performing
reviews can provide some practical value.

6.5. Small screen enhances details

Careful analysis of smells that were found in mobile reviews only lead to the conclusion
that displaying source code on small screens forces reviewers to pay more attention
to details of the code. Tiny code defects like #23 (typographic error — recodedFile

156 Wojciech Fracz, Jacek Dajda

instead of recordedFile) or #25 (lack of space before curly brace) were found only
in mobile reviews. When seeing only a few lines of code at a time, reviewers can focus
more on such trivialities (which is harder to do on a PC).

On the other hand, the small screen prevents reviewers from seeing the whole
picture of a code being reviewed. Semantic error in code (#13) was found only during
PC reviews. It required a detailed analysis of the entire class, so it was hard to detect
on mobile devices.

6.6. Small screen encourages reviewers to analyze code line by line

The first code smells that were detected reveal a pattern that was used to perform
code reviews on both devices. Defects placed in the beginning of the file (lines from 1
to 48) were found as first-smells in over 70% of mobile reviews and in almost 50% of
PC reviews. This indicates that reviewing with a mobile application encourages the
analysis of source code line by line.

6.7. Defects injection method is working

The method for code quality estimation described in the beginning of the article is
effective. The source code used in the experiment had been very carefully analyzed by
authors; yet, four new defects have been found by the respondents. This indicates that
adding artificial bugs to the code and letting two or more people check it is valuable,
indeed.

The conducted research results in 26 smells injected into the code, 21 of which
were found during the reviews. 4 smells are new. Using Formula 1, the expected
quantity of fragment defects can be obtained.

f=22xs (6)

21
This result suggests that there is one more flaw in the presented fragment of code
that has yet to be found. It also allows us to calculate the estimated number of defects
in the application from which the source code was taken (Formula 3).

5

F=10

-1000 =~ 42 / 1000 lines of code (7)

7. Conclusions and future work

The aim of this research was to inspect the aspect of code reviews in the context of
mobile devices. There are two important conclusions that need to be drawn from this
research.

First of all, mobile reviews have been proven to be as efficient as the classic
(desktop) code reviews we do these days. The developed prototype Android tool for
code reviews as well as thr organized experiment prove that, in some aspects, mobile
reviews can be even more convenient than desktop reviews. Having agreed that the

Source code reviews on mobile devices 157

comfort and enjoyment factor are important for developers [9], we believe that mobile
reviews will find their practical application in the software industry in the near future.

Secondly, the conducted study confirmed that code reviews are really an effective
way of ensuring the quality of a source code. Almost all of the code smells that were
prepared for the experiment were found, and the collected comments were assessed
as correct and helpful in fixing the errors and making the code cleaner and more
readable.

Further research should include the organization of la onger experiment with more
participants involved in order to confirm the preliminary results and observations. An
interesting aspect would also be to compare both types of reviews in the context of a
complex code structure. In this way, the observation that the small screen of a mobile
device limits the reviewer in obtaining the bigger picture of the source code could be
verified.

What is more, it is planned to deploy the prototype Android tool in a real de-
velopment environment. A good candidate is a project developed at University of
Science and Technology for Government Protection Bureau (funded by the Polish
National Center for Research and Development). The development team utilizes the
Gerrit code review application, and it has already tried out the prototype Android
tool with positive feedback. This deployment will allow us to compare both tools
(Gerrit vs Android tool), which may produce interesting results.

For this purpose, the Android tool must be further enhanced. The most demanded
features are:

e ability to open many files at once,

e further tweaks for application usability (ability to change font size, color and line
wrapping behavior),

o diff feature allowing to display previous and current version of the code,

e support for version control systems,

e support for communication with existing code review tools for desktop.

References

[1] Cohen J.: Best Kept Secrets of Peer Code Review. Printing Systems, 2006, ISBN
9781599160672, http://books.google.pl/books?id=b9ywHanWN5kC.

[2] Fagan M.E.: Design and code inspections to reduce errors in program develop-
ment. IBM Systems Journal, vol. 15(3), pp. 182-211, 1976, http://goo.gl/
BDJREG.

[3] Fagan M.E.: Advances in software inspections. In: Pioneers and Their Contribu-
tions to Software Engineering, pp. 335-360, Springer, 2001.

[4] Freimut B., Briand L.C., Vollei F.: Determining Inspection Cost-Effectiveness by
Combining Project Data and Expert Opinion. IEEE Transactions on Software
Engineering, vol. 31(12), pp. 1074-1092, 2005, ISSN 0098-5589.

158

Wojciech Fracz, Jacek Dajda

[5] Loeliger J., McCullough M.: Version Control with Git: Powerful tools and tech-
niques for collaborative software development. O’Reilly Media, 2012.

[6] Martin R.C.: Clean Code, A Handbook of Agile Software Craftsmanship. Pearson
Education, Inc., 2009.

[7] Mika V. Méantyla C.L.: What Types of Defects Are Really Discovered in Code
Reviews? IEEE Transactions on Software Engineering, vol. 35(3), p. 5, 2009.

[8] Milanesio L.: Learning Gerrit Code Review. Packt Publishing, 2013.

[9] Radice R.: High Quality Low Cost Software Inspections. Paradoxicon Pu-
blishing, 2004, ISBN 9780964591318, http://books.google.pl/books?id=
THwWBAAAACAAJ.

[10] Wells L.: 9 Reasons to Review Code. 2010, http://blog.smartbear.com/
software-quality/9-reasons-to-review-code/.

Appendix 1 — Source code reviewed during experiment

package pl.fracz.mcr.source;

/*

2013-10-23, fracz, first implementation
2013-10-30, fracz, added syntax highlighting
2014-02-26, fracz, added ability to add voice comment

*/

import
import
import
import
import
import
import

import
import
import

import
import
import
import

VETS

android.annotation.SuppressLint;
android.content.Context;
android.graphics.Color;
android.graphics.Typeface;
android.text.Html;
android.widget.LinearLayout;
android.widget.TextView;

java.io.File;
java.io.Serializable;
java.util.List;

pl.fracz.mcr.comment.Comment;
pl.fracz.mcr.comment.CommentNotAddedException;
pl.fracz.mcr.comment.TextComment;
pl.fracz.mcr.comment.VoiceComment;

* View that represents one line of code.

*/

@SuppressLint ("ViewConstructor")

public

class Line extends LinearLayout implements Serializable {

private static final long serialVersionUID = 3076583280108678995L;
private static final int TWO = 2;

private final int _lineNumber;

private final String _lineOfCode;

// holds the line number
private final TextView lineNumberView;

private final TextView lineContent;

Source code reviews on mobile devices 159

private final SourceFile sourceFile;
private List<Comment> comments;

public Line(Context context, SourceFile sourceFile, int lineNumber,
String lineOfCode, boolean syntaxColor) {
super (context) ;
this.sourceFile = sourceFile;
this._lineNumber = lineNumber;
this._line0fCode = lineOfCode;
setOrientation(LinearLayout.HORIZONTAL) ;

lineNumberView = new TextView(getContext());
lineNumberView.setText (String.format("}d.", lineNumber););
lineNumberView.setSingleLine();
lineNumberView.setWidth(30);

addView(lineNumberView) ;

TextView lineContent = new TextView(getContext());
addLineContent (syntaxColor) ;

this.comments = sourceFile.getComments() .getComments(this);

}

public int get() {
return _lineNumber;

}

/%%

* Adds a text comment.

*

* Qparam comment

* Q@throws CommentNotAddedException

*/

public void addTextComment (String comment) throws CommentNotAddedException {
sourceFile.getComments () .addComment (this, new TextComment (comment)) ;
this.comments = sourceFile.getComments() .getComments(this);
if (comments.size() > 0) {

lineNumberView.setBackgroundColor (Color.parseColor ("#008000")) ;

}

}

/%%
* Adds a voice comment.
*
* Qparam recordedFile
* Qthrows CommentNotAddedException
*/
public void createVoiceComment(File recodedFile) throws CommentNotAddedException {
sourceFile.getComments () .addComment (this, new VoiceComment (recodedFile));
this.comments = sourceFile.getComments() .getComments(this);
if (comments.size() > 0) {
lineNumberView.setBackgroundColor (Color.parseColor ("#008000")) ;
}

// public void addVideoComment(File videoFile) throws CommentNotAddedException {
//
// }

private void addLineContent(boolean syntaxColor){
if (!syntaxColor || !SyntaxHighlighter.canBeHighlighted(syntaxColor))
lineContent.setText (Html.fromHtml (1ineOfCode)) ;

160 Wojciech Fracz, Jacek Dajda
else
lineContent.setText (SyntaxHighlighter.highlight (Html. fromHtml(1ineOfCode)));
lineContent.setTypeface (Typeface.MONOSPACE) ;
addView(lineContent) ;
}

public List<Comment> getComments() {

}

return this.comments;

public boolean hasConversation(){
sourceFile.markConversation(this) ;
return getComments().size() > TWO;

Listing 1. Source code reviewed during experiment

Appendix 2 — Full list of known code smells
in the reviewed code

Smell codes from [6].

Lines Smell code Description / expected remarks
1 3.7 c1 Useless comment, such information should be
' stored in VCS

9 21-24 7 Wildcard import of. pl. f]:"acz .mcr.comment . *
would shorten the list of imports

3. 29 G4 Add constructor instead of warning suppression

4 31 c4 Overridden safety (need to update

' serialVersionUID on every change)

5. 32, 118 G25 TWO constant has no logical meaning

6. 34, 36 N6 Useless prefixes (encodings)

7. 38 C2 Obsolete comment

8. 47-48 F1 Too many arguments

9. 4764 @30 Co.nstructor is too long; it does more than one
thing

10. 48 F3, G15 Flag (boolean) argument should be replaced by
another method

11. 56 - Syntax error (extra “;”)

12. 58 G25 Magic value — a number
Semantic error; value is stored in local variable
instead of class field; as a result, a

13. 61 -
NullPointerException is being thrown when class
is instantiated
Hidden coupling; method execution relies on

14. 62 G10 previous one, but it is not ensured by its
arguments

15. 62 a3l Verti(%al distance; method is declared far away
from its usage

64, 78, 79, 92, “Train wrecks”, feature envy, Demeter Law
16. G14 . .
93 violation

Source code reviews on

mobile devices

161

Lines Smell code Description / expected remarks
64, 79-82, .

17. 93-96 G5 Code duplication, DRY

18. 67 N1, N4 Ambiguous method name

19. 71-76, 85-90 C3 Useless comment

2. 7. 91 Gi1 I%lC?nSlStency of method names that perform
similar tasks
Reinventing the wheel — use comments.isEmpty ()

21. 80, 94 - . A
instead of comparing its size to zero

22. 81, 95 G25 Magic value — string
Typo in argument name — recodedFile instead of

23. 91 - .
recordedFile

24. 99-101 C5 Commented out, not used source code

25, 103, 116 Q24 Incor.lsmtent code formatting; lack of space before
opening curly brace

26. 104 G28, G29 Overcomplicated, negative boolean expression

27. 104-107 G24 Lack of curly braces around if...else blocks
Code duplication; result of

28. 105, 107 G5, G19 Html.fromHtml(lineOfCode) might be saved to
explanation variable

29. 113 - Method should return defensive copy of a list

30. 117 G20, G30, N7 Method has side effects; it is doing more than its
name suggests

Affiliations

‘Wojciech Fracz
AGH University of Science and Technology, Institute of Computer Science, Krakéw, Poland,
fracz@agh.edu.pl

Jacek Dajda
AGH University of Science and Technology, Institute of Computer Science, Krakéw, Poland,
dajda@agh.edu.pl

Received: 21.02.2015
Revised: 14.06.2015
Accepted: 17.06.2015

