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Abstract This work intends to provide a data management solution based on the concepts

of dataspaces for the large-scale and long-term management of scientific data.

Our approach is to semantically enrich the existing relationship among primary

and derived data items, and to preserve both relationships and data together

within a dataspace to be reused by owners and others. To enable reuse, data

must be well preserved. Preservation of scientific data can best be established

if the full life cycle of data is addressed. This is challenged by the e-Science life

cycle ontology, whose major goal is to trace the semantics about procedures in

scientific experiments. We present a theoretical dataspace model for e-Science

applications, its implementation within a dataspace support platform and an

experimental evaluation on top of two real world application domains.

Keywords scientific data management, dataspace, dataspace support platform, e-Science

2012/03/16; 09:43 str. 1/13

Computer Science • 13 (1) 2012 http://dx.doi.org/10.7494/csci.2012.13.1.49

49



1. Introduction

Dataspaces are not a data integration approach, rather they are a data co-existence

approach [12]. The goal is to raise the abstraction level at which data is managed.

Dataspaces are modeled as participants and relationships. Participants can be any

data element and relationships should be able to model any interconnection among

these participants. Dataspace support platforms (DSSPs) represent the collection of

software programs and services that control the organization, storage and retrieval

of data in a dataspace. The challenges of dataspaces discussed in [9] have influenced

many research groups of the data management community. However, most effort was

put on mainstream related dataspace research like indexing dataspaces [7] and pay-as-

you-go data integration approaches for dataspace systems [5, 14] or on development

of personal dataspace systems [6, 15].

In our previous work we addressed the dataspace-aspect regarding the creation

and management of semantically rich relationships among dataspace participants. We

introduced the e-Science life cycle ontology [9], which addresses the precise description

of scientific experiments by taking advantage of the well-defined semantics of the

Resource Description Framework (RDF) [19] and the expressive formal logic-based

OWL language [20]. It is used to trace the semantics about procedures in e-Science

applications. These procedures are modeled in five phases, which we name the e-

Science life cycle activities. They classify at a high level of abstraction the activities

a scientist is carrying out when performing a scientific experiment. Individuals of

the ontology (expressed in RDF) represent descriptions of conducted experiments

and thus aim at understanding (1) what for a specific experiment was applied, (2)

which data resources were accessed, (3) what transformations on these data resources

were applied, (4) what analysis were performed, and finally (5) what results where

achieved. The ontology also provides a publication concept allowing acting scientists

to set publication modes to applied experiments. Thus, access to specific experiments

can be limited to specific members or groups of the scientific community.

In [8, 9] we introduced the scientific dataspace, which aims at providing associated

mechanisms for managing semantically rich relationships among scientific data sources

(primary data) and its corresponding findings (derived data), which result from a set

of activities defining concrete preprocessing and analysis methods (background data)

that were applied on a dataset. Furthermore, to keep track of scientific experiments

that are being conducted by members of a scientific community and to link these

experiments with user information, i.e. institutional affiliation, email address, working

field, etc. of the scientist who conducted the experiment.

In this paper, we present a theoretical dataspace model for e-Science applications

in Section 2 and its implementation (Section 4) within the architecture (Section 3) of

the dataspace support platform. We also present an experimental evaluation on top

of two real word e-Science applications in Section 4 which outlines the performance

overhead with the dataspace support platform.
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Table 1

Dimensions of the Scientific Dataspace

Activity Name Definition

Specify Goals GS = {IGS1, IGS2, ..., IGSn}
Prepare Data DP = {IDP1, IDP2, ..., IDPn}
Select Appropriate Tasks TS = {ITS1, ITS2, ..., ITSn}
Run Tasks TE = {ITE1, ITE2, ..., ITEn}
Process & Publish Results RP = {IRP1, IRP2, ..., IRPn}

2. The Scientific Dataspace Model

Scientific experiments described by the e-Science life cycle ontology are referred to as

Life Cycle Resources (LCR). They are organized as points of a 5-dimensional space,

where dimensions represent the five e-Science life cycle activities. Coordinates of

a dimension represent the individuals of the corresponding activity. A dimension of

the space can be regarded as a 1-dimensional space. Table 1 lists the names of the

e-Science life cycle activities defined in the e-Science life cycle ontology and their

definitions in the scientific dataspace model.

Coordinates have a name, a set of properties and a set of individuals that are

interconnected via those properties. Coordinates are defined as IXn = {name, P,E},
with X ∈ {GS,DP, TS, TE,RP}, where P refers to the set of properties defined

for the coordinate and E refers to the set of elements that are connected to the

coordinate. Elements are instances of classes of the e-Science life cycle ontology. Thus,

a coordinate represents a graph, with IXn as root element and e ∈ E as elements of

the graph interconnected via properties p ∈ P .

A point in the multidimensional space connects coordinates (i.e. individuals of

the five e-Science life cycle activities) that are participating within a LCR. A LCR

can therefore be defined as a vector:

vi
{
IGSj IDPk ITSl ITEm IRPn

}

with j, k, l,m, n ∈ N representing the index of the five participating coordinates.

Figure 1 (a) illustrates a 3-dimensional space. The point depicted as

LCR(IGS4 |IDP4 |ITS4) in Figure 1 (a) represents a LCR with three individuals of

the e-Science life cycle activities “Specify Goals”, “Prepare Data” , and “Select Ap-

propriate Tasks”. Information about actions taken within an activity is saved as an

RDF graph with the individual as root element.

Spaces with more than three dimensions are hard to project on 3-dimensional

images. One way is to split the n-dimensional cube into multiple 2-dimensional cubes

and to position them accordingly. In Figure 1 (b) we try to visualize the 5-dimensional

life cycle dataspace. We should keep in mind that the five 2-dimensional points

depicted in Figure 1 (b), actually form together a single point in the 5-dimensional

space, therefore represent a single LCR.
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Figure 1. 3- and 5-dimensional Scientific Dataspace

Mathematically the 5-dimensional space is defined as a n×5 matrix. Elements of

the matrix are defined as aij with i = 1, ...,m (the index of coordinates corresponding

to a LCR) and j = 1, ..., 5 (the index of the e-Science life cycle activity). Each

element represents an individual of an e-Science life cycle activity. Columns represent

the dimensions of the multidimensional space and rows represent the points (LCRs)

of the space. Points in the space can also be combined of coordinates having different

indexes, e.g. a LCR using individual p of the dimension “Specify Goals” can contain

instances with a different index on the other dimensions. This is important when

a researcher reuses an available individual within another iteration of the e-Science

life cycle. For example, when applying the same analysis method on a different dataset

(that is a different instance of the “Prepare Data” activity). Let’s assume that the

three instances IGS3, ITE3 and IRP3 are being reused within a new e-Science life cycle

experiment. This indicates that the acting researcher has applied a new analysis

method on a new prepared dataset, but reused the same instance of the dimension

“Specify Goals”, “Run Tasks” and “Process & Publish Results”, thus working on the

same study, executing the analytical methods on the same machine and publishing

results using the same publication modes as in his previously conducted experiments.

The corresponding LCR is illustrated in Figure 1 (b) and denoted as

LCR = vi
{
IGS3 IDP4 ITS4 ITE3 IRP3

}
with i ∈ N, i < n

n is the number of rows in the corresponding matrix and is equal to the amount of

LCRs. This measure indicates the state of the scientific dataspace.

If we assume that the LCR depicted in Figure 1 (b), has the highest avail-

able index in the dataspace, therefore represent its actual state, we can organize the
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5-dimensional scientific dataspace in the following 4× 5 matrix:

ALCR = (I45)




IGS1 IDP1 ITS1 ITE1 IRP1

IGS2 IDP2 ITS2 ITE2 IRP2

IGS3 IDP3 ITS3 ITE3 IRP3

0 IDP4 ITS4 0 0




The positions I14, I44 and I45 contain the value 0, which indicates that there still

doesn’t exist an individual of the dimensions 1, 4 and 5 having index 4. With an

increasing number of life cycle experiments the dataspace and therefore the matrix

ALCR increases. However, the index is separately updated for each dimension and

only when a new individual of the corresponding life cycle activity is created.

3. Platform Architecture

In this Section, we provide a summary of the architecture of a scientific dataspace

support platform. The main entities of the architecture are the Life Cycle Composer

– for the creation of LCRs, the RDF Store – for storing those resources, the Dataspace

Indexer – for their subscription, the Search&Query Processor allowing scientists to

find those LCRs, and the Dataspace Browser for the exploration of the dataspace.

These, with each other cooperating software programs represent the environment in

which the scientific dataspace is able to grow and evolve into a remarkable space of

well preserved scientific data. They also provide the organization and retrieval of

scientific data within the dataspace. A holistic view of the architecture is given in

Figure 2.

Search&Query Processor. Due to the fact that dataspace participants as well as their

relationships are precisely described by the individuals of the e-Science life cycle on-

tology, therefore organized as RDF resources, we built the Search&Query Processor

on top of the SPARQL query language [16], which has been accepted as a W3C rec-

ommendation for querying RDF resources. The Search&Query Processor consists of

a Query Interpreter and a Query Translator. The query interpreter receives a request,

which can be expressed either as a SPARQL Query or as a keyword based search. The

request is forwarded to the Query Translator, who generates a SPARQL query (if not

yet already expressed in SPARQL) out of the keywords. This SPARQL query is then

submitted to the RDF store.

Searching and querying a dataspace in general is not like querying a database.

In a dataspace we need to drift away from the one-shot query to query-by-navigation.

Users will have to pose several queries, which results in an Information Gathering

Task (IGT). IGT was introduced by Halevy et al. in [2] as one of the major principles

of a dataspace system. This task is implemented as a multi-level process of submit-

ting different types of queries. In the first level the RDF store, which organizes the

individuals of the e-Science life cycle ontology, is queried while in following levels

dataspace participants themselves are queried.
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Figure 2. Holistic view of the system architecture [10]

The information that a scientist gathers in the first level represents the semantics

about applied scientific experiments, like what were the research goals, what dataset

was used, what analytical methods, etc. It will lead the scientist to those LCRs

he might be interested in and to those that are interconnected to them. In the

second level the data items that are used within previously identified LCRs can be

retrieved. Such datasets are for example the input dataset used, or the dataset derived

from selected scientific experiments. In order to apply this kind of deeper searching

and querying more sophisticated queries are submitted to the scientific dataspace, in

particular to the corresponding DBMS that participates in the dataspace. Depending

on the data source it can be again SPARQL or SQL, XQuery, or any other query

language that is supported by the underlying data source.

Scientific Dataspace and RDF Store. The scientific dataspace is modeled as set of

dataspace participants and relationships describing their interconnections. A par-

ticipant of the scientific dataspace is a dataset that either represents input data to

a scientific experiment, or the analytical method being used within that experiment,

or it is a dataset that has emerged during execution of an experiment. We therefore

classify three types of participants: (a) primary data participants – the input dataset,

(b) background data participants, i.e. an analytical method (web service, MATLAB

script, etc.), and (c) derived data participants – emerged datasets.

Participants are described by its meta data. Meta data is organized by

the OWL class MetaData, which is a generic class for describing individuals

(e.g. participants) according to user-defined attributes. An instance of the
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class MetaData typically has the form of a triple <instanceID, attribute, va-

lue>. For example, a short textual description of a participant could look

like <‘participant073’, ‘description’, ‘breath gas analysis measurements

taken from 20 probands at sleep laboratory Innsbruck’>. With this data de-

scription concept, scientists can describe participants and also other individuals of the

ontology according to their needs.

Relationships among the above described types of dataspace participants are

semantically rich described by individual and property assertion axioms defined in

a LCR. These axioms, consolidated within a LCR, describe on a semantically high

level a scientific experiment. LCRs are expressed in RDF and persistently stored and

are managed by the RDF store.

Relationships within the scientific dataspace model show how datasets (primary,

background, or derived participants) were used in scientific experiments. Whenever

a dataspace participant is retrieved by some kind of supported search&query mech-

anisms, the requesting user will automatically receive additional information about

(1) which experiments (LCRs) the participant is involved in, (2) what the purposes of

these corresponding experiments were, (3) which other participants are also involved

in those experiments, therefore are interconnected to the retrieved participant, and

(4) who the creator of the participant is, which research group he corresponds to and

how to contact him.

This information is described by classes and properties of the e-Science life cycle

ontology and it represents the semantically rich relationship among participants of

the scientific dataspace.

Once a new e-Science life cycle experiment is composed via the Life Cycle Com-

poser by a scientist, a new LCR is created, indexed and added to the RDF store.

This process in described in the following subsections.

e-Science Life Cycle Composer. The e-Science life cycle composer enables a scien-

tist to describe scientific experiments. It guides the user through the five e-Science

life cycle activities, creates new individuals, and attaches them to a new LCR. It

communicates with the Dataspace Indexer, which indexes new individuals.

The e-Science life cycle composer can be seen as the feeder interface to the sci-

entific dataspace. It is the appropriate and easy to use way to enter semantically

rich information about how the participating data items in the dataspace are related

and interconnected together. A strong requirement here is to provide a simple and

clear interface that can easily be used by scientists from diverse research domains,

especially for non-computer scientists. We suspect that young-researchers (Master

and PhD students) will be the major user group of the e-Science life cycle composer,

while senior researcher will most likely interact with the system in terms of submitting

questions and/or via the Dataspace Browser (see Section 3) rather than feeding the

dataspace. This is actually an advantage, as it is more easier to force Master and PhD

students than senior researchers to follow the e-Science life cycle model and describe
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its five activities during their investigations. It is an essential task that leads to the

evolution of the dataspace into a semantically rich, large-scale scientific dataspace.

Dataspace Indexer. The purpose of the Dataspace Indexer is to organize LCRs, in-

cluding their subscription. It implements a storage and indexing mechanism for the

scientific dataspace model described in Section 2. LCRs are organized in a flat table.

Each row in the table represents a LCR. The first column stores the index of the

LCR. In the other columns the indexes of individuals of the five e-Science life cycle

activities are stored. The first LCR created will have index 1 in all five correspond-

ing individuals of the e-Science life cycle activities. Starting from the second LCR

the index assigned to a previous life cycle activity might occur again. This is for

the purpose that an individual might be reused within another LCR. Individuals of

the second LCR are therefore subscribed with either index 2 or index 1. The third

row allows an index up to 3, because here again individuals are attached to either

a new index 3 or in the case of re-use to the corresponding index of the re-used

individual, which is in the current state of the dataspace either 1 or 2. In order to

generalize this indexing mechanism let’s say Ix are the indexes I of a life cycle activity

x ∈ {GS,DP, TS, TE,RP}. Then Ix can be defined as the interval

[1, n] := {i ∈ N|1 ≤ i ≤ n}

Individuals of life cycle activity x are therefore indexed by elements of the interval

[1, n], where n is the total number of LCR available in the dataspace. Each individual

corresponds to a LCR. Thus, we define

iLCRy(x)

as the index i of an individual of a life cycle activity x ∈ {GS,DP, TS, TE,RP} that

corresponds to the LCR y.

Dataspace Browser. The dataspace browser is a tool that allows the user to navigate

through the LCRs available in the dataspace in a visual way. It sends requests to

the Query Processor. These requests are SPARQL queries that are submitted to the

RDF store. Since the response represents RDF data it can be visualized and further

represented using any RDF tool available, thus the architecture allows us to integrate

different tools for visualizing RDF data.

4. Implementation and Evaluation

The jSpace scientific dataspace support platform described in this paper has been

implemented and evaluated in the context of two real world e-Science applications:

(1) Grid-based non-invasive blood glucose measurement (NIGM) [11, 9] and (2) Grid-

supported breath-gas analysis for the molecular-oriented detection of minimal diseases

(BGA). The first one is based on an international research cooperation project1. The

1http://www.par.univie.ac.at/project/cadgrid/
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latter one is part of the ABA-Project project2. In this section we provide some

implementation details and an experimental evaluation on top of both applications.

The complete process of creating an LCR in the dataspace includes (a) the cre-

ation of semantic relationships among its datasets, (b) the indexing of each activity

in the LCR, and (c) the preservation of both, the individuals and properties of the

experiment into the RDF Store and its participating datasets into an appropriate

data preservation system such as the integrated Rule-Oriented Data System (iRODS)

[17]. This process is referred to as the jSpace preservation process in the following.

The experimental evaluation uses an initial prototype of jSpace (v1.2), which uses

the Jena framework [1] to provide persistent RDF data storage in a MySQL database

and the iRODS system as to implement a basic data repository for storing dataspace

participants. The performance overhead is an important factor in determining system

scalability and acceptability. We evaluated jSpace for performance overhead on both,

a real world NIGM and a BGA study, and discuss the results.

Experimental Setup. The following setup was used for our performance evaluation

on the jSpace Preservation Process (jSpace PP) in both application scenarios.

For the execution of the BGA study, we used a desktop computer running Win-

dows XP x64 Edition on an Intel Core 2 Quad CPU with 2.66 GHz and 4 GB of RAM.

The BGA study was executed within Matlab version 7.7.0 (R2008b). The BGA study

basically checks if there is some correlation in the inspiration and expiration of ex-

haled breath air for samples separated according by smoking behavior. It receives the

data directly from within Matlab. The input dataset is represented in the Matlab

data structure. The study includes three steps: (1) preparation of the data from the

input dataset that is in the Matlab structure, (2) execution of the tasks, which are

breath gas analytical methods implemented as Matlab functions, and (3) plotting the

results and preparing a report in the HTML format.

The NIGM performance results were elaborated on a Linux server running Fedora

Core 5 on an Intel Pentium D 930 CPU with 3 GHz and 4 GB of RAM. The server

hosts all the services relevant for the execution of the NIGM workflow. The following

software versions have been used Globus Toolkit 4.05 [18], WEEP Version 1.2.1[13],

OGSA-DAI WSRF 2.2 [3] exposing a MySQL 4.0 database with the meridian measure-

ment test datasets collected with the meridian measurement instrument. A detailed

performance evaluation on the NIGM application was conducted in [4], on top of

which we build our jSpace performance evaluation for that application. The NIGM

service consists of the following algorithms, deployed as WS-I and WSRF-compliant

CADGrid services: (1) System Identification, (2) Kalman Filtering, (3) Fast Fourier

Transformation, (4) Combination Service, and finally (5) Back Propagation Neural

Network.

The performance of the jSpace PP was tested on a macbook pro running Mac

OS X version 10.7.1 on an 2.4 GHz Intel Core 2 Duo processor with 5 GB of RAM.

2http://aba.cloudminer.org/
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Table 2

Performance overhead of the jSpace PP in the NIGM application

Description Best Time Worst Time Avg. Overhead (time) % Overhead

With jSpace PP 159380 ms 162425 ms 1623 ms 1.64%

Without jSpace PP 156800 ms 158453 ms — —

The installed software components include iRODS 2.4.1 [17], Jena 2.6.4 [1], and the

current version of the jSpace API which is 1.2.

jSpace Performance Evaluation on NIGM. For the performance overhead of the

jSpace PP in the NIGM application. The jSpace PP was conducted subsequent to

the NIGM workflow. A comparison of the results of the execution was performed. The

results of the performance overhead are shown in Table 2, which reflects that jSpace

has on average 1.64% performance overhead. Best Time and Worst Time in Table 2

are the total execution times including the execution time of the NIGM-workflow. In

the worst case a performance overhead of 2660ms was recorded and in the best case

the overhead was 1301ms.

Figure 3 shows how the performance overhead of the jSpace PP is consolidated

into its three phases. The creation of semantic relationships takes the greatest part,

almost 50% of the total time needed to preserve an NIGM study, directly followed

by the preservation phase of approx. 40%. The indexing phase accounts for approx.

10%.

In some application scenarios, it might be not so important to replicate the

input dataset because the end point references defined by jSpace might be sufficient.

However, in this experiment we have chosen to replicate the data from the dataspace

participants layer, which include the input dataset as well as the result dataset and

the NIGM workflow. The performance overhead of the preservation phase is mainly

caused by replicating the input dataset into iRODS. The input dataset used in this

experiment had the typical size of 10 MB whereas all other participating datasets

were in all not larger that 3 MB on average.

jSpace Performance Evaluation on BGA. For the second application domain we have

executed a typical breath gas analysis experiment with the jSpace PP subsequently

to the study execution and without it. The study has been executed one hundred

times in order to elaborate significant average performance results. The performance

overhead is shown in Table 3, which reflects a performance overhead of approx. 11.63%

on average.

We argue that the performance results presented in Table 3 represent a remark-

able low performance overhead, which is most likely due to the relatively small sizes

of dataspace participants in this application. Therefore, the preservation phase of the

jSpace PP is quite small. Dealing with larger datasets, we are facing a great increase

in the performance overhead which is mainly the result of a longer preservation phase

time.
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Figure 3. Distribution of the performance overhead among the phases of the jSpace PP

(average on preservation of 100 NIGM-LCRs)

Table 3

Performance overhead of jSpace in the BGA application.

Description Best Time Worst Time Avg. Overhead (time) % Overhead

With jSpace 9855 ms 12078 ms 1275 ms 12.14%

Without jSpace 7915 ms 8001 ms — —

5. Conclusion

This paper presents a sketch of a scientific dataspace paradigm build on top of the e-

Science life cycle ontology. Firstly, a theoretical model is described and based on it we

propose a system architecture for a scientific dataspace support platform. Key to the

platform is a semantic model for the creation, representation, and advanced searching

of relationships among participants of a scientific dataspace. A prototype has been

implemented and evaluated in the context of two real world e-Science applications.
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