
Jan Stypka
Piotr Anielski
Szymon Mentel
Daniel Krzywicki
Wojciech Turek
Aleksander Byrski
Marek Kisiel-Dorohinicki

PARALLEL PATTERNS FOR AGENT-BASED
EVOLUTIONARY COMPUTING

Abstract Computing applications such as metaheuristics-based optimization can greatly

benefit from multi-core architectures available on modern supercomputers.

In this paper, we describe an easy and efficient way to implement certain

population-based algorithms (in the discussed case, multi-agent computing sys-

tem) on such runtime environments. Our solution is based on an Erlang soft-

ware library which implements dedicated parallel patterns. We provide tech-

nological details on our approach and discuss experimental results.

Keywords agent-based computing, functional programming, parallel patterns

Citation

2016/03/22; 21:40 str. 1/16

Computer Science • 17 (1) 2016 http://dx.doi.org/10.7494/csci.2016.17.1.83

Computer Science 17 (1) 2016: 83–98

83

http://journals.agh.edu.pl/csci/

1. Introduction

In the era of multi-core hardware, it is crucial to efficiently and effectively use the

possibilities offered by available computing equipment. Over the years, various tech-

niques and tools, such as MPI, have been introduced to construct distributed and

parallel systems. They were usually based on imperative and object-oriented pro-

gramming paradigms. However, it has now become clear that the intrinsic features of

functional programming provide a clear advantage in constructing parallel programs.

In multi-core environments, it is far easier to program in languages such as Erlang1

or Scala2 than in conventional, imperative languages.

In this paper, we consider a functional approach to the implementation of a spe-

cific class of computational intelligence systems. Most of the metaheuristic approaches

to solving optimization problems (like evolutionary algorithms, particle swarm opti-

mization, immunological algorithms) have potential for parallelism, as they usually

consist in processing a large number of individuals. Therefore, provided that the inter-

actions of these individuals are appropriately defined, sequential implementations can

be easily replaced with structural parallel alternatives [10]. As an example, parallel

evolutionary algorithms are based on the decomposition of a population of individuals

into so-called evolutionary islands, which are assigned to particular computing nodes.

In agent-based approaches the same happens to agents, which may be distributed

among computing nodes [8, 9].

This process seems easy from a conceptual point of view but some practical

problems often arise. For example, classical systems implemented using synchronous

communication methods (different flavours of remote procedure calls, as e.g. RMI in

Java [2]) or asynchronous ones (JMS in Java [1]) require users to design appropriate

failure protocols in order to achieve resiliency. Dedicated techniques such as load

balancing must also be employed in order to map particular parts of the system into

computing nodes, based on the nodes characteristics. Other technological problems

may be wrapped up in questions such as “who should start the computing process?”,

“who should gather the results?”, “will it become a single point of failure?”, “how to

reliably and efficiently communicate with parts of the system?”.

Another important question to be answered is “who should implement these

above-mentioned mechanisms?”. If the answer is: the system developer, another

question arises: “will the solution be reliable?” or even “should the design of a com-

puting system be focused on technical problems?”.

Fortunately, a number of dedicated software frameworks are now easily avail-

able, supporting asynchronous, reliable communication and resilience, among other

features. Moreover, technologies such as Erlang, Scala and Akka3 not only offer the

above mentioned features, but also allow to easily use available multi-core and multi-

1http://www.erlang.org/
2http://www.scala-lang.org/
3http://akka.io/

2016/03/22; 21:40 str. 2/16

84 J. Stypka, P. Anielski, S. Mentel et al.

processor machines. Based on such technologies, the designer and developer can truly

focus on the nature of the system, not going into excessive technical details.

Such techniques, however, often offer low-level solutions, regarding e.g. concur-

rency and parallel programming features. It is often more effective for developers

to use a high level set of parallel programming patterns in order to speed up the

development process, reduce the number of potential bugs and create more flexible

and layered implementation. This concept became the basis for the skel library, an

Erlang tool implementing a pattern-based parallel programming model [5, 7]. That

model assumes that a program can be expressed as a workflow constructed of differ-

ent patterns. The workflow is then supposed to be automatically mapped to available

hardware.

In this paper, we focus on presenting an application of the skel library, designed

for metaheuristic-based computing, developed in the course of the ParaPhrase FP7

project [15]. We first present a review of related work, along with the relevant com-

putational use-case: Evolutionary Multi-Agent System (EMAS) [8]. We also describe

different features of available agent-based computing platforms. Next, we highlight

the principles of work of the skel library, then we introduce the actual implementation

of agent-based EMAS metaheuristic [9]. Finally, we show experimental results and

discuss the scalability of our solution, along with concluding remarks.

2. Parallel and agent-based optimisation metaheuristics

Various models of parallel implementations of evolutionary algorithms have already

been proposed [10]. The standard approach (sometimes called a global paralleliza-

tion) consists in distributing selected steps of the sequential algorithm among several

processing units. Decomposition approaches are based on defining different com-

plex models such as coarse-grained and fine-grained parallel evolutionary algorithms.

There are also methods which use some combination of the models described above

(hybrid parallel evolutionary algorithms).

Agents play an important role in the integration of artificial intelligence subdis-

ciplines, which is often related to a hybrid design of modern intelligent systems [22].

In most similar applications reported in the literature (see, e.g. [23, 11] for a review),

an evolutionary algorithm is used by an agent to support the realization of some of its

tasks, often in connection with learning or reasoning, or to support the coordination

of some group activity. In other approaches, agents form a management infrastructure

for a distributed realization of an evolutionary algorithm [24].

Evolutionary multiagent systems are a hybrid meta-heuristic which combines

multiagent systems with evolutionary algorithms. The idea consists in evolving a pop-

ulation of agents to improve its t ability to solve a particular optimization prob-

lem [8, 9].

In a multi-agent system no global knowledge is available to individual agents.

Agents should remain autonomous and no central authority should be needed. There-

fore, in an evolutionary computing system, selective pressure needs to be decentral-

2016/03/22; 21:40 str. 3/16

Parallel patterns for agent-based evolutionary computing 85

ized, in contrast with traditional evolutionary algorithms. Using agent terminology,

we can say that selective pressure is required to emerge from peer to peer interactions

between agents instead of being globally-driven.

In EMAS, emergent selective pressure is achieved by giving agents a single non-

renewable resource called energy. Agents with high energy are more likely to repro-

duce, agents with low energy more likely to die. The algorithm is designed to transfer

energy from better to worse agents without central control.

In a basic implementation, every agent is assigned with a real-valued vector repre-

senting a potential solution to the optimization problem, along with the corresponding

fitness.

Agents start with an initial amount of energy and meet randomly. If their energy

is below a death threshold, they die. If it is above some reproduction threshold, they

reproduce and yield new agents – the genotype of the children is derived from their

parents using variation operators and some amount of energy is also inherited. If

neither of these two conditions is met, agents fight in tournaments by comparing

their fitness values resulting in better agents sapping energy from the worse ones

(Fig. 1).

agent

genotype
energy

agent

genotype
energy

agent

genotype
energy

agent

genotype
energy

agent

genotype
energyagent

genotype
energy

Environment

high energy:
reproduction

low energy:
death

evaluation
and energy transfer

A
A

immigration

A

emigration

Environment Environment

Amigrations

Figure 1. EMAS structure and principle of work.

The system is stable as the total energy remains constant, but the number of

agents may vary and adapt to the difficulty of the problem – small numbers of agents

with high energy or large numbers of agents with low energy. The number of agents

can also be dynamically changed by varying the total energy of the system.

2016/03/22; 21:40 str. 4/16

86 J. Stypka, P. Anielski, S. Mentel et al.

As in other evolutionary algorithms, agents can be split into separate popula-

tions. Such islands help preserve diversity by introducing allopatric speciation and

can also execute in parallel. Information is exchanged between islands through agent

migrations.

EMAS computing abilities were formally proven by constructing a detailed

Markov-chain based model and proving its ergodicity [9]. These results show that

EMAS is indeed a general optimization tool.

3. Agent-oriented frameworks for computational systems

There are several interesting agent platforms with different purposes. Some of them

focus on compliance with the FIPA standard (Foundation for Intelligent Physical

Agents), e.g. JADE [3]. Others go in the opposite direction, constructed in a more

lightweight way, being better suited for large simulations, e.g., MASON [18]. Some

of them provide a large set of built-in features like support for visualization or GIS,

e.g. Repast Simphony [19]. Considering aspects of distribution and concurrency, two

platforms will be elaborated in deep: Jadex and MaDKit.

Jadex [6] introduces a concept of “active components” — components that are

acting as providers and consumers of services and which are active entities with au-

tonomy similar to agents. They communicate with each other through service calls.

This system is a good example of a complete distributed and concurrent agent-based

platform [21].

The way in which agents in Jadex are implemented results in transparent distri-

bution and concurrency. Services may use remote asynchronous calls instead of local

ones. Each service has its own proxy that is responsible for receiving and scheduling

calls. On the technical side, remote calls use asynchronous messages between remote

management system components. They are encoded using codecs (e.g., binary, XML)

and then trasmitted through streams (using any possible transports, e.g., HTTP,

TCP). Codecs can also provide advanced functions like encryption or compression.

In MaDKit agents are organized into groups and have some defined roles. The

whole platform is centralized around the agent-group-role (AGR) model. Using it,

developers build organizations which consist of interacting groups and roles [14].

MaDKit has two important concepts that ease the introduction of distribution

and concurrency: micro-kernels and agent-based services. The former is the name of

a reduced platform core that executes only the most basic functions: control of groups

and roles, lifecycle management of agents, local messaging. More advanced functions

must be provided by agents and this is the latter concept in which agents provide the

rest of platform services, e.g., distributed message passing, migration. As a result, the

platform is extensible and flexible. Additionally, groups can span multiple platform

nodes.

The above-mentioned systems are general-purpose tools. For specific applica-

tions, efficiency improvements can be achieved by simplifying assumptions concern-

ing system granularity or communication. As such, Jadex and MADKit became

2016/03/22; 21:40 str. 5/16

Parallel patterns for agent-based evolutionary computing 87

an inspiration for several dedicated agent-based computing frameworks targeted at

population-based computing.

The AgE computing framework is an open-source project developed at the Intelli-

gent Information Systems Group of AGH-UST and a starting point for further con-

siderations. AgE is a framework for the development and the run-time execution of

distributed agent-based simulations and computations.

In AgE, a computation is decomposed into agents responsible for performing some

part of the algorithm. Agents are structured into a tree according to the Composite

design pattern [13]. It is assumed that all agents at the same level are being executed

in parallel. To increase performance, top level agents can be distributed amongst

different nodes along with all their children.

Agents, however, are not atomic assembly units, but they are further decom-

posed into functional units according to the Strategy design pattern [13]. Strategies

represent problem-dependent algorithmic operators and may be switched without oth-

erwise changing the implementation of the agent. Stateless strategy instances may be

shared between agents as they provide various services to agents or others strategies.

With the use of the environment, agents can communicate with their neighbours

via messages or queries. They may also ask their neighbours to perform specific

actions.

In a distributed model, agents are located in so-called workplaces, which are

assigned to computing nodes. Workplaces facilitate inter-agent communication and

migration between nodes. The workplaces may be implemented according to phase-

simulation or can be event-driven [20].

There are several AgE implementations, the most noteworthy are based on Java4,

Python5 and Erlang6.

A functional agent-based execution model is a new approach to the design of agent-

based computing frameworks [16].

In the platforms and frameworks described before, agent-based systems are usu-

ally implemented using an object-oriented or a component-based approach. As such,

their design follows the domain of the implemented problem, i.e. a number of inter-

acting individuals, embedded in an environment, being able to perceive and interact

among themselves and with the environment they are located in.

However, in the case of computing systems, a number of simplifications can lead

to simpler implementations, fully compatible with functional programming languages.

Such a functional approach allows to naturally use concurrent and distributed features

of such languages and leads to a more efficient execution of a multi-agent system. [17].

In this approach, agents willing to perform similar actions are grouped in separate

entities called arenas, following the Mediator design pattern [13]. Agents choose and

4http://age.agh.edu.pl
5https://github.com/maciek123/pyage
6http://paraphrase.agh.edu.pl

2016/03/22; 21:40 str. 6/16

88 J. Stypka, P. Anielski, S. Mentel et al.

join an arena depending on their state. Arenas split incoming agents into groups

of certain cardinality and trigger the actual actions. Every kind of agent behavior

is represented by a separate arena (e.g. in the case of EMAS there are arenas for

meeting, reproduction and migration).

The dynamics of the multi-agent system are fully defined by two functions. The

first function represents agent behavior and chooses an arena for each agent (mapping

step). The second function represents meeting logic and is applied in every arena

(reducing step). This approach is similar to the MapReduce model and has the

advantage of being very flexible, as it can be implemented in both a centralized and

synchronous way or a decentralized and asynchronous one, as we show further below.

4. Skel – general purpose tool for parallelization

An efficient parallel implementation of a complex algorithm is typically a challenging

and time-consuming task. It requires significant effort to maximize speedup using soft-

ware tools for parallel hardware such as operating system threads, shared memory and

synchronization mechanisms. In such implementations, the logical structure of the al-

gorithm or the problem is often coupled to the physical architecture of hardware. This

is a significant disadvantage, as the decision on how to make a computation parallel

should depend on the problem and its size. Moreover, an implementation created for

a particular machine is often suboptimal on a different computer architecture. There-

fore, coupling the algorithm with the hardware is inflexible and hardware-dependent.

The Skel library was designed to efficiently solve these issues with a different pro-

gramming model for parallel algorithms. The library is a result of the ParaPhrase FP7

EU project [15]. The project defines a new methodology, based on parallel patterns,

for the design and implementation of parallel applications on heterogeneous hardware

architectures. A pattern describes a parallel computation by highlighting the func-

tional behavior instead of the implementation details. The patterns are composed by

a programmer into algorithmic skeletons.

A skeleton is represented as a directed graph of nodes, each of which defines

a parallel computational behavior. Thus, a skeleton tree corresponds to a specific

pattern of computation, in which the number of nodes and the data distribution

policies are explicitly specified. The details related to the implementation on a specific

target architecture are hidden. As shown in Figure 2, a parallel application designed as

a composition of parallel patterns is mapped to the available hardware resources, and

it may be dynamically re-mapped to meet application needs and hardware availability.

Moreover, the application can easily be restructured using a refactoring tool such as

PaRTE [4] in order to change or improve the used parallel patterns.

The basic parallel patterns of Skel library are:

• Pipe – a sequence of stages, where the output of one stage is an input for the

next stage. A single data item is executed in each stage in turn, but separate

data items may be executed in different stages in parallel.

2016/03/22; 21:40 str. 7/16

Parallel patterns for agent-based evolutionary computing 89

• Farm – embarrassingly parallel computations in which every data item can be

computed independently of others.

• Map and Reduce – split collective data structure into parts, perform operations

on them in parallel and aggregates the results.

• Feedback – a skeleton equivalent of a loop, feeds its output in its input until

a stop condition is met.

Application
Design

computation
unit

Pattern-based
Development

or
Refactoring

SKEL-based
Application

cu
cu

cu cu

SKEL-based
Application

cu

cu cu

SKEL-based
Application

cu cu
cu

cu cu

Execution environment

Dynamic mapping

CPU

core core

core core

CPU

core core

core core

CPU

core core

core core

CPU

core core

core core

GPU

cu cu

cu cu cu

cu

cu

cu cu

cu cu

cu cu

cu

cu cu cu

cu

Figure 2. Parallel program execution schema. Application written using Skel as a graph of

patterns is dynamically mapped to available hardware.

The Skel library is implemented in Erlang. It is based on typical Erlang mech-

anisms and provides higher level skeleton abstractions. It accepts a description of

the skeleton workflow (which is the application skeleton graph) and an input data

stream and processes them to produce the output data stream. The output stream

represents the results produced by the parallel execution of the skeleton graph on the

input stream items.

This library allows to use parallel hardware with a minimum effort from the pro-

grammer. Single pieces of computation, provided as Erlang functions, are composed

into a skeleton within a few lines of code. All the problems of process pooling, data

management and efficient hardware mapping are solved transparently.

5. Skel-based EMAS implementation

A general algorithm conducted in one of EMAS evolutionary islands may look as

follows:

1. Allow each of the agents to conduct a subsequent step of its work.

2. Gather signatures of actions to be performed by the agents: e.g. reproduce, die,

migrate.

3. Perform the actions in the order of notification: e.g. produce an offspring based

on two agents wanting to reproduce and transfer appropriate amount of energy

2016/03/22; 21:40 str. 8/16

90 J. Stypka, P. Anielski, S. Mentel et al.

from parents, remove a dying agent and distribute its remaining energy among

other agents, migrate an agent between the islands.

4. Unless a stop condition is met, return to step 1.

At the same time, a general algorithm of one step conducted in one of EMAS agents

may look as follows:

1. With small probability, decide to migrate and notify the evolutionary island

accordingly.

2. If the energy level is higher than some reproduction threshold, notify the evolu-

tionary island accordingly.

3. If the energy level is lower than some death threshold, notify the evolutionary

island accordingly.

4. Otherwise, meet another agent, compare the fitness values and exchange some

energy.

Assuming the existence of several evolutionary islands, the most obvious paralleliza-

tion strategy is to represent each island as a separated thread or even as a process.

Another solution is to introduce parallel execution of the particular types of opera-

tions within a single island. Meetings for energy transfer, reproduction and migration

are independent and can be executed in parallel. Moreover, even each agent may be

implemented completely asynchronously.

Depending on the complexity of the operations to be performed, different types of

parallelism may be more efficient. Therefore, it is advantageous to be able to express

the multi-agent algorithm in terms of high-level functions and leave out execution

details. These high-level functions can be later combined to match a specific problem

size and the available hardware resources. The Skel library provides exactly the

required mechanisms to achieve this.

The Skel-based EMAS implementation is composed of several simple skeletons

nested within each other. It enables a high-level approach as well as easy code devel-

opment and maintenance.

The main skeleton that enables continuous program iteration is the feedback

skeleton. It contains a workflow describing one algorithmic cycle and a condition that

has to be fulfilled in order for the program to continue the execution. The definition

of the main algorithm loop with a time-based stop condition is shown in Listing 1.

Listing 1. The feedback loop of the algorithm.

1 StopCondition = fun(_Agents) -> os:timestamp () < EndTime end.

2 Skeleton = {feedback , [MainWorkflow], StopCondition}.

3
4 FinalPopulation = skel:do([Skeleton], [InitialPopulation]).

The main workflow embedded in the feedback skeleton is a pipeline consisting

of three main functions (see Listing 2). These operations are executed sequentially

2016/03/22; 21:40 str. 9/16

Parallel patterns for agent-based evolutionary computing 91

in the first seq skeleton of the pipeline. Concrete definitions of the aforementioned

functions are shown in Listing 3.

Listing 2. The main workflow of the algorithm.

1 MainWorkflow = {pipe , [{seq , GroupAgents},

2 {map , [{seq , UpdateAgents}], Workers},

3 {seq , Shuffle}]}.

The first function (GroupAgents), is responsible for choosing an action for ev-

ery agent, performing migration between islands and eventually grouping agents with

similar behaviors (actions) on the same islands. Agents choose some action (repro-

duction, fight, death) depending on their state (amount of energy). Agents can also

choose to migrate with some low probability.

The second function (UpdateAgents) is where all the evolutionary operations are

performed and it is parallelized with the map skeleton with a predefined number of

workers. Each worker processes one agent group at a time applying an appropriate

meeting function until all of the groups have been handled.

For every kind of behavior (reproduction, fight, death), a specific meeting func-

tion is called. Fights are tournaments in which agents compare fitness and the loser

transfers some of its energy to the winner. Reproduction uses classical evolutionary

variation operators to derive offspring from existing agents. Death meetings simply

yield an empty list to remove the incoming agents from the population.

The third function’s purpose is to shuffle the final agent list, so that the interac-

tions in future generations happen between random individuals.

Listing 3. Particular stages of the algorithm.

1 GroupAgents = fun (Agents) ->

2 AgentsWithAction = lists:map(ChooseAction , Agents),

3 Migrated = lists:map(Migrate , AgentsWithAction),

4 GroupByAction(Migrated)

5 end ,

6
7
8 UpdateAgents = fun({{Island , Behavior}, Agents}) ->

9 NewAgents = Meetings({Behavior , Agents}),

10 [{Island , A} || A~<- NewAgents]

11 end ,

12
13 Shuffle = fun(Agents) ->

14 shuffle(lists:flatten(Agents))

15 end.

The basic logic and parallel structure of the algorithm can be expressed in ap-

proximately 50 lines of code. Even including all the evolutionary operations as well

2016/03/22; 21:40 str. 10/16

92 J. Stypka, P. Anielski, S. Mentel et al.

as logging and other monitoring code, the total volume does not exceed few hundred

lines, which is significantly compact.

Thanks to skeletons provided by the Skel library, the implementation is very

simple as well as easy to read and maintain. The program is parallelized automatically

which reduces boilerplate code and improves readability and clarity of the source files.

6. Experimental results and comparison

6.1. Problem definition

The evaluation focuses on solving a discrete optimization problem, namely finding

Low Autocorrelation Binary Sequences, an NP-hard combinatorial problem with

a very simple formulation and many applications in telecommunication, meteorol-

ogy, physics and chemistry [12]. The problem consists in finding a binary sequence

S = {s0, s1, . . . , sL−1} with length L where si ∈ {−1, 1} which minimizes the energy

function E(S):

Ck(S) =

L−k−1∑

i=0

sisi+k E(S) =

L−1∑

k=1

C2
k(S).

6.2. Test organisation

We ran our experiments on the ZEUS supercomputer provided by the Pl-Grid7 in-

frastructure at the ACC Cyfronet AGH8. We used nodes with 2 Intel Xeon X5650

processors each (12 cores per node) and a total of 24 GB of memory per node. In

consecutive experiments, different numbers of cores were used.

We performed experiments for several CPU configurations and problem sizes.

We assessed the weak and strong scalability of our solution by varying problem sizes

and used cores. Every experiment was run for 30 minutes and repeated 30 times for

statistical significance. The results below are averaged over these runs.

6.3. Experiment results

Figure 3(a) shows fitness plots for different problem sizes that have all been run

on 1 core. There is no surprise here, the harder the problem, the more time our

program needs to improve the solution. Figures 3(b)–(d), on the other hand, show how

fitness value converges for different CPU core configurations. One can see significant

improvement while adding more computing cores on all problem sizes. Furthermore

the difference becomes more visible for larger problems, and the average final fitness

values for each experiment are shown in Table 1.

To assess the scalability of the system, we recorded the intensity of interactions

in the system, represented by the number of agent reproductions happening every

7http://www.plgrid.pl/en
8http://www.cyfronet.krakow.pl/en/

2016/03/22; 21:40 str. 11/16

Parallel patterns for agent-based evolutionary computing 93

(a) Fitness convergence for different problem
sizes on 1 CPU core.

(b) Fitness convergence for problem size 40 on
different cores.

(c) Fitness convergence for problem size 50 on
different cores.

(d) Fitness convergence for problem size 60 on
different cores.

(e) Reproductions per second for different prob-
lem sizes.

(f) Speedup.

Figure 3. Scalability and efficiency of the computation using Skel.

2016/03/22; 21:40 str. 12/16

94 J. Stypka, P. Anielski, S. Mentel et al.

second (Fig. 3e). We can also normalize these values to derive speedup (Fig. 3f),

along with an “ideal speedup” reference line. As we can see, scalability is virtually

linear for all problem sizes.

Table 1

Average fitness values and their standard error at the end of the experiments, for different

problem sizes and number of cores.

Cores
Problem size

40 50 60

1 6.6936 0.0318 6.2240 0.0683 5.8479 0.0474

2 6.7913 0.0523 6.4907 0.0879 5.9742 0.0533

4 6.9127 0.0444 6.7665 0.0676 6.1592 0.0492

8 7.1537 0.0505 6.9047 0.0968 6.3291 0.0578

12 7.2201 0.0449 7.2273 0.1068 6.5007 0.0552

7. Conclusions

Population metaheuristics (e.g. evolutionary or agent-based) are a natural candidate

for implementation on parallel computing hardware. A traditional implementation of

such systems, using e.g. MPI, is a difficult and error-prone task.

Fortunately, a number of functional technologies, such as Scala or Erlang, can

help in an efficient implementation of such systems by changing the perspective. In-

stead of coupling the algorithm to the underlying hardware, programmers can focus

on the problem domain and design multi-agent systems while abstracting from their

actual runtime execution.

In this paper, we show how to design an Evolutionary Multi-Agent System in

terms of such high-level functions and use parallel patterns and skeletons from the skel

library in order make the algorithm more efficient on multi-core hardware. However,

the algorithm can be easily adapted to different hardware by changing structure of

skeletons.

The most important feature of the proposed implementation model is its sim-

plicity. The basic logic and parallel structure of the algorithm can be expressed in

approximately 50 lines of code. Our results show that the implemented system was

able to efficiently utilize all tested configurations. The algorithm also scales well with

the introduction of skeleton parallelism, as increasing the number of cores allows to

reach better optimisation results faster.

Future work includes tackling more difficult problems and comparing our results

with ones provided by different software platforms.

Acknowledgements

The research presented in the paper was partially supported by the European Commis-

sion FP7 through the project ParaPhrase: Parallel Patterns for Adaptive Heteroge-

2016/03/22; 21:40 str. 13/16

Parallel patterns for agent-based evolutionary computing 95

neous Multicore Systems, under contract no.: 288570 http://paraphrase-ict.eu.

The research presented in this paper received partial financial support from AGH

University of Science and Technology statutory project no. 11.11.230.124. The

research presented in the paper was conducted using PL-Grid Infrastructure http:

//www.plgrid.pl/en.

References

[1] Specification of Java Remote Method Invocation. https://jcp.org/en/jsr/

detail?id=368.

[2] Specification of the Java Message Service. http://docs.oracle.com/javase/1.

5.0/docs/guide/rmi/spec/rmiTOC.html.

[3] Bellifemine F., Poggi A., Rimassa G.: JADE – A FIPA-compliant agent frame-

work. In: Proceedings of PAAM, vol. 99, pp. 97–108, London, 1999.

[4] Bozó I., Fördős V., Horpácsi D., Horváth Z., Kozsik T., Kőszegi J., Tóth M.:

Refactorings to Enable Parallelization. In: Trends in Functional Programming,

pp. 104–121, Springer, Berlin, 2015.

[5] Bozó I., Fordós V., Horvath Z., Tóth M., Horpácsi D., Kozsik T., Köszegi J.,

Barwell A., Brown C., Hammond K.: Discovering parallel pattern candidates in

erlang. In: Proceedings of the Thirteenth ACM SIGPLAN workshop on Erlang,

pp. 13–23, ACM, 2014.

[6] Braubach L., Lamersdorf W., Pokahr A.: Jadex: Implementing a BDI-

infrastructure for JADE agents. Exp, vol. 3(3), pp. 76–85, 2003.

[7] Brown C., Danelutto M., Hammond K., Kilpatrick P., Elliott A.: Cost-directed

refactoring for parallel Erlang programs. International Journal of Parallel Pro-

gramming, vol. 42(4), pp. 564–582, 2014.

[8] Byrski A., Dreżewski R., Siwik L., Kisiel-Dorohinicki M.: Evolutionary Multi-

Agent Systems. The Knowledge Engineering Review, vol. 30(02), pp. 171–186,

2012.

[9] Byrski A., Schaefer R., Smo lka M., Cotta C.: Asymptotic guarantee of success

for multi-agent memetic systems. Bulletin of the Polish Academy of Sciences:

Technical Sciences, vol. 61(1), pp. 257–278, 2013.

[10] Cantú-Paz E.: A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles,

Reseaux et Systems Repartis, vol. 10(2), pp. 141–171, 1998.

[11] Chen S.H., Kambayashi Y., Sato H.: Multi-Agent Applications with Evolutionary

Computation and Biologically Inspired Technologies. IGI Global, Hershey, Penn-

sylvania, 2011.

[12] Gallardo J.E., Cotta C., Fernández A.J.: Finding low autocorrelation binary

sequences with memetic algorithms. Applied Soft Computing, vol. 9(4), pp. 1252–

1262, 2009.

[13] Gamma E., Helm R., Johnson R., Vlissides J.: Design patterns: elements of

reusable object-oriented software. Pearson Education, Harlow, UK, 1994.

2016/03/22; 21:40 str. 14/16

96 J. Stypka, P. Anielski, S. Mentel et al.

[14] Gutknecht O., Ferber J.: The madkit agent platform architecture. In: Infrastruc-

ture for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems, pp. 48–

55, Springer, 2001.

[15] Hammond K., Aldinucci M., Brown C., Cesarini F., Danelutto M., González-

Vélez H., Kilpatrick P., Keller R., Rossbory M., Shainer G.: The paraphrase

project: Parallel patterns for adaptive heterogeneous multicore systems. In: For-

mal Methods for Components and Objects, pp. 218–236, Springer, 2013.

[16] Krzywicki D., Byrski A., Kisiel-Dorohinicki M., et al.: Computing agents for

decision support systems. Future Generation Computer Systems, vol. 37, pp. 390–

400, 2014.

[17] Krzywicki D., Stypka J., Anielski P., Turek W., Byrski A., Kisiel-Dorohinicki M.,

et al.: Generation-free Agent-based Evolutionary Computing. Procedia Computer

Science, vol. 29, pp. 1068–1077, 2014.

[18] Luke S., Cioffi-Revilla C., Panait L., Sullivan K., Balan G.: Mason: A multiagent

simulation environment. Simulation, vol. 81(7), pp. 517–527, 2005.

[19] North M.J., Collier N.T., Ozik J., Tatara E.R., Macal C.M., Bragen M., Sydelko

P.: Complex adaptive systems modeling with repast simphony. Complex Adaptive

Systems Modeling, vol. 1(1), pp. 1–26, 2013.

[20] Pidd M., Cassel R.A.: Three phase simulation in Java. In: Proceedings of the 30th

conference on Winter simulation, pp. 367–372, IEEE Computer Society Press,

1998.

[21] Pokahr A., Braubach L., Jander K.: The jadex project: Programming model. In:

Multiagent Systems and Applications, pp. 21–53, Springer, Berlin, 2013.

[22] Russell S., Norvig P., Intelligence A.: Artificial Intelligence: A modern approach.

Prentice-Hall, Egnlewood Cliffs, 1995.

[23] Sarker R.A., Ray T.: Agent-Based Evolutionary Search, vol. 5. Springer Science

& Business Media, 2010.

[24] Uhruski P., Grochowski M., Schaefer R.: Multi-agent computing system in a

heterogeneous network. In: Parallel Computing in Electrical Engineering, 2002.

PARELEC’02. Proceedings. International Conference on, pp. 233–238, IEEE,

2002.

Affiliations

Jan Stypka
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, janstypka@gmail.com

Piotr Anielski
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, pr.anielski@gmail.com

Szymon Mentel
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, mentel.szymon@gmail.com

2016/03/22; 21:40 str. 15/16

Parallel patterns for agent-based evolutionary computing 97

Daniel Krzywicki
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, krzywic@agh.edu.pl

Wojciech Turek
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, wojciech.turek@agh.edu.pl

Aleksander Byrski
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, olekb@agh.edu.pl

Marek Kisiel-Dorohinicki
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, doroh@agh.edu.pl

Received: 8.02.2015

Revised: 27.06.2015

Accepted: 29.06.2015

2016/03/22; 21:40 str. 16/16

98 J. Stypka, P. Anielski, S. Mentel et al.

