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Abstract Parkinson’s Disease (PD) is primary related to substantia nigra degeneration

and, thus, dopamine insufficiency. L-DOPA as a precursor of dopamine is the

standard medication in PD. However, disease progression causes L-DOPA ther-

apy efficiency decay (on-off symptom fluctuation), and neurologists often decide

to classify patients for DBS (Deep Brain Stimulation) surgery. DBS treatment

is based on stimulating the specific subthalamic structure: subthalamic nu-

cleus (STN) in our case. As STN consists of parts with different physiological

functions, finding the appropriate placement of the DBS electrode contacts is

challenging. In order to predict the neurological effects related to different

electrode-contact stimulations, we have tracked connections between the stim-

ulated part of STN and the cortex with the help of diffusion tensor imaging

(DTI). By changing a contacts number and amplitude of stimulus (proportional

in size to stimulated area), we have determined connections to cortical areas and

related neurological effects. We have applied data mining methods to predict

which contact (and at what amplitude) should be stimulated in order to im-

prove a particular symptom. We have compared different data mining methods:

Wekas Random Forest classifier and Rough Set Exploration System (RSES).

We have demonstrated that the Weka classifier was more accurate when pre-

dicting the effects of stimulations on general neurological improvements, while

RSES was more accurate when using specific neurological symptoms. We have

simulated other effects of stimulation related to the interruption of pathological

oscillation in the basal ganglia found in PD. Our model represents possible STN

neural population with inhibitory and excitatory connections that have patho-

logically synchronized oscillations. High-frequency electrical stimulation has

interrupted synchronization. something that is also observed in PD patients.
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1. Introduction

DBS is a well-established method of PD treatment, and it is most-often applied when

pharmacological treatment is no longer effective for a particular patient. Despite

this, DBS has been widely used for more than two decades. There are still a number

of factors (e.g., exact electrode-contact localization that may significantly affect the

effectiveness of this method).

The target of the stimulation is localized in the midbrain and is not visible in MRI

for most patients. Therefore, an approximate estimation of STN coordination is, in

most cases, based on nearby visible MRI structures (e.g., red nuclei). A more-precise

STN position was found by intraoperative recordings of changes in neural activity

associated with the depth of the microelectrode [4]. In addition, the STN is divided

into three regions that are related to motor, associative, and limbic functions. The

main target of our procedure is the motor STN region.

The purpose of the study was to predict optimal parameters of stimulation in

MRIs for each individual PD patient. In our research, we apply data-mining tech-

niques to compare the neurological symptoms measured by doctors with the anatomi-

cal data found by MRI/DTI measurements. Previously, data-mining techniques have

already been applied in DBS procedures [4]. Also, DTI methods were used to analyze

DBS effects in different disorders [5, 6], among others in PD [17]. We have also per-

formed a simulation of neuronal population similar to that in the STN. Our model

was created with the help of the Numerical Python package, and it is an extension of

a simple model of spiking neurons (proposed by Izhikevich [9]).

2. Methods

In this research, we have analysed the DTI, MRI, and CT data of ten patients mea-

sured before and after DBS surgery. All patients had their data separated into two

sessions; one taken before DBS surgery and one afterwards. Together, this makes 20

objects to be analyzed in later stages using the data-mining approach. As this study

is preliminary, we expect better results with an increase in the number of patients.

As the first step, we performed brain registration and tractography seeding using

3DSlicer (Harvard Medical School, Boston, MA). In this step, we selected appropriate

subsets of pre- and post-operative images. This step helped us to assess the position

of electrodes visible only in postoperative data. In the next step, we registered pre-

operative DTIs with post-operative MRIs.

2.1. MRI registration

In order to perform tractography seeding for the given contacts, we need to first

register postoperative to preoperative images acquired via MRI or CT. These scans

originate from standard procedures run before and after DBS surgery. The first ses-

sion is taken before the procedure to help assess the position of STN by the surgical

team, and the second to confirm proper placement of the electrode and its contacts.
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Following this stage, we obtained three relevant sets of images for each patient: pre-

operative MRI, postoperative MRI or CT, and preoperative DTI. Each set of images

contains multiple subsets that were taken in the same session with different parame-

ters. From all subsets, we chose those taken with three-dimension acquire mode and

having the smallest slice spacing and width. Also, an important factor in the selection

of the final images was the visibility of brain structures.

Based on these criteria, we selected one preoperative MRI, one preoperative

DTI, and one postoperative MRI. In the next step, we had to perform image data

registration of these data sets, as information regarding the position of electrodes

is contained only on the postoperative images, and DTI data is available only in

the preoperative data sets. This task was carried out using the ‘BRAINFit’ module

of 3DSlicer. We have performed MRI registration of the same patient but with the

appropriate corrections, as imaging was taken in different conditions and MRI sessions

were held on different days (pre- and post-OP) (see Table 1).

Table 1

Table shows major non-default parameters for 3D Slicer BRAINFit module used to register

postoperative to preoperative MRI images of patients.

Parameter name Value

Initialize transform mode Use center of head align Registration phases Rigid

Number of samples 100 000

Max iterations 1500

After multiple-layer registration, 3DSlicer was used to assess transformation ac-

curacy through the visible brain structure coverage. The level of structure coverage

assessed the accuracy of the transformation manually.

2.2. Tractography analysis

After postoperative to preoperative images were registered, we transformed preop-

erative DTI images into data in Slicer to generate tracts for given points of interest

(POI). In our case, POI were electrode contacts. For this purpose, we applied DWI to

the DTI estimation module using the weighted-least-squares algorithm. After obtain-

ing a proper DTI dataset, we needed to locate electrode contacts in order to generate

relevant tracts to our regions of interest (ROI). In order to do this, we needed to

assess their position using electrode markings visible in the postoperative data. To

assess contact positions, we used the ruler tool with the appropriate dimension pa-

rameters for the given electrode type. After setting up the POI relevant for different

contacts, we were ready to generate stimulated tracts for the selected contact. We

used Tractography Interactive Seeding module for this task.

Before the next step we needed to localize our ROI. In this work, we focused

mainly on regions of primary and supplementary motor corteces, in particular, regions

with lip, hand, and foot somatotopic representations [3, 15].
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Figure 1. In the above figure, we can see a patients brain images annotated with differ-

ent brain structures and markings that helped us find ROIs. Three ROIs that were most

interesting for us are marked by three round shapes: yellow – lip, red – foot, green – hand.

Manually localizing different structures in the brain assessed these regions. Based

on their position, we were able to localize target ROIs (see Fig. 1).

Figure 2. This figure presents two sets of tracts gathered for each patient. The image on

the left shows a minimal set consisting of only few tracts going into ROI, and was generated

with region size 1mm and stopping value 0.25. The right image shows a maximum set of

tracts, generated with radius size 6mm and stopping value 0.25. The generation parameters

change between subjects, depending on brain physiology.
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In the next step, we harvested two sets of data for a given patient. The first

set was performed with parameters that generated a small number of tracts into

primary and supplementary motor cortices. In the second set, the number of tracts

was accounted for more than 30. For each given patient, parameters for both sessions

were stored and used in later stages of this experiment. The parameters that were

used during the generation of proper tractography were seed spacing and stopping

value. The first parameter (seed spacing) was used as a radius from POI for generating

tractography. The second parameter (stopping value) was used as a parameter for

ceasing generation of the given tract (see Fig. 2).

2.3. Atlas registration

In order to extract the exact position of STN in relation to an implanted electrode,

we need to assess the stimulated structure position in the patients MRIs. In order to

do this, we will need to perform series of registrations between patient MRI and two

atlases.

In most cases, atlases are based on one or more specimens and are correlated

into one single data structure. In the case of the SPL-PNL atlas, we will register its

MRI representation to a patients pre-OP MRI scan. The primary difference between

this one and previous registrations is the fact that we are trying to register different

brains that have structures of different sizes and locations. Attempts to perform a full

registration of such images would result in largely deformed unusable transform. But,

as far as our analysis is concerned, we only need to determine the accurate position of

the few structures in our area of interest. To increase the accuracy of our registration

we performed it only for the given parts of the MRIs. Since we expected a differ-

ent proportion of registered structures, it was better to perform two different types

of registration: linear [10] and bspline [13]. Linear registration has good accuracy

in the registration of similar shapes with different locations, while bspline gives bet-

ter results when co-registering images with different parameters. After registration,

we manually assessed the precision of the registration transform by examining the

overlaying structures.

After having a patients pre-OP MRI scan registered to the general brain atlas

included in SPL-PNL, we needed to locate STN that was not included in the original

SPL-PNL atlas. To achieve this, we needed to register the SPL-PNL atlas to the

Krauth et al. thalamus model [11] that includes the exact position of the STN. This

model was created based on multiple specimens and provides more-accurate structure

localization. In this case, we used surface-model registration [14]. As a target for our

registration, we selected structures that could be defragmented from each model and

existed in both atlases. Specifically, we registered each side of the brain by the surfaces

of the red nucleus and thalamus. Since we were again registering two different brains,

we applied a few different algorithms for registration: Rigidbody, Similarity, and

Affine [14]. After completion of the procedure, we estimated the level of coverage

between structures from both models and picked a registration transform with the

largest part that overlays both models.
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After performing the registration of a patients pre MRI scan with the SPL-PNL

atlas and the SPL-PNL atlas to Krauths thalamus model (and correlating this data),

we are able to position STN on the patients brain images.

2.4. Data mining

After the appropriate data from the 3DSlicer was harvested, we correlated it with the

neurological data acquired by the doctors assessment of the patients conditions. This

data included classification with the Unified Parkinson’s Disease Scale (UPDRS) and

logical information about whether the given scale rating was obtained for a patient

with the best medical therapy (BMT) and/or DBS enabled. Following this schema,

many patients had several sessions of neurological data correlated with the previously

described attributes from the 3DSlicer.

After collecting all of the data, we used Weka 3 [7] to analyze it and predict the

given attributes of the stimulation. In order to do this, we needed to first prepare

a decision table containing all of the attributes. Part of this table can be seen in

Table 2.

Table 2

In the table below, we can see part of the decision table containing the following attributes:

DBS – indicates if a given session was acquired with DBS on/off; BMT – pharmacological

treatment on/off; UPDRS III – total motoric classification of patient’ condition; UPDRS 30

– UPDRS specific classifier for postural stability, 0 means no disability, 4 severe disability;

Slicer MAX L/R region size – radius for generating tractography for the selected contact for

a given patient with a MAX count of tracts; Slicer MAX L/R lip tracts – count of tracts

going to a given ROI in patient brain; L/R selected contact – selected contact for a given

hemisphere; L/R selected amplitude – selected amplitude for a given hemisphere.

Patient number #10 #10 #25

DBS 0 1 0

BMT 1 1 0

UPDRS III 13 − 16

UPDRS 30 – postural stability 3 − 1

Slicer MAX L – region size 6 6 8

Slicer MAX L – lip tracts 20 20 22

Slicer MAX R – region size 5 5 8.5

Slicer MAX R – lip tracts 15 15 35

L – selected contact 1 1 1.5

L – selected amplitude 2 2 1.5

R – selected contact 1 1 1.5

R – selected amplitude 3.2 3.2 1.5

The full table consists of 50 attributes and 20 objects from ten patients. In this

research, we performed a number of experiments using parts of this table to predict

decision attributes. Those attributes were as follows: the selected electrode contact

2015/09/22; 12:26 str. 6/17

204 Artur Szymański, Anna Kubis, Andrzej W. Przybyszewski



and the amplitude of the stimulation. In our experiments, we used the Random Forest

classifier and a 4-fold classification method.

2.5. Neuronal population model

Our model simulates the pathological activity of neurons in the case of PD. It is

known that, in PD patients, neurons showed synchronized bursts in contrast to healthy

patients who have unsynchronized spiking activity [2, 12].

We based our simulation on the simple model of spiking neurons by Izhikevich

[9]. In our version, we converted the original Matlab application to Python with the

use of the Numpy package, which provides an environment similar to Matlab using

Python interpreter.

This model was selected due to its relatively low complexity as compared to

other models of neuronal cells (like the Morris– Lecar or Hodgkin–Huxley models).

As already demonstrated, the Izhikevichs model has similar properties as models with

higher complexity [12].

The network consists of two populations. The first takes the role of the stimulated

part of STN, and the other simulates a brain cortex. Each population consists of 1,000

neurons, which are split into inhibitory (200) and exhibitor (800) neurons. This is

exactly the split that Izhikevich proposed in his model that consisted of only one

population of neurons. Both populations were organized in a vector shape.

With the simple spiking model, we were able to simulate various kinds of neuronal

activity, including regular spiking, fast spiking, thalamo-cortical spiking, and many

more. Based on the simple spiking neuron simulation, we selected a heterogeneous

model [8, 9] for driving our simulation.

The neuron signal is given by the following equation:

v′ = 0.04v2 + 5v + 140− u− I (1)

With initial variables being reset after spike which is indicated by variable v

being greater than 30. Reset behaviour is given by following equation:

v > 30mV, then { v ← cu← u+ d (2)

In these equations, we introduced two dimensionless variables (v and u) and

four parameters (a, b, c, and d). Parameter v represents membrane potential and

parameter u membrane recovery variable for a given neuron. Variable a represents

a time scale of recovery variable u, b stands for sensitivity of u, c represents after spike

reset value of v, and d represent the same property as c for u. By using the selected

parameters, we can mimic different kinds of spiking. In the case of the heterogeneous

model, we used the following base parameters (which are randomly modified in the

scope of the defined borders as described in the original model). All parameters were

set using guidelines provided in the simple model of neuron spiking by Izhikevich [9].

Connections inside our simulation were modeled like Izhikevich proposed in the

simple model of spiking neurons as a connection with random weights between each
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neuron inside one population. Additionally, since we have two populations, we defined

a connection between them as one to one, making each neuron from one population

connected to exactly one from the other network. These were also weighted using

random distribution.

Our simulation starts with setting up the necessary variables as previously de-

fined. The example below shows a definition of only the specific variables for a given

population as well as the structures that are relevant for both.

Ne = 800 # exhibitor neuron count

Ni = 200 # inhibitor neuron count

re = np.random.rand(Ne, 1) # uniform random distribution for exhibitory neurons

ri = np.random.rand(Ni, 1) # uniform random distribution for exhibitory neurons

stimStart = 400 # number of neuron from which we start DBS

stimStop = 450 # number of neuron from which we stop DBS

stimDelta = stimStop - stimStart # count of stimulated neurons

stimTime = 1000 # time of simulation

dbsStart = math.floor(stimTime/2) # start of DBS

# neuron model parameters set

a = np.append(0.02 * np.ones(Ne, int), 0.02 + 0.08*ri)

b = np.append(0.2 * np.ones(Ne, int), 0.25 - 0.05*ri)

c = np.append(-65 + 15 * np.power(re, 2), -65*np.ones(Ni, int))

d = np.append(8 - 6 * np.power(re, 2), 2*np.ones(Ni, int))

# setting population 1 related variables

# connection inside population

S1 = np.concatenate((0.5*np.random.rand(Ne+Ni, Ne), -np.random.rand(Ne+Ni, Ni)), 1)

v1 = -65*np.ones(Ne+Ni, int) # Initial values of v

u1 = b*v1 # Initial values of u

firings1 = [] # spike timings

sn1 = [v1] # neuron signal recording

...

# connection between two populations

S12 = np.append(np.random.rand(Ne), -1*np.random.rand(Ni), 1)

dbs = np.ones(Ne+Ni)*0 # initial values of stimulation vector

Stemp = np.ones(Ne+Ni)*0 # initial values of stimulation between population

synch1 = [] # synchronization measure of population 1

As seen in the code above, we define both the earlier-mentioned parameters

as well as the initial variables for storing information regarding the current state of

simulation (v and u) as well as the structures for storing results for analysis of results,

as for example sn1 or firings.
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In the next step, we start our simulation based on the parameters set in the first

section. The code below presents population 1 workflow during one step of simulation.

for t in range(1, stimTime):

# first population

I1 = np.append(5*np.random.randn(Ne, 1), 2*np.random.randn(Ni, 1)) # thalamic input

fired1 = np.nonzero(v1>=30)[0] # catching spikes firings into vector

firings1 += zip([t]*len(fired1), fired1) # storing firings with time

runVTeta = 0 # variable holding sum of e**(i*teta) in time t

runTeta = 0 # variable holding sum of teta of all neurons in time t

for x in range(stimStart, stimStop):

teta = np.arctan(v1[x] / t)

runVTeta += ( np.cos(teta) + 1j * np.sin(teta) )

runTeta += teta

# calculation of measure for given t

synchMeasure = ( ( runVTeta / (stimDelta) )

/ ( (np.cos(runTeta / (stimDelta) ) + 1j*np.sin(runTeta / (stimDelta))) ) )

# storing synch measure for given t

synch1 += [(t, synchMeasure)]

# calculating driving effect between populations, 1 -> 2

Stemp = np.ones(Ne+Ni)*0

if t != 1:

Stemp[fired1] = S12[fired1]

Stemp = np.abs(Stemp*v1)

# calculation based on Izhikevich equation

v1[fired1] = c[fired1]

u1[fired1] = u1[fired1] + d[fired1]

I1 = I1 + np.sum(S1[:,fired1], 1) # calculation of thalamic input + potential of other neuron firings

# calculates DBS stimulation value for selected period

if t > dbsStart:

dbs = np.concatenate( (np.ones(stimStart)*0,

np.random.randn(stimDelta)*50,

np.ones((Ne+Ni) - stimStart - (stimDelta))*0) , 0)

# calculation based on Izhikevich equation with DBS, step 0.5 ms for numerical stability

v1 = v1 + 0.5*(0.04*np.power(v1, 2) + 5*v1 + 140 - u1 + I1 + dbs)

v1 = v1 + 0.5*(0.04*np.power(v1, 2) + 5*v1 + 140 - u1 + I1 + dbs)

u1 = u1 + a*(b*v1 - u1)

sn1 += [v1] # collection of v potential

We start with the loop over the previously configured timeframe, first initializing

the vector for thalamic input I1 and then catching all firings in a given step, writ-

ing them with time to the appropriate structure. Thalamic input is generated with

Gaussian random distribution.
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Next, we calculate and store synchronization measure as well as v and u variables

basing on the initial equation for resetting spike firings.

The measure of synchronization is constructed at given time t for a set of N

neurons with respective potentials v1(t), v2(t), ..., vN(t) at given time t.

We can describe the potential of the neuron at given time t by its coordinates in

a polar coordinate system, using radius rj(t) and angle θj(t) (see Fig. 3).

Figure 3. The figure shows the potential in the polar coordinate system.

Then:

vj(t) = rj(t) · ei·θj(t) . (3)

If we sum up the potentials of all the neurons at given time t, we get

N∑

j=1

vj(t) =
N∑

j=1

rj(t) · ei·θj(t). (4)

Therefore, the average potential of the single vector at given time t would be

vavg(t) =
1

N

N∑

j=1

rj(t) · eij(t). (5)

To be able to effectively use this formula to measure the synchronization of the

neurons, we need to normalize it. In order to normalize the measure, we will scale

it by the value of the potential in the center of mass of all of the neurons potentials.

This potential would be described by some radius r(t) and some angle θ(t):

v(t) = r(t) · ei(t) (6)

The measure of the synchronization will be then

R(t) =
vavg(t)

v(t)
=

1
N

∑
( j = 1)Nrj(t) · eij(t)

(r(t) · eiθ(t) (7)
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As rj(t) = t
cosθj(t)′

, the final formula will take the form of

R(t) =
vavg(t)

v(t)
=

1
N

∑
( j = 1)N t

cosθj(t)
· eiθj(t)

t
cosθ(t)·eiθ(t)

=

1
N

∑
( j = 1)N (t+ itanθj(t)

t+ i · tanθ(t) (8)

In the case of perfect synchronization, all of the neurons have the same potential

equal to the potential at the center of mass of potentials. Therefore, in this case

R(t) = 1.

The more desynchronized the neurons are, the bigger the difference between

nominator and denominator of the formula of R(t) is. As a result, R(t) becomes

closer to 0 with a growth of the synchronization of neurons.

In order to calculate measure R(t), we need to know the value of angle θj(t).

Given the value of potential vj(t), we can calculate it in the following way:

We know that vj(t) =
rj(t)

sinθj(t)
and rj(t) = t

cosθj(t)
and rj(t) = t

cosθj(t)
.

Then vj(t) = t · tanθj(t). The measure of synchronization is a modified version

of the work of Latteri at al. [12].

Afterwards, if we reach a previously defined time for stimulation, we calculate

the vector for the stimulation current with a given mask to mimic the stimulation of

selected parts of STN. The stimulation value is calculated with Gaussian distribution

being adequately amplified to deliver the expected network desynchronization.

Finally, we calculate the v variable potential and store the whole vector in the sn1

structure. The variable is calculated using the Izhikevich equation, with the addition

of the previously calculated stimulation vector dbs.

The second population simulation step looks similar to the first. The only dif-

ference is that DBS does not takie place there. Moreover, firings from the first popu-

lation are added to the thalamic input of the second population. An example of the

calculation of thalamic input for the second population:

# calculation of thalamic input + potential of other neuron firings from both populations

I2 = I2 + np.sum(S2[:,fired2], 1) + Stemp

3. Results

3.1. Data mining

Preliminary results of this research have demonstrated that, depending on selected

subsets of attributes from the full decision table, we were able to obtain accuracy levels

reaching 70%–80%. We used a few different subsets of attributes from the decision

table in order to see which were the most efficient in predicting decision attributes.

The following subsets with the highest accuracy were used:

• Prediction of the selected contact amplitude/number using UPDRS III and at-

tributes from Slicer. Dataset consists of 16 attributes and 20 objects.
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• Prediction of the selected contact amplitude/number using Slicer attributes from

left hemisphere and opposite side UPDRS, For example, analyzing the left side

lip ROI count of tracts and specific UPDRS attributes from the right side of the

body, like right-hand rigidity.

A more-efficient subset appeared to be the prediction of selected contact am-

plitude by using UPDRS III, which provided 85% accuracy (as compared to 70%

accuracy for the predicting contact number). Classifications using specific UPDRS

values were much less accurate for predicting number and amplitude, at 35% and

15% respectively. We have compared these results with our previous research using

RSES [1], and in comparison, using UPDRS III subset results for predicting contact

amplitude are 10% more accurate using Wekas Random Forest algorithm. The exact

results for predicting specific attributes in both systems can be seen in Table 3.

Table 3

In the table below, we have shown a comparison of RSES results to WEKAs. In rows regard-

ing specific UPDRS attributes, we always performed tests on opposite-side Slicer parameters

to UPDRS data.

Contact property Attributes sets RSES Weka

Amplitude UPDRS III + Slicer 75% 85%

Number UPDRS III + Slicer 65% 70%

Amplitude Specific UPDRS + Slicer 80% 15%

Number Specific UPDRS + Slicer 62.5% 35%

As we can see, RSES results were more accurate when predicting stimulated

contact parameters based on specific UPDRS values, whereas Weka was more accurate

in predicting based on UPDRS III.

3.2. DBS simulation using neuronal population (NP)

We have applied the NP model defined before in the case of one of the patients who

was included in our data-mining experiment. The entry point for the analysis was

the number and location of tracts outgoing from the stimulated contact and their

somatotopic connections. The goal of the simulation was the creation of such an NP

configuration that would help in assessing the stimulation effects. In this study, we

present the results of sample simulation based on one patient that would use our

model to show alleviation of patient symptoms by stimulation of selected parts of the

network.

First, we need to analyze the DTI projections of Patient #9. In Figure 4, we can

see a projection of tracts going into motor and supplementary motor cortices, reaching

regions responsible for both lower limbs (foot) and upper limbs (hand). The location

of the stimulation electrode in relation to patient STN can be seen in Figure 5. The

selected stimulation contact, in this case, is number 1 with 2.3 V amplitude.
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Figure 4. The picture above shows DTI projections from a contact selected by the neurologist

that leads into the supplementary motor cortex.

Figure 5. The picture above shows the position of the electrode in regards to STN for patient

#9. In this case, the neurologist selected contact #1, which we can see is adjacent to the

mid and lower parts of the structure.

From the neurological data collected during a physical examination, we know that

the stimulation of this contact caused improvement in left-hand fingertip movement

as well as in gait and tremor issues.

On the basis of this information, we used our NP model to simulate previously-

mentioned synchro and desychronization of neurons that are responsible for given

motor cortex functions. The first step was the mapping of the previously-defined

neuron populations into a somatotopic organization of STN and cortex.
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As for the mapping of population 1 (which in our simulation was responsible

for STN functions), we used the fact that it is organized in a vector. This allows

us to map the length of the electrode that was located inside STN to regions which

were stimulated. Based on current knowledge regarding somatotopic organization of

STN, most somatotopic connections are localized in the dorsal upper two thirds of

the structure [16]. The upper third of the structure is mainly responsible for the legs,

while upper-limb neurons were more often located in both mid and upper parts.

Based on this information, we can hypothesize that stimulation of the contact

with index 1 in correlation with the electrode as seen in figure 4 will stimulate parts of

the STN that correspond to movements of the upper limbs (f.e., arm). We need to note

here that it is difficult to assess exact regions that are stimulated by selected contact

amplitude because the exact correlation between stimulation radius and stimulation

amplitude is unknown.

As previously mentioned, we assume that 1,000 neurons in our first population

represent those parts of STN that were adjacent to the stimulation electrode. Assum-

ing that we have dorsal indexing of neurons, we want neurons between 200 and 300 to

correspond to our stimulation region. Using the network model described earlier, we

can achive it by setting the appropriate values to variables stimStart and stimStop.

The resulting simulation showed desynchronization in selected regions and, at

the same time, simulated alleviation of the given patient symptoms.

In Figure 5, we can see the signal corresponding to 100 neurons that were the

target of the stimulation starting in t = 500. As we can see in the chart, spikings are

grouped into bursts occurring in a periodical synchronized manner during the first

half of simulation. At the same time, this indicates incorrect behavior in STN. While

after turning on the stimulation, we can observe constant desynchronization of the

selected part of the network, indicating that stimulation has brought the expected

effects. Both populations showed similar effects, while only one of them was actually

stimulated while the other was driven by it.

Figure 6. The chart above shows a simulated neuron’ signal during the process of stimulation.
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Figure 6 shows us how the signal of simulated neurons change in the course

of DBS. Stimulation was turned on in t = 500. The upper chart shows the value

of variable v in time t, where the one below shows the value of synchronization

measure in time as defined earlier. R = 0 stands for no synchronization, whereas

R = 1 stands for full synchronization. We observe that, before stimulation, neurons

remain synchronized most of the time; this may be related to PD symptoms. After

stimulation, synchronization is permanently decreased and does not reach 1.

4. Conclusions and future work

4.1. Comparison of data-mining methods

In this work, we have presented our recent results for predicting contact parameters

using a Weka Random Forest classifier and compared them to our previously pub-

lished results using RSES. Using different subsets of data, we have obtained different

accuracy, with Weka being more accurate when predicting specific UPDRS attributes

and RSES being more accurate when using UPDRS III. Since these results have been

based on a small data set containing only 20 objects, further work is required to

perform more creditable statistics and verification in regards to over fitting.

4.2. NP simulation model

We have presented an example of the use of the proposed NP while simulating DBS

to alleviate selected patient’ symptoms. This simple case was based on data received

from one patient and aimed only at presenting the possibilities of this approach in

verification and prediction of simulation parameters. We did it in a similar way as

previously done using our data-mining approach.

Furthermore, this approach needs more work to be verified against multiple pa-

tients and correlated with neurological data. Multiple elements of this kind of sim-

ulation need to be taken into consideration; e.g., the exact localization of STN in

relation to electrodes or the correct assessment of neurological effects of stimulation

and parameters of tractography projections.
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