
W lodzimierz Funika
Pawe l Koperek

SCALING
EVOLUTIONARY PROGRAMMING
WITH THE USE OF APACHE SPARK

Abstract Organizations across the globe gather more and more data, encouraged by easy-

to-use and cheap cloud storage services. Large datasets require new approaches

to analysis and processing, which include methods based on machine learning.

In particular, symbolic regression can provide many useful insights. Unfortu-

nately, due to high resource requirements, use of this method for large-scale

dataset analysis might be unfeasible. In this paper, we analyze a bottleneck

in the open-source implementation of this method we call hubert. We identify

that the evaluation of individuals is the most costly operation. As a solution to

this problem, we propose a new evaluation service based on the Apache Spark

framework, which attempts to speed up computations by executing them in

a distributed manner on a cluster of machines. We analyze the performance of

the service by comparing the evaluation execution time of a number of samples

with the use of both implementations. Finally, we draw conclusions and outline

plans for further research.

Keywords distributed systems, evolutionary programming, symbolic regression, scaling,

Apache Spark

Citation

2016/03/22; 20:47 str. 1/14

Computer Science • 17 (1) 2016 http://dx.doi.org/10.7494/csci.2016.17.1.69

Computer Science 17 (1) 2016: 69–82

69

http://journals.agh.edu.pl/csci/


1. Introduction

Nowadays, many organizations around the world gather more and more data. Nearly

unlimited storage and computing resources delivered as easily accessible cloud services

only encourage the collection of all available data. Unfortunately, mining these ever-

growing datasets is a very challenging task. It requires excellent domain knowledge

and understanding which data is being analyzed. Furthermore, scalable algorithms

and technologies need to be used to provide results in a reasonable amount of time.

The problem gets more complicated when real-time analysis needs to be taken into

account.

Until recently, such types of work were primarily limited to the human domain

due to their complexity. Today, as computer techniques become more and more ad-

vanced, automated analysis continues to gain more and more attention. According to

[4], computers are now used at multiple stages of the research process, from gathering

knowledge about related work and similar experiments through automatic data anal-

ysis [17] and up to complete automatic systems capable of creating and verifying new

hypotheses on their own [12]. Completely autonomous data mining isn’t yet possible;

however, there are many ways to help scientists and business intelligence specialists

in their daily jobs.

Eureqa [16] and hubert [8, 11] are examples of a new kind of tool that is designed

to help identify meaningful relationships in the available data. They both use a sym-

bolic regression method to automatically search for relationships between variables.

The results of their analyses is provided as a mathematical formula describing the dis-

covered connections. Symbolic regression is based on evolutionary programming; it at-

tempts to solve problems defined by the user through generating and improving a pop-

ulation of possible solutions. At the beginning, the population consists of randomly

generated individuals. They are all evaluated with a defined fitness function. The

best units are recombined and mutated in order to create better solutions in the next

iterations. The whole process is repeated until an individual that meets a required

fitness level is found. Unfortunately, implementing such an approach immediately

imposes limits on the amount of analyzed information. Evaluation usually comprises

of applying a solution to the whole data set, which requires reading it from storage.

Because of the very high number of evaluations, the time required to obtain a good-

enough solution is unacceptably high in the case of large, multimillion-data series.

The problem of scalability can be addressed with the use of Big Data technolo-

gies: Apache Hadoop MapReduce [6] or Apache Spark [20]. Both tools were designed

to enable efficient distributed processing of large datasets. Their major advantage

is the ability to horizontally scale to a large numbers of nodes; there are successful

deployments of production clusters with thousands of nodes and petabytes of storage

([2, 14]). In such environments, hardware failures are very common. To provide re-

liable results, the frameworks under discussion have built-in mechanisms of graceful

failure handling. Although Hadoop MapReduce and Spark have a lot in common, they

are significantly different in regards to the basic concepts on which they are based.

2016/03/22; 20:47 str. 2/14

70 Włodzimierz Funika, Paweł Koperek



The former provides an abstraction for a two-step processing algorithm. Each execu-

tion of a MapReduce job is independent. If the designer wishes to pass information

between those executions, the output needs to be persisted (e.g., in HDFS). On the

other hand, Apache Spark exploits in-memory processing techniques to speed up pro-

cessing. This enables the implementation of iterative algorithms, applying different

computations to the same data. It is also possible to create tools that allow for the

execution of low-latency queries against large datasets.

In this paper, we outline an implementation of fitness function evaluation based

on the Apache Spark framework. First, we discuss the technical details of some related

tools and frameworks as well as the symbolic regression itself. Later, we describe

the architecture of the complete system and discuss a comparison of sample dataset

processing with the use of Apache Spark and hubert. Finally, we draw conclusions

from the conducted experiments and discuss further research directions.

2. Background and related work

In this section, we present information about the tools and concepts used in our

research.

2.1. Symbolic regression

Polynomial regression [13] aims to obtain a function that describes a finite set of data

points based on changing numerical coefficients of a polynomial. In other words, it de-

scribes a principle ruling the observed system (which explains the observed behavior).

To use this method, the researcher needs to decide whether to use a linear, quadratic,

or higher-order polynomial form of a fitted mathematical expression. Unfortunately,

this is not an easy task. If the degree of polynomial is too low, it won’t be able to

fit into the given input; if it is too high – it will fit the data set perfectly but will be

useless beyond it.

Symbolic regression [13] is a method that attempts to solve this problem. It

focuses on identifying a mathematical expression (in its symbolic form) that would

be a very good fit within a given data set. The parameter space and functional form

of equations are being searched at the same time. This method relies on genetic

programming. At first, a set of individuals (mathematical expressions) is randomly

generated. Each expression is built from specified primitive elements such as alge-

braic operations (+, −, ∗, /), variables (x, y, . . . ), constants (3.1415, 2.71 . . . ), etc.

Although initially they don’t fit the input at all, they gradually improve with an

evolutionary process.

Owing to such a general definition, this method can be applied to solve a magni-

tude of different problems. Unfortunately, achieving meaningful results is challenging.

The key issue lies in choosing the proper learning parameters, problem description,

and (most importantly) the correct cost function. Very good results can be obtained

with the one proposed in [16], which forces the algorithm to discover implicit relation-

2016/03/22; 20:47 str. 3/14

Scaling evolutionary programming with the use of Apache Spark 71



ships. An implicit relationship is a function of form f(x, y) = 0 whereas the explicit

function is represented as y = f(x).

2.2. Parallel implementations of evolutionary algorithms

Improving the processing time of evolutionary algorithms (and genetic programming

in particular) receives much attention from researchers. The major work in this area

includes creating implementations utilizing parallel computing platforms: PVM [5],

MPI [15], or MapReduce [3]. These tools focus on parallelizing all steps of the algo-

rithm at once. The solution space is divided to many small populations, and all steps

of an algorithm (population generation, fitness evaluation, mutation, and crossing-

over) for a particular set of individuals are processed by a separate physical CPU.

This so-called island model can be tuned in various ways. The first, straight-forward

approach is to start the evolution with different parameters or starting conditions

for each population. This broadens the searched solution space, but it might lead

to creating many local solutions (niching). Usually obtaining a single, best global

individual is preferred. In such a case, migrating specimens between populations can

be conducted as an additional executed step before starting a new evolution iteration.

Evolutionary computations can be parallelized with a focus on specific steps of the

algorithm (e.g., parallelization of individual evaluation or mutation only). Another

approach is to reduce computation time by limiting evaluation with the size of the

used data (e.g., by splitting the original dataset between populations).

2.3. Apache Hadoop MapReduce

Apache Hadoop MapReduce was designed to provide a means of processing the vast

amounts of data in an efficient way. It aims at delivering systems whose performance

can scale linearly with the number of physical machines added. It applies a divide-

and-conquer technique, splitting the data located on a distributed filesystem between

CPUs. This splitting process takes into account information about which machine

contains which data subset, so only the nodes actually storing the relevant subsets

will be used. Finally, the job definition and JAR file with the executable code are

sent to the identified nodes, and computations start.

The MapReduce computing model assumes that the whole process will be split

into two phases: map and reduce. The map phase processes raw input, which is split

into key-value pairs. As a result, it similarly emits a set of intermediate key-value

pairs that can potentially be of a different type. Before reduction, the intermediate

output is grouped by the key and sorted. Each reducer processes all data.

2.4. Apache Spark

Apache Spark is a framework for the parallel processing of big data sets in a fault-

tolerant manner. It is based on a new concept of distributed-memory abstraction

– Resilient Distributed Datasets (RDD). RDDs are motivated by the limitation of

current computing frameworks: poor support for iterative algorithms and interactive

2016/03/22; 20:47 str. 4/14

72 Włodzimierz Funika, Paweł Koperek



data mining tools. They provide a shared memory model that prefers coarse-grained

transformations like map, filter, or join instead of fine-grained updates. Such oper-

ations can be applied at once to many data items. Fault-tolerance is achieved by

logging all transformations used to create a dataset. In case of any error, only the

required operations need to be computed again.

RDDs are immutable and can only be created by reading from a data source or

as an effect of transformations of an existing dataset. The processing is lazy; actual

computations are only triggered by actions that require access to the output. RDDs

can be cached in memory or persisted on a hard-drive for further reuse.

Such features make Spark very useful for machine-learning algorithms, as they

usually consist of many iterations of similar operations over the same dataset.

2.5. Hubert

Hubert is a result of our prior work in the area of applying symbolic regression to

the monitoring of computer systems. It provides an open-source implementation of

the ideas described in [16] and [18]. The goal of this project is to discover hidden

relationships in the monitoring data streams in order to help gain deeper insight into

complex computer systems. Such relationships are described with the use of precise

mathematical expressions that are individuals from the genetic algorithm perspective.

Each individual is represented as an expression tree built from primitive blocks (+, −,

×, /, sin, cos, variables defined in an input data set, constants). The number of nodes

of the tree can be interpreted as a measure of how complicated the particular solution

is. We call this parameter complexity and use as an indicator of the individual’s

generality.

As the fitness function, we used the formula proposed in [16]. To evaluate a par-

ticular candidate expression f , we compute numerically partial derivatives of a pair

of variables x, y – dx
dt and dy

dt . Then, we find symbolically partial derivatives of the

candidate expression, δf
δx and δf

δy . To compute the actual fitness value, we combine

these elements in a formula 1. Its value can be interpreted as the error rate of a so-

lution. Therefore, the algorithm attempts to minimize it (i.e., individuals with lower

values are considered better).

Fitness(f) =
1

N

N∑

i=1

log

(
1 + abs

(
∆xi
∆yi

− δxi
δyi

))
(1)

where:
δx

δy
=
δf

δy

/
δf

δx
and N is the number of data points.

To tackle the problem of stagnating computations, we used the evolution method

proposed in [18]. The population is evolved using the following list of steps:

1. Randomly initialize a population of a given size.

2. Randomly group individuals in pairs of parent individuals.

3. Create children individuals by crossing-over of created pairs.

2016/03/22; 20:47 str. 5/14

Scaling evolutionary programming with the use of Apache Spark 73



4. Conduct mutations on children individuals.

5. Add mutated individuals to the population.

6. Repeat until the population size returns to the initial size:

(a) select randomly two individuals,

(b) form an age-fitness Pareto front from these individuals,

(c) discard dominated individual,

(d) if there are no more dominated individuals – break the loop.

7. Verify stop criteria – if they are met, return current population, otherwise go to

step 2.

It is theoretically possible that the Pareto front is larger than the initial popula-

tion. In this case, all non-dominated individuals should be stored and used in a fol-

lowing algorithm iteration. This case is handled by a additional test from point 6(d).

The discussed process can be used to analyze any series of numerical data. In hu-

bert’s case, we focused on the data coming from the monitoring of computer systems.

In this case, the best discovered equations can describe the dependencies between the

components and model complex behavior of the system. Such information can be used

to improve the architecture or tune the parameters to make it more efficient. The

iterative nature of such an analysis makes the model evolve over time, thus keeping

it up to date. The amount of time spent on computations can also be easily adjusted

by using one of the supported stop criteria:

• time – the computations are stopped after a fixed amount of time;

• target fitness function value – the computations are stopped once the best solu-

tion’s fitness value is lower than the target value;

• number of iterations – the computations are stopped after a fixed number of

iterations.

The tool was written in Java language; thus, it can be easily integrated with

other technologies that use Java Virtual Machine. It is an open-source project – we

encourage the reader to use and extend it, adapting to your specific needs.

3. Bottleneck analysis

While developing hubert, we noticed that the biggest part of the execution time is

spent on individual evaluation. According to the cost function, this process requires

computing symbolically partial derivative values over the input data set and com-

paring them with the numerically computed partial derivative values. Both elements

involve reading all of the input values. When working with hubert, we noticed that

evaluation often takes over 99% of the whole processing time. In case of more complex

individuals and more data, this value gets even closer to 100%.

To improve the time of processing, the whole dataset is being preprocessed and

kept in memory. Caching includes not only the raw data but also the numerical

derivative values. Minimizing the formula 1 means that all of the combination pairs

of candidate variables need to be taken into account. This creates Ckn =
(
n
k

)
data

2016/03/22; 20:47 str. 6/14

74 Włodzimierz Funika, Paweł Koperek



series, about the same size as the input data set. All of them need to be stored at

the same time in memory – they are reused each time an individual evaluation oc-

curs. For a sample dataset of currency quotations containing 4 variables (EUR/USD,

EUR/GBP, CHF/PLN, USD/CHF), each holding a 2,5 GB data series (data since

05.2005 till 06.2014), this means that
(

4
2

)
= 4!

2!2! = 6 series of 2,5 GB each need to

be cached. This number rapidly grows with the growth of input dimensions. Un-

fortunately, this imposes limits on the tool’s capabilities – processing of data sets

that cannot fit into the memory of a single machine would require reading the input

data and recalculating partial numerical derivatives of each iteration. Such an ap-

proach would not be fast enough to provide meaningful results in the assumed time

window. Such a limitation would render the discussed method unfeasible for use in

a dynamically changing environment of software and hardware monitoring.

4. Overview of the evaluation service concept

The evaluation of individuals is the most resource-consuming part of evolutionary

algorithms. It requires reading the input data set and evaluating the value of the

assessed specimen over all of its data points. Since the same set is used in every

iteration multiple times, the best way to speed up the computations is to cache

it in memory. Unfortunately, in case of data sets whose sizes exceed the memory

of a single machine, this solution is not possible to use. In such a case, the time

of evaluation increases dramatically because of heavy I/O usage. This renders the

symbolic regression algorithms unfeasible for use on larger amounts of information.

To address this limitation on the input size (both in hubert and in symbolic

regression in general), we made use of the Apache Spark framework to implement

a new fitness evaluation service. First, the user needs to register datasets. They

can be stored in HDFS or on local hard-drives of computing nodes. We prefer using

the former solution. In this case, the Spark framework can easily split computations

in such a way that each node processes only the part of data that is stored on its

local hard-drive. Later, when the client (e.g., hubert) needs to evaluate a specific

individual, it sends a query to the service instead of performing the computations

itself. The evaluation query contains the individual that is a mathematical expression,

information about which dataset to use and specifies which formula should be used

for numerical differentiation (forward, backward and central finite differences).

When an evaluation query for a specific individual is sent, the data from the

registered datasets is read and processed according to the following steps:

1. Generate all pairs of variables in the dataset.

2. For each pair:

(a) compute numerically derivatives for selected variables,

(b) compute symbolic derivatives of the examined individual,

(c) evaluate symbolic derivatives over the dataset,

(d) calculate the cost function value.

2016/03/22; 20:47 str. 7/14

Scaling evolutionary programming with the use of Apache Spark 75



Implementing the evaluation as a service has several advantages. First, it can

be used in tools different from hubert. It also abstracts the Spark API. In case

a better processing solution can be applied to speed up computations, such a change

won’t require any changes on the service users’ side. Using a service allows for the

handling of multiple requests at the same time, thus improving cluster utilization.

Furthermore, it is a starting point for migrating hubert as a whole to a microservices

architecture, which would enable further improvements (e.g., using populations with

a greater number of individuals or evolving solutions for multiple datasets in parallel).

The internal structure of the service is presented in Figure 1. The service is composed

of three major elements:

• Symbolic Differentiation – performs symbolic differentiation on the passed ex-

pression and evaluates it over the dataset.

• Numeric Differentiation – numerically differentiates the given dataset.

• Function Error Evaluator – compares results of above evaluations and returns

the error value according to a chosen error metric.

All of them transparently distribute the required computations over the cluster

using the Spark API.

Figure 1. Evaluation service internal structure.

5. Back-end architecture

The whole system is meant to be deployed in a cloud environment or on a dedicated

hardware cluster. To deploy Spark and balance resource allocation, we used Apache

Mesos [10] – a tool based on the concept of Google’s Omega system [19]. Mesos

handled automatic deployment of executors, gracefully dismissed the unused ones,

and recreated the broken units. Such a facility greatly improved the speed of work

and enabled using computational resources only when they were actually necessary.

The architecture of the solution under discussion is shown in Figure 2.

2016/03/22; 20:47 str. 8/14

76 Włodzimierz Funika, Paweł Koperek



Figure 2. General architecture diagram.

The system comprises a front-end node, which contains an instance of the evalu-

ation service and infrastructure services: mesos-master, HDFS Name Node and Spark

Master. Back-end nodes are running mesos-slaves and HDFS Data Nodes.

Upon receiving the first request, the evaluation service notifies mesos-master

about the required resources (CPUs and memory). mesos-master and mesos-slaves

negotiate which machine should execute which task, then download and install the

software wherever necessary. Deployment happens only once before actual compu-

tations start. When a Spark cluster is ready, the evaluation service submits a new

job to Spark Master. Spark Master splits the job and sends it as a serialized Java

bytecode to slaves. Input data is delivered by HDFS services. They maintain the dis-

tribution of information across the cluster. Owing to this, CPUs process the data that

is actually stored nearest to them – on their hard-drives. The progress is constantly

monitored. If an executor fails, it is automatically restarted, and missing computa-

tions are rescheduled on other machines. Finally, when all of the stages of processing

finish, the evaluation service returns the result. The related RDDs are automatically

cached in memory.

The life-cycle of the service begins before the actual evolutionary computations

start. It needs to be initialized: mesos executors have to be deployed, and required

datasets need to be registered. After a satisfactory solution is found, the service can

be shut down. It can also be left waiting for requests if further processing of the same

data is planned. The service will retain cached data structures.

6. Conducted experiments

6.1. Experiment characteristics

To evaluate the new implementation and examine whether it processes the data faster

than the initial one, we compared the execution time of processing for three sample

individuals generated by hubert:

• A: sin(x+ y),

• B : (x− y + cos(x)− 4.906 + 5.8 + x− y)/(cos(4.56575) + cos(x) + sin(x) ∗ x/y),

2016/03/22; 20:47 str. 9/14

Scaling evolutionary programming with the use of Apache Spark 77



• C : (((x−y)∗x∗1.0951405∗sin(x∗y)∗cos(cos(y)+1.0951405/3.01411))∗(sin((x−
y) + 2.377/2.817)∗ cos(x)∗ (x+y)− (sin(x)− sin(y))))− (cos(cos(x/y)/((x+y)−
(x− 2.3776817))/ sin((7.305318 + x) + (x− y)))).

We present them in their non-simplified form – as such, they are processed by

both tools.

Each specimen was being evaluated against four datasets of different sizes: 1 MB,

10 MB, 100 MB, and 1024 MB. Each of them contained a different time window of

financial data series: price quotes for the euro and American dollar currency pair.

The computations were carried out in Amazon Elastic Computing Cloud [1]. The

Spark cluster consisted of nine instances of m1.medium type virtual machines, each

using the following resources:

• 1 VCPU,

• 3,75 GB RAM,

• 410 GB local hard drive storage.

The hubert-bound evaluation was carried out on a single m1.medium instance.

To rule out differences in the execution time coming from the dynamic nature of

the cloud environment, each run was repeated 8 times. Minimal and maximal results

were removed, and an average was computed from the remaining values.

6.2. Results discussion

A computation times comparison is presented in Figure 3.

Figure 3. Execution times for single- and multi-processor implementations.

These results show that both algorithm implementations have their own ranges

of use. For small inputs, the clear winner is the single processor version. However,

when increasing the amount of data and complexity of processing, we notice that it

doesn’t scale well. In the case of bigger input files, the speedup due to parallelization

exceeds the overhead introduced by Spark – the second implementation is significantly

2016/03/22; 20:47 str. 10/14

78 Włodzimierz Funika, Paweł Koperek



faster. More CPU-intensive processing for specimen B and C only strengthen this

effect. The actual speedup depends on multiple factors (e.g., whether splitting the

computations into smaller chunks has optimal granularity). Table 1 shows how the

complexity of computations influences actual times of execution.

Table 1

Execution times for single- (hubert) and multi-processor (Apache Spark) implementations

for sample expressions of different complexity (dataset: 1024 MB).

Expression hubert(s) Apache Spark (s) Speedup

A 1369 383 3.57

B 4981 693 7.19

C 7907 1298 6.09

The best results in terms of speedup were achieved for expression B. The multi

processor-bound processing took 693 seconds (i.e., when compared with the single

processor time, 4982 seconds gives us more than a seven-time speedup.

One of the factors that enables such improvements is Spark’s ability to cache data

in memory. RDDs related to current computations are being automatically cached

whenever possible. Thanks to this, the speedup can be also observed when executing

subsequent evaluations over the same dataset. The execution times observed in such

a scenario are depicted in Figure 4.

Figure 4. Comparison of iteration execution time. Time of computations is shorter due to

caching of partial results in memory.

Although the way the execution time changes is different for each dataset size,

it is clearly visible that later requests are processed faster.

2016/03/22; 20:47 str. 11/14

Scaling evolutionary programming with the use of Apache Spark 79



7. Conclusions and further work

Symbolic regression is a useful analysis method. It can be used to create mathematical

models based on a numerical data series. In particular, such a model can be used to

describe the behavior of a computer system in a given time range. Unfortunately, the

amount of data acquired by monitoring facilities is large in many cases. To make the

idea of evolutionary computations feasible for use in this scenario, we demonstrated

how to speed them up by applying new concepts from the distributed computing area.

In this paper, we presented a new implementation of the fitness evaluation ser-

vice that improves processing time for large datasets. We examined the available

technologies and explained why we chose the Resilient Distributed Datasets concept

as a basis for our work. Further, we discussed the architecture and behavior of the

system. The comparison between single-processor and multi-processor implementa-

tion showed that the first version cannot be replaced in all cases. It is still the best

choice for small amounts of data; however, the bigger the datasets, the more benefits

parallelization gives.

The results obtained show that Apache Spark is a viable solution to execute

machine-learning algorithms. It significantly sped up the fitness analysis of big

datasets and allowed for the processing of data sets that did not fit into a single

machine’s memory.

We had an opportunity to observe how fault-tolerance mechanisms handle failures

occurring during processing. When Spark Master noticed that a virtual machine was

not responding, it automatically rescheduled the tasks that were running on that node.

Similarly, in case a part of the RDDs was purged from the cache, it got recomputed

at the time it was needed again.

The RDD memory model was simple to use. Unfortunately, we noticed that not

all types of computation can be easily represented in such a way. If the algorithm

requires the combination of subsequent values of data series, it is necessary to copy

the whole input, change the data indices, and perform a costly join operation over the

original and new RDD. Spark applications can be easily tested in a single-machine

configuration. We encourage the reader to use this facility to assess the usefulness

of the framework before deciding whether to use it in production. Otherwise, the

limitations of that model might induce an unnecessary overhead that will outweigh

the other benefits.

hubert proved that it is a robust and flexible implementation of symbolic regres-

sion. The tool’s architecture is also very flexible. We were able to easily refactor the

code to a form of service. According to the results, the single processor implemen-

tation of fitness evaluation is still very useful. The use of a distributed computing

framework in the case of small datasets induces too much overhead. Instead of com-

pletely migrating to a new evaluation implementation, we plan to allow switching

between both of them.

The work on the open-source implementation of symbolic regression is ongoing.

We plan to further optimize the execution time of the evaluation service. We believe

2016/03/22; 20:47 str. 12/14

80 Włodzimierz Funika, Paweł Koperek



that enabling low-latency several-second responses is possible. Furthermore, we see

another scaling opportunity in migrating hubert’s architecture from the monolithic

code base to a microservices architecture, which enables independent scaling of dif-

ferent parts of the system and potentially hosting them on separate clusters. From

the functional point of view, we aim to combine the ideas developed in hubert with

a semantic-oriented approach [7, 9].

Acknowledgements

We would like to thank Dr. Maciej Malawski for his valuable help with Amazon EC2

experiments. This research is supported by AGH grant no. 11.11.230.124 as well as

by the EU ICT-269978 VPH-Share project.

References

[1] Amazon.com, Inc.: AWS Amazon Elastic Compute Cloud (EC2) – Scalable Cloud

Hosting. http://aws.amazon.com/ec2, 2014, accessed 2.12.2014.

[2] Apache Software Foundation: Welcome to Apache Hadoop! http://

hadoop.apache.org/, 2014, accessed 11.11.2014.

[3] Baldeschwieler E.: Yahoo! Launches Worlds Largest Hadoop Production Appli-

cation. https://goo.gl/wrOZ2v, 2008, accessed 11.11.2014.

[4] Du X., Ni Y., Yao Z., Xiao R., Xie D.: High performance parallel evolution-

ary algorithm model based on MapReduce framework. International Journal of

Computer Applications in Technology, vol. 46(3), pp. 290–295, 2013.

[5] Evans J., Rzhetsky A.: Machine Science. Science, vol. 329, pp. 399–400, 2010.

[6] Fernndez F., Snchez J.M., Tomassini M., Gmez J.A.: A Parallel Genetic Program-

ming Tool Based on PVM. In: J. Dongarra, E. Luque, T. Margalef, eds., Recent

Advances in Parallel Virtual Machine and Message Passing Interface, Lecture

Notes in Computer Science, vol. 1697, pp. 241–248, Springer, Berlin–Heidelberg,

1999.

[7] Funika W., Godowski P., Pegiel P., Król D.: Semantic-Oriented Performance

Monitoring of Distributed Applications. Computing and Informatics, vol. 31(2),

pp. 427–446, 2012.

[8] Funika W., Koperek P.: Genetic Programming in Automatic Discovery of Re-

lationships in Computer System Monitoring Data. In: Parallel Processing and

Applied Mathematics, Lecture Notes in Computer Science, vol. 8384, pp. 371–

380, Springer, Berlin–Heidelberg, 2014.

[9] Funika W., Kupisz M., Koperek P.: Towards Autonomic Semantic-Based Man-

agement of Distributed Applications. Computer Science, vol. 11, pp. 51–64, 2010.

[10] Hindman B., Konwinski A., Zaharia M., Ghodsi A., Joseph A.D., Katz R.,

Shenker S., Stoica I.: Mesos: A Platform for Fine-grained Resource Sharing in the

Data Center. In: Proceedings of the 8th USENIX Conference on Networked Sys-

2016/03/22; 20:47 str. 13/14

Scaling evolutionary programming with the use of Apache Spark 81



tems Design and Implementation, NSDI’11, pp. 295–308, USENIX Association,

Berkeley, CA, USA, 2011.

[11] hubert: project source code. https://github.com/pkoperek/hubert, 2015, ac-

cessed 15.02.2015.

[12] King R.D., Rowland J., Oliver S.G., et al.: The Automation of Science. Science,

vol. 324, pp. 85–89, 2009.

[13] Koza J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[14] Ryan A.: Under the Hood: Hadoop Distributed Filesystem reliability with Na-

menode and Avatarnode. https://goo.gl/ifnqx, 2012, accessed 11.11.2014.

[15] Salhi A., Glaser H., De Roure D.: Parallel Implementation of a Genetic-

programming Based Tool for Symbolic Regression. Inf. Process. Lett., vol. 66(6),

pp. 299–307, 1998.

[16] Schmidt M., Lipson H.: Distilling free-form natural laws from experimental data.

Science, vol. 324, pp. 81–85, 2009.

[17] Schmidt M.D., Lipson H.: Data-Mining Dynamical Systems: Automated Sym-

bolic System Identification for Exploratory Analysis. ASME Conference Proceed-

ings, vol. 2008(48364), pp. 643–649, 2008.

[18] Schmidt M.D., Lipson H.: Age-fitness pareto optimization. In: M. Pelikan,

J. Branke, eds., GECCO, pp. 543–544, ACM, 2010.

[19] Schwarzkopf M., Konwinski A., Abd-El-Malek M., Wilkes J.: Omega: flexible,

scalable schedulers for large compute clusters. In: SIGOPS European Conference

on Computer Systems (EuroSys), pp. 351–364, Prague, Czech Republic, 2013.

[20] Zaharia M., Chowdhury M., Das T., Dave A., Ma J., McCauley M., Franklin

M.J., Shenker S., Stoica I.: Resilient Distributed Datasets: A Fault-tolerant Ab-

straction for In-memory Cluster Computing. In: Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation, NSDI’12, pp. 2–2,

USENIX Association, Berkeley, CA, USA, 2012.

Affiliations

W lodzimierz Funika
AGH University of Science and Technology, ACC CYFRONET AGH, Krakow, Poland,
funika@agh.edu.pl

Pawe l Koperek
AGH University of Science and Technology, pkoperek@gmail.com

Received: 11.12.2014

Revised: 16.03.2015

Accepted: 20.03.2015

2016/03/22; 20:47 str. 14/14

82 Włodzimierz Funika, Paweł Koperek


