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Abstract The paper addresses the issues of invoking services from within workflows which
are becoming an increasingly popular paradigm of distributed programming.
The main idea of our research is to develop a facility which enables load ba-
lancing between the available services and their instances. The system consists
of three main modules: a proxy generator for a specific service according to its
interface type, a proxy that redirects requests to a concrete instance of the se-
rvice and load-balancer (LB) to choose the least loaded virtual machine (VM)
which hosts a single service instance.
The proxy generator was implemented as a bean (in compliance to EJB stan-
dard) which generates proxy according to the WSDL service interface descrip-
tion using XSLT engine and then deploys it on a GlassFish application server
using GlassFish API, the proxy is a BPEL module and load-balancer is a stateful
Web Service.
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1. Introduction

Workflow paradigm is becoming now a more and more popular model for solving
business and scientific problems. To provide a complex functionality, there is a need
to use different functional modules which can be organized into services. Such modules
can have many instances working in a distributed environment, which implies that
to achieve the best performance, load balancing needs to be used. This requires the
capability of locating an indispensable service, choosing the best instance of the service
and invoking it to have some function carried out.

Moreover adding a further module to ensure a new behaviour should be easy. It
would also be preferable to separate the design and development of such modules,
which means that someone who wants to add a new functionality does not have
to know how to place it into a working environment. Also extending the working
system with existing modules should be easy and need no implementation changes.
The system under discussion is aimed to solve the issues described above.

The paper which addresses the above issues faced by the EU UrbanFlood project
[1] is organized as follows. Related work is followed by the general system architecture
and workflow management. Section 4 explains the concept and architecture of the
proxy generator we exploit. Then the proxy BPEL module is discussed in Section 5.
In Section 6, we present the architecture of a load-balancer and then details about
the implemented load-balancing strategies. The tests performed on the proxy are
presented in Section 7 and followed by conclusions and ideas for the future work.

2. Related work

The issues of building and executing workflows is addressed in a vast number of papers
[7], as well as load balancing in parallel and distributed programming [8].

The concept of load balancing with agent systems is addressed in a number of
papers. Among them, [5] proposes that a multi-agent system may be used by the
operating system to ensure that execution of all tasks on processors could be comple-
ted in the shortest possible time. In the realized multi-agent system each processor
has an assigned agent which can communicate with agents on neighbouring nodes to
exchange tasks. An exchange is performed whenever the agent has an excess as well
as a lack of task. However, it is possible that neighbours are in the same situation,
i.e., they have a lack or an excess of tasks, then the resident agent creates another
type of agent which is aimed to find some tasks for a processor that “suffers” from
a lack of tasks.

The author of the HAProxy balancer describes in [11] various strategies of load
balancing for applications accessible over network. Since the power of any server is
finite, a web application must be able to run on multiple servers to accept an ever
increasing number of users. The most popular one but also very effective algorithm
is the DNS round robin [4]. The idea is that, if a DNS server has several entries for
a given hostname, it will return all of them in a rotating order. Another strategy is to
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send a request to ”the first server to respond”. It is also possible to choose always the
least loaded server. The latter concept was enhanced in [10] where authors present
a way how to monitor Web Services load and find out how big impact a single request
has on the service load. The load balancer can adapt its behavior to a current service
state, which means that, e.g., CPU or memory will have a greater impact on load
indicator. The authors have decided to use Pearson’s Correlation Coefficient to find
a relationship between request duration and CPU load.

All of the above approaches were considered when developing our load balancer.
Some, like Pearson’s Correlation Coefficient were introduced and tested in a real
environment.

3. General architecture and workflow management

The big picture of our research can be illustrated with the system architecture of the
UrbanFlood project as shown in Fig. 1.
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Figure 1. General idea of the system architecture of UrbanFlood.

UrbanFlood is an Early Warning System (EWS) which can play a crucial role in
mitigating flood risk by detecting conditions and predicting the onset of a catastrophe
before the event occurs, and by providing real time information during an event.
The components of EWS are organized into a workflow. The term workflow denotes
a graph of tasks connected by control and/or data-flow dependencies. In our case,
the source of the data are sensors located in a dike. The only one requirement to add
a new sensor is connect it to the Internet which is used to send the collected data.
Although a package from a sensor is received by the Common Information Space (CIS)
– a platform for hosting EWS’s, it is not responsible for computing the data. CIS can
send the request to a well known endpoint – proxy which redirects the request for
execution on a concrete service instance.
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To increase its performance a service should have many instances but from the
CIS point of view there is only one component responsible for request execution.
Please note that a proxy is created for one type of service (more technically: for one
interface) like a service is created for a specified purpose, e.g., one service is responsible
for computing flood risk and another one for the visualization of water level. Proxy
has two activities: first it should contact LoadBalancer (LB) to get a concrete service
instance address and then it should redirect the request received from the CIS to
this instance. A service can be the last node of the workflow, but it is not necessary.
A cloud used to host services (one service per Virtual Machine (VM)) is monitored by
the UFoReg system. LB queries UFoReg to get VM-related measurements. The data
collected can be used to select the least loaded VM which hosts a specified service
instance.

4. Automatic proxy generation and deployment

At the beginning of our research we used the GlassFish ESB platform to generate
proxy for services. Preparing a package ready for deployment on the application server
is a complex process which requires a sequence of steps described coarse-grained below.

1. Create an empty BPEL module and copy to it files needed in each proxy module
e.g. an LB WSDL file.

2. Copy a service WSDL and XSD files.
3. Create a BPEL [3] process sequence which generally consists of: receiving input

data and assigning it to local variables, contacting LB to get service instance ad-
dress, changing service endpoint address in the partner link, invoking the request
and assigning its result to local variables, sending execution time to the LB and
returning the result.

4. Create a Composite Application to deploy the proxy on the GlassFish server.
5. Deploy the prepared package.

All these steps are the same for any type of service so we aim to automate
this process. This automation was realized as an EJB service called ProxyGenDeploy
(PGD).

To easily understand the whole process, the PGD architecture (please see Fig. 2)
can be helpful.

It presents the whole flow responsible for generating and deploying proxy. PGD
becomes a four arguments on input: service type, WSDL URL, input XSD URL, and
output XSD URL. The steps that follow are: to download files from given URLs, then
WSDL and XSD files are transformed (using the XSLT engine) to a BPEL module.
After successful generation a JAR containing the BPEL module is created, which is
next used to create a ready-to-deploy composite application packed into a ZIP archive.
Nowadays PGD uses a dedicated GlassFish server to deploy proxies. The old proxy
is stopped and undeployed (if exists) and the new proxy is deployed and started to
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Figure 2. Architecture of ProxyGenDeploy.

do this, GlassFish API [2] was used. After these steps, the newly generated proxy is
ready to use and is listening to incoming requests. No more steps are required.

5. Proxy

Proxy provides a single well known endpoint, which acts to the underlying set of
(dynamically provisioned) services, hidden below it. Note that a proxy is not created
manually. It is generated by PGD and it is automatically deployed on the GlassFish
server. It is required to have sun-bpel-engine installed on the target GlassFish server.

Fig. 3 depicts a sequence diagram of request execution, which involves the follo-
wing steps:

1. Receive a request from the CIS 1 of environmental phenomena through wireless
sensors.
1.1 Query LB for a service url address.

1.1.1 LB chooses one of the registered services based on a specified strategy.
1.1.2 Proxy receives service’s address.

1.2 Proxy uses Partner Link for contacting services and here a service endpoint
is dynamically assigned to it.
1.3 Proxy gets a current time just before passing the request to the service.
1.4 Send request to the service.
1.5 Proxy receives operation results.

1The CIS (Common Information Space), part of the Urban Flood project, is a generic framework
for hosting Early Warning Systems based on the monitoring
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1.6 Proxy gets the current time just after receiving a response from the service.
1.7 Sending time statistics to the LB.
1.8 Return the operation results.

X Type Service InstanceLoadBalancerProxyExternal system

1.8: Result

1.7: AddStatistic(X,URLAddress,StartTime,ResponseTime)

1.6: GetEndTime

1.5: Result

1.4: operation(args)

1.3: GetStartTime

1.1.1: GetConcreteUrl(X)

1.2: AssignEndpointReference

1.1.2: String: URLAddress

1.1: GetURLAddress(X)

1: Operation(args)

Figure 3. Proxy instrumentation.

Each unexpected failure (e.g. LB is not available, a service of a given type doesn’t
exist, etc.) will create an appropriate SOAP error message generated by the Proxy
BPEL module.

6. Load balancer

Fig. 4 presents the general architecture of LoadBalancer. The functionalities of the
LB are listed and described following the figure.

1. Register/Unregister service instance. It is used to inform LB about new services.
While adding a new instance, required are: service type name, VM id (unique for
each one) and service address.

2. Add statistics. Used to collect data about execution times for each service. Such
measurements are sent by the Proxy.

3. Get service address. Returns a concrete instance address using load balancing
strategies. In order to choose the least loaded VM, LB uses a filtering mechanism.
The Strategy pattern together with the Composite pattern were combined to
ensure the flexibility and exchangeability of the load balancing algorithm. When
“get service address” is invoked, the whole list of VMs of a given type goes on the

25 września 2012 str. 6/15

50 Jarosław Dąbrowski, Sebastian Feduniak, Bartosz Baliś et. al.



1.Register/Unregister service instance
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Figure 4. Architecture of LB.

input of the chain of filters. After which step of filtering, the list of VMs shrinks
and as a result only one VM is chosen, finally the address of this VM is returned.
To facilitate understanding the above, an example process is illustrated in Fig. 5.

Figure 5. Chain of filters.

We have implemented three filters. The first one filters machines according to
the count of running requests. The second one filters machines according to the
average request time execution. The third one filters VMs according to their
load indicator, which is a weighted average of CPU and memory usage. LB holds
a reference to a single filter. Using Composite Filter other filters can be aggregated
into the chain. Adding a new filter is very simple, it requires implementing a Filter
interface. In the future it would be possible to create an XML configuration where
a list of the used filters and their order could be stored.

4. UFoReg measurements. UFoReg(UrbanFlood Registry) is a database which col-
lects VM-related measurements and publishes it using HTTP GET method.

5. GetMeasurements Thread. Because collecting VM-related measurements per re-
quest can be too expensive, we introduced a TimerTask which is called perio-
dically (being configurable). It holds a list of registered VMs, through which it
iterates during every execution to collect VM-related measurements. For each
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VM it connects to UFoReg and collects measurements generated since the last
execution up to now. The information gathered is then used to compute an ave-
rage CPU usage, average memory usage, CPU usage weight and memory usage
weight, the last two values are computed using Pearson’s correlation.

6. Pearson’s correlation. As mentioned, one of our filters used by LB assumes that
the load indicator is calculated for each VM. We calculate the load indicator (li)
as follows:

li = CPU weight ∗ CPU load + MEMORY weight ∗MEMORY load (1)

The problem is how to determine the appropriate weights. We decided to find
out how big impact each request has on CPU and memory load. Having collected
the execution time for each request and corresponding CPU and memory average
load, we can calculate Pearson’s correlation. The correlation coefficient range is
from −1 to 1. A value of 1 implies that a linear equation describes the relationship
between X (request execution time) and Y (CPU or memory load) perfectly, with
all data points lying on a line for which Y increases as X increases. A value of
−1 implies that all data points lie on a line for which Y decreases as X increases.
A value of 0 implies that there is no linear correlation between the variables.
Having two vectors, where X are request execution times and Y are average
cpu/memory loads:

X =




X1

X2

X3
...
Xn



Y =




Y1

Y2

Y3
...
Yn




(2)

we compute Pearson’s correlation coefficient (r) as follows:

r =

n∑
i=1

(Xi −X)(Yi − Y )
√

n∑
i=1

(
Xi −X

)2
√

n∑
i=1

(
Yi − Y

)2
(3)

After that, the weights for CPU and memory are computed as follows:

CPU weight =
rcpu

rcpu + rmemory
,

MEMORY weight =
rmemory

rcpu + rmemory

(4)

Please note that owing to Pearson’s correlation, load balancing will be better suited
to the running system because weights are computed periodically.
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7. Tests

The LB mechanism was tested with one type of service. It has only one method which
takes one argument (number of iterations) and performs many operations on floating-
point numbers in each iteration. We had five instances of such services deployed at
the ACK CYFRONET AGH computer.

Physical machine parameters:
Server name: HP ProLiant BL2×220c G5
CPU: 2×Intel Xeon L5420 (4 cores, 12M L2 Cache, 2.5 GHz, FSB 1333 MHz)
Memory: 16 GB (4×4096 MB 667 MHz)
Virtual machine parameters (one machine per service, each with the same configura-
tion):
1 core
Memory: 1 GB

LB was configured as follows: the first filter was filtering the machines according
to the count of requests running on it and it was leaving three machines on the list,
the second one was filtering the machines according to the least response times and it
was leaving two machines on the list, third one was filtering the machines according
to a load indicator and it was leaving only one machine on the list. During the tests
ten threads were sending requests to the proxy over five minutes.

The first tests were performed with the number of iterations equal to 5000. In such
a situation the average response time on the unloaded machine is about 37 seconds
(Fig. 6).
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Figure 6. Average request duration with LB and without LB for number of iterations equal
to 5000.
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Figure 7. Load of VMs during tests for number of iterations equal to 5000.

Fig. 7 presents how VMs were loaded during tests.

The second series of tests was performed with the number of iterations equal to
500. In this situation the average response time on the unloaded machine is about
3.7 s (Fig. 8).
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Figure 8. Average request duration with LB and without LB for number of iterations equal
to 500.
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Fig. 9 presents how VMs were loaded during tests.
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Figure 9. Load of VMs during tests for number of iterations equal to 500.

The third series of tests was performed with the number of iterations equal to 50.
In this situation the average response time on the unloaded machine is about 500 ms
(Fig. 10).
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Figure 10. Average request duration with LB and without LB for number of iterations equal
to 50.
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Fig. 11 presents how VMs were loaded during tests.
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Figure 11. Load of VMs during tests for number of iterations equal to 50.

As we can see, in each test better performance was achieved while using the
implemented system. Figures 6, 8 and 10 present decrease of average service response
time while using load balancer. As it was mentioned, each test was stopped after 5
minutes. During this time, more requests were processed using load balancer so line
for the single VM is shorter. Values are lower for the lower number of requests because
the machines were less loaded.

Figures 7,9 and 11 present CPU load of each machine. The requests were distri-
buted between machines which means that load balancer was working good.

In Tables 1, 2 the experimental results are compared.

Table 1
Experimental results with load balancer

number of
iterations

requests count
processed in 5
minutes without load
balancer

requests count
processed in 5
minutes with load
balancer

Increase in
performance %

5000 81 263 224,7 %

500 811 2293 182,7 %

50 6089 8818 44,8 %

We have tested how much faster the requests would be executed when using
five VMs with LB vs. the case without LB (every request was delivered to the same
instance of the service). It would be ideal if having 5 services we could execute 400%
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Table 2
Experimental results without load balancer

number of
iterations

average request
duration without load
balancer [ms]

average request
duration with load
balancer [ms]

Increase in
performance

(a) (b) (a/b)

5000 36675 11233 3,26

500 3682 1228 2,99

50 491 260 1,89

more requests over the same time and obtain the average request duration five times
lower w.r.t. to the case without LB. But in the real world it is almost unfeasible,
because the requests are not equally distributed between VMs. The mechanism of
choosing the least loaded machine takes also non-zero time, which extends the request
execution duration. This can be observed using LB. The less a request execution time
takes, the less requests are executed over the same time and the less is the increase
of the average request duration.

8. Concluding remarks

Our research addressing invoking services from within workflows allows to draw the
following conclusions:

• Auto-generation and auto-deployment proxies for services is making work in the
described environment easier and more comfortable.
• The first tests show that the implemented LB mechanism improves performance.
• We expect that further research should bring even better results.
• We noticed that LB strategies have to be suited to the environment in which it

is used so it is necessary to try various LB strategies [9]. It means that before
configuring LB the user should more or less know how many services would
be used, how much time the average execution time will take and how often
proxy would get requests. Having got such information it would be possible to
try a couple of configurations to find out which one would provide the best
performance.
• As LB is a single point of failure, in the future it may be necessary to introduce

an agent-based approach [6]. Using this concept LB would involve many agents
distributed across several nodes. The role of agents is to communicate with each
other to choose the least loaded service of a given type.
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