COMPUTER SCIENCE e VOL. 10 e 2009

P1oTtr OrRAMUS*

PARALLEL AND DISTRIBUTED CALCULATIONS
SUPPORTED AND MANAGED
BY THE RELATIONAL DATABASE

A simple, based on a relational database, system, for a management of a parallel and a dis-
tributed computer calculations, is presented. In the proposed system, the parallel calculations
are carried out according to a master/slave model. Because an input and an output data of
programs are stored directly in the database, the use of files is reduced to a minimum. The
management system allows for a combination of computing power of many computers for
solving a single numerical problem.

Keywords: parallel calculations, relational database, master/slave model

ROWNOLEGLE | ROZPROSZONE OBLICZENIA
WSPIERANE | ZARZADZANE
ZA POMOCA RELACYJNEJ BAZY DANYCH

W pracy prezentowany jest prosty, oparty o relacyjna baze danych, system, przeznaczony do
zarzadzania rownoleglymi i rozposzonymi obliczeniami komputerowymi. W proponowanym
systemie, obliczenia réwnolegle prowadzone sa zgodnie z modelem master/slave. Poniewaz
zaréwno dane wejsciowe, jak i wyjsciowe programdéw zapisywane sa bezposrednio w bazie
danych, uzycie plikéw zostalo ograniczone do minimum. System zarzadzania pozwala na
polaczenie mocy obliczeniowej wielu komputeréw w celu rozwiazania pojedynczego problemu
numerycznego.

Sfowa kluczowe: obliczenia réwnolegle, relacyjna baza danych, model master/slave

1. Introduction

Parallel computing plays an important role in solving large numerical problems. In
this approach, all running programs need to closely collaborate in order to solve a
common task, so communication between programs is inevitable.

One can use e.g. Message Passing Interface [1] to create parallel application, but
to start calculations direct connection between all computers taking part in this job, is

* Department for Information Technology, Faculty of Physics, Astronomy and Applied Computer
Science, Jagiellonian University, Krakow, Poland, piotr.oramus@uj.edu.pl

(0]

76 Piotr Oramus

required. Unfortunately, in many cases, the condition of the direct communication can
not be fulfilled. E.g. in the case of clusters, nodes typically do not have assigned public
IP addresses and there is no direct access to them from the Internet. In addition, it is
difficult to use several supercomputers in a single parallel calculation, because their
users cannot start tasks on demand, but have to use a local batch system. Such a non
homogeneous environment requires a special approach. Here, the database is proposed
as a focal point for data exchange and tasks management.

When a client-server software architecture is considered (the use of the database
is an example of such a case) all connections are initialized by the client programs in
direction to the server, therefore the direct access from the Internet to all computers is
not longer required — the access from all computers to the database server is sufficient.

Another and separate issue is an unpredictable time of such a connection. The
clients can connect and disconnect at any time and a software, which is responsible
for a job management, has to solve this problem.

A modern and well known system for a distributed computation is BOINC [2],
which is a flexible and highly scalable platform for volunteer and desktop Grid com-
puting. BOINC uses client-server architecture and the database to manage jobs, but
the data flow and the storage model are based on files.

The intention of the author is to present a simple, single-user system, where
information is stored only in the database, so Structured Query Language (SQL)
can be directly used for a data analysis. Such a system may be easily and rapidly
constructed and it allows to use for a parallel calculation a large variety of different
computers.

2. Description of a problem solution

The relational database has repeatedly demonstrated its services to store and search
large data sets. The combination of the database management system (DBMS) with
an appropriate library allows to quickly build a program, which can retrieve all the
necessary data from the database. When complete information for the tasks to be
performed is stored in the database, the distributed computing system can easily
be built — the only requirement is an availability of the network connection to the
database.

This distributed system is capable of performing parallel calculations thanks to
supplying additional software (a master program), which manages the task list on the
basis of an analysis of already obtained results.

In the next section of this paper the relational database is presented. Then the
description of the database based management system is given. Afterwards, a use of
Specialized SQL Structures is shown. A software and a hardware used in the calcu-
lations are described in next section. The last section contains presentation of the
system application to the problem of the construction of the optimal neural network
ensemble by means of the parallel genetic algorithm.

Parallel and Distributed Calculations Supported and Managed by (...) 77

3. The relational database

The database stores in a computer system a collection of data. Data is organized
according to certain database model. In the case of the relational database [3] data
is stored in two-dimensional tables called relations. A single relation usually contains
multiple rows (called tuples), which have the same set of attributes (columns). To
uniquely identify each row a so-called primary key is chosen as a single attribute
or a set of attributes. The tuples can have the values of the primary key from
another relation as its own attribute. A foreign key combines data saved in differ-
ent relations. A structure of the database is described by means of a schema. The

schema can be written in a simple form as follows: relation_name (attributel name,
attribute2 name, etc.) and in this form will be used in this paper. The underline
distinguishes the attribute, which plays the role of the primary key. To speed up
search queries indexes can be created. One index can be composed of one or more
attributes.

From a point of view of the database user, the most important issue is integrity
of the data. DBMS can help the user to achieve this goal by means of a transaction
and ability to lock tables. The transaction is an “all-or-nothing” mechanism: either
all operations on data in tables are done correctly or nothing is changed. Usually the
capability to serve multiple clients simultaneously is a wanted feature of DBMS, but
in some cases this may lead to data corruption (e.g. when two users try to buy the
same ticket). Locking tables can give a guarantee that two or more processes do not
have an access to the data at the same time.

4. The management system based on the relational database

4.1. How not to use files

Usually at the beginning of an execution, a computer program reads its parameters
from files. Then, results of calculations are saved to other files. Such a scheme of work
has a large drawback: files need to be (usually manually) copied between systems
taking part in the calculations and often exist in multiple, difficult to synchronize,
copies. This makes both a management and a analysis of the results difficult.

A simple observation can help: typically, the input data and the results of the
calculations take form of a two-dimensional table, which can be easily replaced by
a relation in the database. In general there are two possibilities: one either creates
relations designed for a certain set of data or uses general purpose relations having
a scheme like matriz_name (row, col, value). The first solution is highly efficient
and allows data selection and elaboration on the level of DBMS. Additionally, in
this solution columns of one tuple (attributes) have meaningful names, and in the
program source code can be accessed by those names (creation of Specialized SQL
Structures (SSQLS), where a member variables correspond to attributes in the SQL
relation, is easy and in the case of MySQL++ library requires only several lines of

78 Piotr Oramus

a source code [4] — an example of SSQLS use will be given later), so the probabil-
ity of their wrong use is significantly lowered. The second solution requires addi-
tional relation e.g. matriz_register (matrix id, matrix_name, number_of _rows,
number _of _columns, description, time_stamp) to organize data and uses more
disk space, but it has a large advantage: in a program all such data can be accessed
and used in the same way with the help of one common piece of a source code (prefer-
ably a class in an object oriented language).

In the presented system “Matrix” class was developed. An object of this class
represents a re-sizeable, two-dimensional array of floating point numbers with multiple
mathematical operators defined. Such an object can be stored in the database in
relation of the general purpose scheme. To support old programs, which still must use
files, “Matrix” object can be saved/read in/from a text file.

4.2. Master/slave model

Master/slave model is a simple model, where one entity (master) controls what mul-
tiple other entities (slaves) do. This parallel programming paradigm is easy to imple-
ment, but has some important drawbacks such as a single point of failure[5].

In the presented system the main calculation tasks are done by ”slave” programs.
They are connected to the database and periodically check the jobs (job_id,
experiment_id, parameters_relation name, parameters_relation_id,
status) relation. The attributes ”"parameters_relation_name” and
"parameters_relation_id” mean here: the name of the relation containing
the job initial parameters and a value of a primary key in that relation pointing at
appropriate tuple, respectively.

When a job having a status set to “waiting” is found, the slave program locks the
jobs relation to prevent simultaneous access from other programs, changes its status
to ”working” and unlocks the table. When work is completed, results are saved in the
database and the status of the job is changed to ”done”, then the whole algorithm
repeats. In the case of no work to be done, the slave program calls system sleep()
function, so they almost do not consume system resources. The maximum execution
time (real time) of the slave program is limited, so all the programs finally terminate
even if the limit of the CPU time usage is not exceeded.

The jobs relation can be populated either manually (e.g. by means of phpMyAd-
min web fronted to MySQL) or by another program (even in the form of a UNIX shell
script). When the parallel execution is required, a master program can be written to
control jobs relation.

To support multiple calculations carried out at the same time and to ease the
management, relation experiments (experiment_id, description, parameters)
was created. One master program controls one “experiment” and receives the val-
ue of experiment_id primary key from a command line. It must be emphasized, that
a lot of management tasks done by the master program, are implemented by means
of SQL queries and are executed directly by DBMS.

Parallel and Distributed Calculations Supported and Managed by (...) 79

4.3. Cleaner program

To protect the calculation process from being stopped by even a single slave program,
which fetched the job but was not able to complete it, the idea of a ”cleaner” program
was developed. The idea is as follows: each running copy of the program has to
register itself in the hosts (host_id, host_name, up_time, time_stamp) relation
and periodically updates its own tuple. Thus, every program in the system possesses
its own and unique identification obtained from the database (primary key host_id
has ability to auto increment and its value is returned to the program by DBMS).
The host_id attribute was added to the relation jobs, relation experiments and all
relations used for storing the results of the calculations. The host_id attribute has to
be filled by the program changing tuples in those relations. Information about which
program executes a certain job is now available in the system.

The cleaner program checks periodically the tuples in the hosts relation looking
for an entry, which is not updated. When such a tuple is found, the cleaner reads
host_id from this tuple, removes it from the hosts relation and changes the status
of a job executed by the program with this host_id from “working” back to “waiting”
state. A partial results, if any, returned by this program are removed in similar fashion.

The program, which cannot find its own tuple in the hosts relation is immedi-
ately terminated. This feature allows the termination of the program without a need
of logging in on an appropriate computer and killing a program process. Additionally
this feature can be used to automatically shut down the system when calculations are
finished.

4.4. Specialized SQL Structures

Specialized SQL Structures are an important tool in developing programs, which
have to communicate with the database. An access to data stored e.g. in the relation
hosts (host id, host_name, up_time), can be obtained by using the C++ struc-
ture having member variables corresponding to each attribute in this relation. Proper
C++ structure, named here hosts, is defined indirectly by means of a short macro:
sql_create_4(hosts, 1, 4,

mysqlpp::sql_int_unsigned, host_id,

mysqlpp: :sql_varchar, host_name,

mysqlpp: :sql_double, up_time)
The exact meaning of the macro parameters is described in details on the web page
[6]. The same macro creates all methods required to exchange data with the database.
Finally, to send a single record to the database, a small piece of C++4 code is sufficient:
// First, connection to the database on a remote server has to be established
mysqlpp: :Connection con_to_server(database, server_name, username, password);
// Here variable this_host is declared and initialized
hosts this_host(1, "main_server", 1000.01);
// We exchange data with the database by means of the class mysqlpp::Query
mysqlpp: :Query query = con_to_server.query();

80 Piotr Oramus

// The insert() method creates the SQL statement, appropriate for that case
query.insert(this_host);

// finally, query is executed

query.execute();

5. Software and hardware used

The slave programs were successfully installed on many computers having different
hardware architectures. The standard PCs, one computing cluster (mars.cyfronet.
pl) and two supercomputers (panda.cyfronet.pl and baribal.cyfronet.pl) were
used together, connected to one database. The MySQL DBMS was installed on a
desktop computer with a single Intel(R) Pentium(R) D processor running at 3.40GHz.
The desktop computer was equipped with 8 GB of a RAM memory and a software
RAID 5 disk array. This computer was also used to run the master and the cleaner
programs.

All computers were running Linux operating system. The programs and all re-
quired libraries (Fast Artificial Neural Network and MySQL++) were compiled by
means of GNU or Intel C/C++ compiler.

Figures presented in this paper were generated by means of simple R language
scripts [7]. What must be emphasized, the results of the calculations were direct-
ly downloaded from the database to R language environment thanks to RMySQL
package.

6. An application of the system to the construction of an
artificial neural network ensemble

The Fast Artificial Neural Network library (FANN [8]) was used to create a classifi-
cation program. Additional relations intended for a storage of the FANN parameters
were created in the database. Training, validation and test patterns were also saved
in the same database. The calculations presented in this chapter were preformed to
test the management system under a heavy load. The total number of executed jobs
exceed one and a half million. The stability, load and response time of the database
server were checked.

6.1. Data preparation

Individual ANNs were concurrently trained on artificial set of data representing the
probability for finding 26 letters (A-Z) in nine different human languages. The aim
was to find a system able to correctly classify the language even if a text sample
was short (like 260 characters). All pattern were generated by the script written in R
language.

The tuples representing the training tasks were generated and saved in the jobs
relation by means of simple shell script. After a training process, 480 different artificial
neural networks were available for the next experiments.

Parallel and Distributed Calculations Supported and Managed by (...) 81

6.2. An ensemble of the artificial neural networks

It is shown that the prediction ability of the artificial neural network ensemble is
better than that of a single network [9] [10] [11]. The presented system was used to
build such ensembles from an existing pool of ANN saved in the database. The size of
the ensemble was limited to 15 networks. The output of the ensemble was calculated
as a simple sum of the output of each network. The classification error of the ensemble
was defined as follows:

Er (0.9- number of wrongly classified patterns + 0.1 %m)

number of patterns

The number of bit fails is defined as the number of the output neurons which differ
from known output patterns more than 0.35.

6.3. The parallel genetic algorithm [12]

The configuration of the ensemble was encoded by means of bit string of length 135
positions (15 independent networks; one network identified by a group of 9 bits). The
evaluation function for a chromosome was inversely proportional to the classification
error of the ensemble coded by this chromosome:

Ev; =1/Err;

where i is a unique chromosome identification number.
A fitness (measure of the reproduction opportunities) associated with the chro-

mosome i was defined by:

where Ev was the average evaluation of the population.

6.4. Calculations

The populations of the chromosomes were generated and stored in the database by
the master program. The slave programs were responsible for a calculation of a value
of the evaluation function. When all jobs for a current generation were completed, the
fitness was computed by the master program. Then, an intermediate population was
generated from a current population by the roulette-wheel selection [13]. The next
generation was created by the recombination of parent strings taken in pairs from
the intermediate generation. Afterwards, the mutation operator was applied. In all
cases, two, the best chromosomes were directly copied from the previous to the next
generation, so the best results were conserved.

6.5. Results

The populations of 100 and 300 chromosomes were used to optimize the ensemble of
ANNSs with respect to the classification error. Three different values of the mutation

82 Piotr Oramus

probability were used: 0.01, 0.02 and 0.05. One set of the parameters was used in
three independent runs. The average results are given in Figure 1. The best results
were achieved when the mutation probability was set to 0.01.

1600

1500

1400
|

1300

The average of the best evaluation

o *%v Population size and mutation probability
87 °W o 100 0.01
% A 100 0.02
S X + 100 0.05
= X 300 0.01
< 300 0.02
9 % v 300 0.05
Sl T T T T T
0 50 100 150 200 250
Generation

Fig. 1. The average of the best value of the evaluation function plotted versus generation

number

In the next simulations the number of chromosomes in the intermediate genera-
tion was limited. Thus, the next generation was populated using the same chromosome
from intermediate generation for several times. The calculations were performed for
the population composed of 100 chromosomes and were repeated eight times for one
set of the parameters. Results are plotted in Figure 2. The decrease of the intermediate
generation size resulted in deterioration of the optimization ability.

In general, it was found out, that the ensemble of the neural networks used for
the pattern classification was mistaken several times less frequently than the best
single network.

7. Conclusions and future work

The presented system was able to effectively manage large scale calculations, in which
more than 100 simultaneously running programs (18 master programs, one cleaner
and 94 slaves) were used together. The system was remarkably stable. The cleaner
program was always able to recognize interrupted tasks and to automatically “return”
them back to the jobs queue.

Parallel and Distributed Calculations Supported and Managed by (...) 83

o
o _
o
—
o
o _|
g -
g
S X
3 2 i+
8 S al
- —
1%}
(o]
Ke)
[} o
£ g1 %
ISR %
S X
g &
= o
[o _|
s S+
= g Number of parent strings
o
3 o 98
A 76
8 i % + 50
E| X 26
T T T T T
0 50 100 150 200 250

Generation

Fig. 2. The average of the best value of the evaluation function plotted versus generation
number

The average use of CPU of the database server was around 70%.

Unfortunately, the increase in the number of rows in the database relations re-
sulted in a significant slowdown in the search of the result data. In the future it is
planned to generate a separate set of the relations to handle a single experiment.

Acknowledgements

The research reported here was partially supported by the grant mno.
MNiSW/SGIL4700/UJ/126/2007.

References

[1] Pacheco P.S.: A User’s Guide to MPI. University of San Francisco, 1998.

[2] http://boinc.berkeley.edu/

[3] Codd E.F.: A Relational Model of Data for Large Shared Data Banks. Commu-
nications of the ACM, vol. 13 (6), 1970, 377-387

[4] http://tangentsoft.net/mysql++/doc/html/userman/ssqls.html

[5] Sullivan M. P., Anderson D. P.: Marionette: a System for Parallel Distributed Pro-
gramming Using a Master/Slave Model. EECS Department, University of Cali-

84 Piotr Oramus

fornia, Berkeley, 1988 (http://www.eecs.berkeley.edu/Pubs/TechRpts/1988/
5728.html)
[6] http://tangentsoft.net/mysql++/doc/html/userman/
[7] http://wwu.r-project.org/
[8] http://leenissen.dk/fann/
[9] Hansen L.K., Salomon P.: Neural Network Ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 12, 1990, 993-1001
[10] Krogh A., Vedelsby J.: Neural network ensembles, cross validation, and active
learning. In Advances in Neural Information Processing Systems, MIT, vol. 7,
1995, 231-238
[11] Sharkey A.J.C. : On combining Artificial Naural Nets. Connection Science, vol.
8,3 /4, 1996, 299-314
[12] Poli R., Langdon W.andB., McPhee N.andF., Koza J. R.: A Field Guide to Genet-
ic Programming (http://dces.essex.ac.uk/staff/rpoli/gp-field-guide/)

[13] Whitley D.: A Genetic Algorithm Tutorial (http://samizdat.mines.edu/ga_
tutorial/)

