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USING STANDARD HARDWARE ACCELERATORS
TO DECREASE COMPUTATION TIMES
IN SCIENTIFIC APPLICATIONS

Nowadays, general-purpose processors are being used in scientific computing. However, when
high computational throughput is needed, it’s worth to think it over if dedicated hardware
solutions would be more efficient, either in terms of performance (or performance to price ra-
tio), or in terms of power efficiency, or both. This paper describes them briefly and compares
to contemporary general-purpose processors’ architecture.
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UŻYCIE
STANDARDOWYCH AKCELERATORÓW SPRZĘTOWYCH
DO SKRÓCENIA CZASU OBLICZEŃ NAUKOWYCH
Współcześnie w obliczeniach naukowych stosuje się procesory ogólnego przeznaczenia. Gdy
potrzebna jest duża przepustowość obliczeniowa, warto zastanowić się, czy dedykowane
rozwiązania sprzętowe nie okazałyby się efektywniejsze po względem wydajności (lub sto-
sunku wydajności do ceny), zużycia energii bądź obu czynników jednocześnie. Artykuł opisuje
pobieżnie dedykowane rozwiązania sprzętowe i porównuje ze współczesnymi architekturami
procesorów ogólnego przeznaczenia.

Słowa kluczowe: procesory ogólnego przeznaczenia, standardowe akceleratory, akceleratory
obliczeń, architektury dedykowane, GPGPU, Cell, ClearSpeed

1. Introduction

High-performance computing (HPC) has migrated over time from expensive and ded-
icated devices to cheap general-purpose components. The former were efficient and
designed specially with high overall performance in mind. Narrow application space
and low-volume production as well as expensive components made their price a sig-
nificant disadvantage. In contrary, commodity hardware components, due to their
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high-volume production, were both generally available and affordable. As they slowly
adapted some ideas from other computers (also HPC machines), they got even more
interesting. As a downside, their generalness makes them still not well suited for some
tasks.

This paper attempts to show that by omitting or radically extending some well-
known and now-obvious design solutions present in desktop computers’ CPUs, one can
get a computing device better suited for scientific computations’ needs. Theoretical
peak performance is presented to give some basic comparison of devices. Behaviour
and performance for integer, single- and double-precision floating-point computations
varies greatly, but the paper focuses strictly on the last data type.

2. Common mechanisms used in CPUs

This section discusses in general chosen few mechanisms that are rarely absent in
common desktop CPUs and, at the same time, are widely known and understood.
More detailed introduction can be found in [8].

2.1. Out-of-order execution

When instructions are executed in order they appear in instruction sequence, some
CPU execution units (multipliers, adders, etc.) that could be used by next instruc-
tions, may remain idle waiting for any work to do. Out-of-order execution is about
looking for nearby instructions that don’t rely on their unfinished predecessors and
have all necessary CPU resources free. If they exist, they get executed, thus improving
CPU utilisation and increasing performance.

To perform out-of-order execution correctly, it must be seen from the outside
of the CPU as if the instruction order was not perturbed, so additional logic to
hide instruction reordering is necessary. Control logic needs to be augmented with
a dependency-tracking circuitry to skip operations not ready to be performed and
presence of interrupts require cancellation mechanism to invalidate instructions exe-
cuted in advance.

2.2. Speculative execution

Out-of-order execution skips instructions not ready to be executed and waiting for
other instructions to deliver them operands. Speculative execution performs those
skipped operations by guessing what the value of missing operands may be. If the
guess is correct, computations will finish sooner. Otherwise, the CPU will have to
invalidate operations that were based on false assumptions and do them once more,
this time with proper operands. Prediction mechanisms affect the guess rate.

The main advantage speculative execution brings is performance gain and greater
resource utilisation at the cost of increased complexity and higher power consumption
caused by additional work to be done when guess fails. The most known type of
speculation is a branch prediction (a control-flow speculation), but value speculation

28 czerwca 2010 str. 2/10

66 Dawid Kuna, Ernest Jamro, Paweł Russek, Kazimierz Wiatr



is currently actively researched. [6] gives some insight on the subject from power-usage
standpoint.

2.3. Vector processing

Modern general-purpose CPUs are inherently scalar, but they are commonly enhanced
with some additional vector instructions and corresponding circuitry. Vector instruc-
tions operate on fixed-sized groups of scalar values of the same type and often per-
form exactly the same scalar action on each pair of corresponding vectors’ elements.
Usually vector processing provides higher computational performance for problems
expressible, at least partially, in terms of vector computations.

Vector size is a trade-off between CPU area, power usage and available per-
formance. Nowadays double-precision floating-point vectors are usually only two el-
ements long, but CPUs are expected to have it doubled (or even quadrupled) in
following generations. General-purpose CPUs’ vector capabilities constitute a specific
flavour of vector processing, as its design is usually very scalar-centric, as opposed to
e.g. video cards. Requirement of data conversions and manipulations at junction of
vector and scalar processing is expensive, in terms of either number of instructions or
execution time; it is discussed further in [7].

Vector processing is well suited for algorithms from the domain of image pro-
cessing, vector and matrix algebra, and so on. For inherently scalar and strongly
data-dependent algorithms, vector instructions are of little or no use.

2.4. Multiple instruction streams

Internal CPU resources’ usage may be improved further by handling more than one in-
struction stream simultaneously, sharing most of the logic, as seen in Hyper-threading
technology from Intel. It’s not about raising theoretical peak performance, but rather
about reducing a gap between achievable and theoretical CPU parameters. Hyper-
threading adds control logic that makes single processor appear as if there were two.
In fact, additional control logic acts as a gate between CPU’s environment and its
internals. No execution units have to be added, the same pool is being used as in CPU
without Hyper-threading. Yet, performance improves when each running thread’s de-
mands for execution units are disjoint. Conversely, when some instruction sequences
require the same type of CPU resources, the application needs more time to finish.
Much simpler approach is to employ number of independent CPUs and a communica-
tion subsystem to let them exchange data. Resulting system will inherently be able to
handle multiple instruction streams. Notwithstanding its resource usage factor won’t
improve that way.
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3. Different choices for acceleration

Computation accelerators are designed with different goals than CPUs are. Therefore
they are constrained by other factors and different set of choices may be more valuable
for them.

3.1. Backward compatibility

When the accelerator is an add-on device to the CPU, its design doesn’t have to
be constrained by backward compatibility. CPU designers are often bound to make
new generations of processors accepting software from older ones. This is caused
by large amounts of already written applications, that would need to be ported or
replaced by new software, which is costly. For add-on accelerators working as co-
processors the amount of code executed directly on them is not so large: usually it’s
limited to a group of small computational kernels. Therefore accelerators’ designers
may introduce major architectural changes in new chips, and retreat from decisions
which proved to be wrong in practise.

3.2. Exceptions, interrupts

CPU is not a purely computational device, it also controls other pieces of comput-
er system. Whatever the internal behaviour is, this makes CPU behave as if each
instruction was executed in-order, one after another, so both external devices and
internal subsystems may correctly react to current application state by signalling in-
terrupts. Interrupt requires the CPU to stop its current work immediately and take
an adequate action.

Presence of interrupts complicates circuitry implementing all kinds of ahead-of-
time execution. Add-on accelerators are not concerned so much by interrupts. How-
ever, having strict interrupt handling in the hardware is useful for debugging the
software.

In [2], authors discuss issues concerning interrupt handling schemes for out-of-
order processors and propose their own solution; [1] explains that, under some cir-
cumstances, exceptions may be useful when speculative execution is involved.

3.3. Memory caching

As processors become faster, memory accesses become slower and slower with respect
to processors’ speed. It’s common to use small auxiliary memories (caches) and let
them keep the copies of data expected to be used soon or frequently. When memory
subsystem notices the CPU wants to access the data kept in the cache, it redirects
the CPU to the fast cache instead of slow main memory. As in speculative execu-
tion, caching efficiency partially depends on guessing which memory locations will be
accessed next, and which data to keep in cache.

Usually, memory caching in CPUs is being done automatically by the hardware.
Sometimes programmer is allowed to suggest which cache’s behaviour is desirable,
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but it isn’t rare for the hardware to ignore those suggestions. Caching can significant-
ly improve overall performance, especially for memory-bound applications. However,
when the hardware doesn’t support or can’t correctly detect software’s memory access
pattern, its efficiency gets small. Recently in accelerator devices, manual or hybrid
cache management popularity increases.

3.4. Multiple execution units

Execution model with one instruction stream operating on several, possibly indepen-
dent, data sets, is called Single Instruction Multiple Data (SIMD). When more than
one simultaneous instruction stream is executed with several data sets, that’s Mul-
tiple Instructions Multiple Data (MIMD). It’s more flexible, but more expensive in
hardware as well. CPUs support SIMD model when they include vector processing
capabilities. However, accelerators often offer much larger vectors and lessen the need
for data reorganisation.

Accelerators, being computational devices, involve more circuitry for actual com-
putations than for control. They are designed for handling larger data sets, so for small
data sets, for which CPUs suffice, they’ll remain underutilised and not as efficient as
they might be.

4. Popular computation accelerators

Some dedicated architectures known in High-Performance Computing industry get-
ting most attention last year or two are presented next. FPGA devices are omitted,
because their architecture is flexible, not fixed.

4.1. Cell/Broadband Engine

Cell processors, by IBM, Toshiba and Sony, consist of one PowerPC general pur-
pose processor (Power Processing Element, PPE) and up to eight specialised Syn-
ergistic Processing Elements (SPEs) coprocessors controlled by PPE. As each pro-
cessing element works independently, the whole architecture is MIMD. Support for
double-precision floating-point computations appeared in the second generation of
Cell processor, of which PowerXCell 8i is the main representative, so that’s the model
described further.

Both PPE and SPEs support vector instructions, however the vector size is small
(just two elements for double-precision floating-point data type). Nevertheless, MIMD
architecture is what makes Cell processor worth taking into consideration whenever
SIMD is not enough to solve the problem in hand efficiently.

Each SPE has its own small local memory, manually controlled by the program-
mer; there’s no automatic caching. Memory transfers between the main memory and
local memories are implemented by a DMA mechanism. Cell provides some instruc-
tions dedicated to data reorganisation, so the processor is especially well-suited for
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algorithms working mostly at byte- or even bit-level. Internally SPEs and PPE com-
municate through Element Interconnect Bus, a ring bus where data transfer latency
depends on a distance between the source and the target unit.

Cell processor is not designed as an add-on card. It isn’t designed to work as an
accelerator, either. Quite the opposite, general purpose PowerPC processor is to run
operating system, and SPEs to handle purely computational tasks efficiently. But due
to its performance, it is regarded similar to accelerators.

4.2. Video cards

Nowadays, video cards are providing necessary means to use them for computations
unrelated to computer graphics. They are implementing a variant of the SIMD model,
but different from the CPU’s vector units, since there are no scalar–vector conversions
needed. Designers decided to improve throughput, even if it leads to latency degra-
dation, and that corresponds to requirements batch jobs processing large amounts of
data in scientific computations have.

When programming the video cards, instances of code execution (here called
threads1) are managed by the hardware. When sufficient number of execution re-
sources is available, threads can be executed concurrently, otherwise sequential exe-
cution lefts; it’s up to the hardware to choose ordering. Programmer only provides
a function to be called (so called kernel) and specify a data-set over which the hard-
ware will spawn function calls. When synchronisation isn’t needed, one gets the soft-
ware scalability, with respect to the number of execution units, easily.

The key to obtain optimal performance is to employ as many threads as possible,
because thread multiplexing can hide long memory access times. It’s also necessary to
mix memory accesses with pure computations, to allow multiplexing to be effective.
The maximum number of threads the hardware can service is limited directly by the
hardware, and indirectly by the number of kernel’s actively used registers.

Unfortunately, regardless of interesting design and high performance, manufac-
turers keep some technical information hidden from the users, thus successfully lim-
iting chances of fully exploring video cards’ capabilities.

4.2.1. GT200

NVIDIA’s most recent graphics core, called GT200, is present in both GeForce
GTX280 video card and Tesla C1060 computation accelerator. At the top level,
GT200 consists of ([3]) Thread Scheduler and a group of Thread Processing Clus-
ters (TPC). The Thread Scheduler assigns threads to the TPCs. TPC consists of
a number of Stream Multiprocessors (SM), which execute the same computations on
different operands, and some L1 cache, shared between all SMs. For double-precision

1 Using the word thread in this context is misleading as it denotes something different than in
CPUs. Moreover, when double-precision is considered, modern video cards’ threads are inher-
ently scalar, when CPUs’ threads are not.
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floating-point operations, SM can be thought of as a single execution unit that can
work on a single operation at time.

In GT200, kernels can access different memory types; in [4] following types are
listed: thread’s local memory (not cached), shared memory inside each SM, device’s
global memory (not cached), texture cache and constant cache. So GT200 combines
both automatically cached and manually managed memory types. Texture and con-
stant cache refer to read-only regions of device memory, the difference between them
lies in caching mechanism.

4.2.2. RV770

ATI’s (now AMD) graphics core, RV770, is a major part of Radeon HD 4800-series
video cards and FireStream 9200 computation accelerators family. It contains a group
of SIMD Cores or SIMD Engines. Single SE has a Thread Sequencer, a Texture Unit,
a Local Data Share and a group of Thread Processors. In double-precision floating-
point computations, whole TP works as a single unit, but for single-precision and
integer operations, TP provides internal units to do the work.

4.3. ClearSpeed accelerators

ClearSpeed’s CSX700-based products are add-on floating-point computation accel-
erators. The CSX700 chip consists of two cores, Multi-Threaded Array Processors
(MTAPs). Each one has two execution units of different type: mono and poly. The
first one resembles a simple scalar microprocessor, lacking sophisticated mechanisms
or logic necessary for modern operating systems’ needs. The second one is a SIMD
device, grouping Processing Elements. PEs contain circuitry for basic arithmetic op-
erations, a set of registers and a small, local memory. They are chained together with
a swazzle path for fast, internal data transfers.

Mono unit controls poly unit and handles branch instructions differently. To
achieve high performance one has to carefully decide, how to split the code into both
units. Unlike mono unit, poly unit cannot use data- or instruction cache. Contrary to
video cards, the CSX700’s threads (that hold the same meaning as CPU’s threads) are
not completely under the hardware’s control: priorities and other means are provided
to let the programmer decide how they interact and if they compensate for long main
memory access or not.

5. Parameters

Real performance depends on how well solution for a given problem fits particular
architecture so it can’t be simply described by a single number. But other factors,
including theoretical peak computational performance expressed in billions of floating-
point operations2 per second (GFLOP/s), presented in this section, can.

2 Different operations vary in execution speed, e.g. multiplying is faster than dividing etc.
Usually adding is the fastest operation of interest; often accelerators are designed to handle
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Table 1
Parameters of general-purpose processors and computation accelerators

Peak FP64 Power No. Local per Max.
Device Chip performance usage FP64 core me- RAM

[GFLOP/s] [W] coresa moryb[kB] [GB]

ClearSpeed CSX700 96 25 192 6 2
Advance e710 (2×96)

Radeon HD 4870 RV770 240 160 160 N/A 1
GeForce GTX 280 GT200 78 236 30 16 1

QS22 PowerXCell 217c 250 16 (2×8) 256 32
8i (x2)

Intel Xeon X7350 (4 cores) 46.9 130d N/A N/A 256
AMD Opteron 8350 (4 cores) 32 75d N/A N/A 128

a Concerns processing elements, so CPU cores are not counted
b Memory local to computation units, which can be both read and written and is not

a cache
c 108.5 GFLOP/s each
d Only for CPU; memory’s power usage is not included

Peak performance is an upper limit of how fast the device can compute and, in
practise, assumes that an infinite sequence of multiply-and-add instructions is per-
formed, with all operands and results located in registers. It is presented in table 1
along with performance of the quad-core CPUs (taken from [5]), power usage, per-
computational core memory (if a device has a dedicated computational units), and
the maximum amount of RAM supported.

5.1. Video cards

Video cards offer high peak performance (especially for single-precision floating-point
data) at low cost. The amount of memory supported by video cards is relatively small.
Data transfers between the host and the video card memory, not covered here, usually
go through PCI Express bus, therefore communication time can be a bottleneck.
To fully utilise available computing resources, the application must operate on very
long vectors, longer than the number of execution units (to let the scheduler to hide
memory latency).

As peak performance is calculated for multiply-add instructions, other computa-
tions lead to worse results, e.g. sequence of additions cannot achieve more than half
of peak performance. The RV770 core seem to provide more execution units and thus
better performance than the GT200, but in the real applications one must take into

multiplication followed by summation in a special way, so it’s faster than those operations done
separately or even two summations in row. That’s why manufacturers usually inform how many
additions or multiplications and additions their product can compute per second.
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account also a memory system’s effectiveness, if it can work fast enough to provide
operands as they are needed.

5.2. Cell

Cell’s theoretical peak performance assumes all the SPEs and PPE calculate vector
multiply-add instructions. Because Cell is a MIMD architecture, and its execution
units are more sophisticated than in SIMD-like devices, talking about effective vector
size in Cell is artificial. So despite the fact each SPE has a two-element vector, table 1
just shows the number of SPEs.

Each SPE’s local memory is greater than in the GT200, the RV770 or the
CSX700, and so more data processing can be done between data transfers. Anoth-
er feature of Cell processor (and the QS22) is the maximum amount of supported
physical memory, which is much more than in other accelerator devices described
here.

5.3. ClearSpeed modules

The CSX700, as used in the ClearSpeed Advance e710 acceleration board, works
at the lowest frequency of 250 MHz, what leads to low power usage. Each MTAP
has 96 PEs. Peak performance is achieved when doing a sequence of multiplications
interleaved with additions, as those operations are handled by separate logic. Because
hardware support for threads is different from that in video cards, there is no need to
operate on large virtual vectors to compensate for memory latency.

6. Conclusions

General-purpose CPUs implement several sophisticated mechanisms to achieve high
performance. It’s fine for mostly scalar operations, but for large matrix or vector
computations it may be not sufficient. For those applications, massively fine-grained
data-parallel devices have been developed, aiming other goals than general-purpose
CPUs. Performance of general-purpose processors constantly increases, so the question
may arise: why not to wait for faster CPUs to appear? The answer seems clear: because
performance of accelerators grows as well; because it’s currently higher than that of
CPUs; and they can help solving computational problems at hand now, instead of
waiting.

Functional parameters of accelerators were roughly compared against CPUs’.
They indicate that peak throughput of purely computational units varies from about
1.66 to 7.5 times the throughput of general-purpose CPUs. This potential for sci-
entific computations’ speed-up shouldn’t be ignored. There are many ways to loose
performance, thus a lot of care should be taken. For optimal software and algorithm
design, detailed insight into device architecture is needed.
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