COMPUTER SCIENCE e 16 (4) 2015 http://dx.doi.org/10.7494 /csci.2015.16.4.351

Abstract

Keywords

Citation

GERARD FRANKOWSKI
MARCIN JERZAK
MACIEJ] MILOSTAN
TOMASZ NOWAK
MAREK PAWLOWSKI

APPLICATION OF THE COMPLEX EVENT
PROCESSING SYSTEM

FOR ANOMALY DETECTION

AND NETWORK MONITORING

Protection of infrastructures for e-science, including grid environments and
NREN facilities, requires the use of novel techniques for anomaly detection
and network monitoring. The aim is to raise situational awareness and provide
early warning capabilities. The main operational problem that most network
operators face is integrating and processing data from multiple sensors and sys-
tems placed at critical points of the infrastructure. From a scientific point of
view, there is a need for the efficient analysis of large data volumes and auto-
matic reasoning while minimizing detection errors. In this article, we describe
two approaches to Complex Event Processing used for network monitoring and
anomaly detection and introduce the ongoing SECOR project (Sensor Data
Correlation Engine for Attack Detection and Support of Decision Process),
supported by examples and test results. The aim is to develop methodology
that allows for the construction of next-generation IDS systems with artificial
intelligence, capable of performing signature-less intrusion detection.

network monitoring, intrusion detection, anomaly detection, complex event
processing

Computer Science 16 (4) 2015: 351-371

351

http://journals.agh.edu.pl/csci/

352 Gerard Frankowski, Marcin Jerzak, Maciej Milostan, et al.

1. Introduction

1.1. IT security landscape and trends

The rapid development of the Internet, the numerous technologies and services, and
ubiquitous access to easy-to-use penetration testing tools (combined with abusing
anonymity opportunities on the Internet) create room for different types of vulne-
rabilities. It is only a matter of time before each system exposed to the Internet is
attacked [9]. According to the [20] report, 6,787 web software vulnerabilities were
disclosed in 2013, while in 2011, there were only 4,989, and in 2012 5,291.

An example of threats of special concern are zero-day attacks. Attacks of this
type exploit vulnerabilities that have yet to be been publicly disclosed. Thus, defense
becomes extremely difficult, because when the vulnerability is unknown, the softwa-
re vendor cannot issue the appropriate security update, and the antivirus vendor is
unable to provide the relevant signature of attack symptoms or exploits[4]. These vul-
nerabilities are often used in highly targeted attacks, especially concerning Advanced
Persistent Threats scenarios. The [20] report states that 2013 was the year with the
greatest number of detected zero-day vulnerabilities in use (23, compared to only 14
in 2012). There are still an unknown number of critical flaws of which we are unawa-
re. The famous Heartbleed bug was discovered after no less than 2 years, while the
Shellshock bug (allowing an arbitrary code to run on the affected servers) remained
in the source code of Unix/Linux shells for more than 22 years [14].

The partial (and currently only applicable) response to these types of threats
may be signature-less detection, based on advanced anomaly detection techniques.
Responding to the zero-day threat requires the ability to detect anomalies, correlate
across disparate systems, identify the threat, and mitigate accordingly [10].

The goal of the SECOR project is to improve the protection of highly heterogene-
ous and dynamically changing infrastructures, including those for e-science (like grid
environments and NREN facilities). This requires using novel techniques for anomaly
detection and network monitoring in order to raise overall situational awareness and
provide early warning capabilities.

1.2. Complex Event Processing

The concept of Complex Event Processing (CEP) is about listening to events origi-
nating from multiple sources and detecting complex patterns in real-time or nearly
real-time without the need to store individual event information for a long term. Wi-
thin the CEP engine, the events are usually filtered into separate data streams and
correlated using the idea of time-dependent sliding windows along with queries writ-
ten in a specially crafted domain specific language; e.g., Event Processing Language
(EPL). EPL allows for the processing of multiple streams within a single query in
order to identify particular relationships between events. The most important point
in complex event processing is to analyze as many events as possible and report the
data regarding the spotted complex events to the operator as quickly as possible.

Application of the Complex Event Processing system for anomaly detection (...) 353

CEP has a broad range of applications; for example, in:

e funds (trade algorithms, risk management, fraud detection);

e the management and automation of business processes (relationship management
(CRM), workflow applications, process tracking, operational intelligence);

e sensor network applications (analysis and management of public transport, pro-
duction lines);

e network and application monitoring (SLA monitoring);

e security policy risk management.

The following chapter of this article highlights previous research and related
work in the relevant area and describes the PSNC experience within an Intrusion
Detection field, and it also reveals our motivation for this work and the SECOR
project itself. The next chapter — CEP — anomaly detection approach — contains a
step-by-step guide of preparing and configuring the necessary environment in order to
detect anomalies. This introduction has been prepared to help understand the WSO2
environment as well as the groundwork leading up to a description of our approach
undertaken in the SECOR project. The following chapter — CEP in the SECOR
project — starts with a brief introduction to the project and then concentrates on the
architecture and elements necessary to describe an example attack discovery scenario
based on graph-clustering algorithms. The paper finishes with conclusions from the
undertaken research and summarizes plans for the future development of ideas and
solutions present in the SECOR project.

2. Related work

2.1. IDS development experience in PSNC

PSNC (Poznan Supercomputing and Networking Center) [17], affiliated with the In-
stitute of Bioorganic Chemistry, Polish Academy of Sciences, is a research center that
is the operator of the PIONIER network (Polish National Research and Education
Network [15]). PSNC is an HPC Center, a Systems and Network Security Center,
as well as an R&D Center of New Generation Networks, Grids, and Portals. PSNC
has participated (and continues to participate) in numerous R&D projects, both for
the EU and Poland. As security has always been an important topic for PSNC, we
had the opportunity to perform different research security tasks in large European
projects (like GANT [7] and EGEE [5]) as well as a number of domestic projects.
As the PIONIER operator, PSNC has broad experience with the development
and deployment of network monitoring and intrusion detection/prevention systems
(IDS/IPS). For instance, we have designed and developed a distributed IDS system,
MetalDS, within one of the R&D projects led by PSNC within the confines of the
Polish Platform for Homeland Security initiative [16]. MetaIDS has been deployed
for the Polish National Police [9, 6]. MetaIDS is a signature-based IDS that detects
threats based on information from multiple sources (internal sensors and external

354 Gerard Frankowski, Marcin Jerzak, Maciej Milostan, et al.

IDS/IPS systems). The core of the system is a correlation engine that is able to com-
bine several individual events and perform signature-based attack sequence discovery.
The drawback is that system relies heavily on expert knowledge. Overcoming this
limitation is a challenge that PSNC confronted during the SECOR project.

2.2. Applying CEP for Grid monitoring

Applying Complex Event Processing in the grid computational model has been ad-
dressed in [1, 2]. The authors address a more-general use of CEP for grid monitoring,
mainly (but not only) for optimizing the utilization of grid resources. However, the
evaluated generic approach may also be applied to the collection of information rela-
ted only to security, especially as the availability of data (or more generally: resources)
is one of the three main pillars of security (along with confidentiality and integrity).

The authors used the Esper CEP engine. No sophisticated correlation methodo-
logies were applied, as the built-in facilities are absolutely enough for the purposes
of the described application. The authors successfully proved the applicability of the
CEP engine to security data monitoring in real time, and that it is possible to ap-
ply complex queries over monitoring data streams. Both features may be useful for
detecting security threats, although the used metrics or queries would have to be si-
gnificantly different (additionally, in SECOR, we have to apply expert knowledge to
security threats upon the events collected from the CEP data streams).

The authors also proved that an overhead related with CEP is acceptable using
the properly adjusted configuration, although CPU utilization for handling events
coming in from large numbers of sensors may be significant and, thus, require instal-
lation of the main monitor on a dedicated system with more-robust computational
capabilities [1, 2].

2.3. CEP Engine in Detecting Security Threats

The application of CEP purely to security reasons is described in [12], where the
authors propose building a wide collaborative platform across different organizations
facing the same cyber threats. Such an approach apparently requires coping with
enormously large sets of data sent by particular bodies, especially for centralized
CEP systems (like Esper).

There, the authors propose establishing an SR (Semantic Room) abstraction
layer that defines the so-called objectives that may be generally compared to the
particular type of cyber threat being monitored. Particular instrumentation of system
components (like gateways and the central processing engine) allows us to decrease the
amount of processed events to an acceptable level. On the other hand, this approach
is conceptually similar to the instrumentation of different-block analysis in SECOR
that is optimized to detect certain type(s) of security vulnerabilities.

In the context of our work, algorithms utilizing expert knowledge on cyber attacks
are especially interesting. The authors described two use cases; one concerning TCP
SYN scan detection, and the other — fraud monitoring.

Application of the Complex Event Processing system for anomaly detection (...) 355

In the case of the former, the attack relies upon unfinished TCP connections.
The attacker sends a SYN network packet as is typical during a common three-way
TCP handshake. But after the probed host responds with a SYN-ACK packet, either
an RST (reset) packet is sent by the attacker or nothing further happens, leaving the
connection in a ”half-open” state. The authors proposed an R-SYN rank-based scan-
detection algorithm that combines different port-scan-detection techniques: half-open
connections, horizontal and vertical port scans, and entropy-based failed connections.
Additionally, the authors have applied the Storm [19] open-source distributed CEP
engine implemented in Java and Clojure in order to improve performance and fault
tolerance.

3. CEP - anomaly detection approach

This section presents an exemplary implementation of a complex-event-processing ap-
proach to correlating homogeneous event information (i.e., netflow records containing
a summary of connection data in IP networks). The main aims are to present how
the CEP analysis can be deployed for rule-based anomaly detection and to introduce
the reader to our implementation mechanisms. The WSO2 software stack[22] with a
built-in complex-event-processing engine was chosen as the basis for our implemen-
tation, due to the fact that it is built in a very modular way and simplifies software
development in several ways (e.g., provides a convenient API for custom plugins and
features, file based configuration, automatic handling of component updates, visuali-
zation components, etc.).

A web server was chosen as a monitored service for two reasons. Firstly, web
servers are sometimes the only publicly available resource, and thus, their security
is crucial. Secondly, it is considered a promising potential entry point for attackers
trying to get into corporate networks, because web applications are prone to a number
of known attack vectors, some of which require only a basic skillset to be performed
yet have a significant impact.

The exemplary attack described in this section uses access logs from a web server
to show the power of complex-event processing in discovering hijacked sessions in web
traffic that are covered up with decoy visits. It is a common practice for attackers
to send large amounts of typical data to the server to decrease the probability of
discovering their activities, hoping that administrators will not notice the real threat.
Hijacked sessions are detected in real-time by correlating entries from the web servers
access log: entries originating from the same web application user with alternating-
source IP addresses.

The described scenario consists of the following steps:

1. Data source preparation — an Apache web server is configured to send information
about visits on the web site.
2. Event stream definition — a series of events with common attributes is defined.

Rules defined in this step describe the dependencies between several types of

events originating from different streams.

356 Gerard Frankowski, Marcin Jerzak, Maciej Milostan, et al.

3. Event source definitions — a source of data is defined along with a schema. Sources
of data may include CSV files, e-mails, etc. CSV files are used in the described
scenario, so it is necessary to define a schema with a relevant description of fields.

4. Execution plan and result storage — execution plans describe patterns to find in
analyzed-event streams and actions to undertake in case they are discovered. The
plan is provided in an SQL-like Siddhi Query Language [23].

3.1. Data source preparation

Before the Complex Event Processing engine can be started, it is required to configure
the data source. In the described scenario, a web server logging mechanism is used.
Two commonly distinguished types of such log messages are access logs and error
logs. The former contains various details about each HTTP request/response cycle
and is used in this scenario.

To log visits in a simple CSV format, the Apache web server was configured with
a CustomLog directive. By using a pipe character in the first parameter, execution of
an external program was requested, with the contents of each log entry provided on
the standard input. In this example, netcat utility was used to send the entries via
UDP protocol to a remote server (here: cep.man.poznan.pl, UDP port 7777):
CustomLog "\|Inc -u cep.man.poznan.pl 7777" "%{4Y-%m-%d
RH:BM: %83t www, %h, fu, \ " Am\ ", \"RUN ", \"%q\ ", %>s, %b, \"

#{Referer}i\",\"/{aUser-agent}i\""

The second parameter defines the contents of the log entries using specific codes,
which can be verified in the web servers documentation[21]. To differentiate between
sessions, user names provided with HTTP Basic Authentication were used; but it is
also possible to use the session identifier instead.

The resulting messages appear as follows:

2014-11-07 12:35:44,www,192.168.150.3,pla,
"GET","/img/calendar.png","",304,-,"http://www.example.com/","-"

3.2. Event stream definitions

The next step was to define an event stream by using the WSO2 CEP GUI within a
web browser. This is an important step because it allows us to aggregate the events
and format them into a standardized form (for example, a relational database table).
Events are structures of key-value attributes. Figure 1 shows an example of an event
stream definition for the described use case. The important elements are the stream
name and version that will be used later as a reference. Within the streams, events can
be easily managed and filtered using patterns in order to get the specific information.

3.3. Event source definitions

As the next step, there is a need to define the source of events that should be put into
the event stream. The available mechanisms include (among others) XPath expres-
sions, to pick event details from XML documents and regular expressions to parse

Application of the Complex Event Processing system for anomaly detection (...) 357

Edit Event Stream

Enter Event Stream Details

accesslog_stream

Event Stream Name* @ Name of the Event Stream

1.0.0

Event Stream Version* @ Version of the event stream (Eg : 1.0.0)

Event Stream Description @ Description of the event stream

Event Stream Nick-Name @ Nick of the event stream

Stream Attributes
Meta Data Attributes

No meta data attributes are defined
Attribute Name : Attribute Type : int = Add

Payload Data Attributes

Attribute Name Attribute Type Actions

method string il Delete
path string il Delete
query_string string il Delete
status string il Delete
http_user string il Delete
client_ip string il Delete
timestamp string i Delete
Attribute Name : Attribute Type : int = Add

| Edit Event Stream

Figure 1. Stream edit panel.

text files. In this scenario, CEP is configured to use a file as an event source. In the
example scenario, a host running CEP writes incoming UDP packets to a file by using
the netcat tool:

nc -v -u -1 7777 >> /tmp/customlog

Event values are extracted from the CSV records using regular expressions saved in
the WSO2 Event Builder definition. The definition can be entered using the CEP
Admin GUI with a web browser or entered in a file which will be automatically read
and deployed. In the described case, the path of the file is as follows:
wso2cep-3.1.0/repository/deployment/server/eventbuilders/accesslog_1.0.0_builder.xml

358 Gerard Frankowski, Marcin Jerzak, Maciej Milostan, et al.

The order of the mapped attributes should be identical to those in the stream defini-
tion.

<?xml version="1.0" encoding="UTF-8"7>

<eventBuilder name="accesslog_builder" statistics="enable"
trace="enable" xmlns="http://wso2.org/carbon/eventbuilder">
<from eventAdaptorName="accesslog" eventAdaptorType="file">
<property name="filepath">/tmp/customlog</property>

</from>

<mapping customMapping="enable" type="text">

<property>
<from regex=""[",]1+,[",1+,[",]1+,[",]+," ([7,]+)","/>
<to name="method" type="string"/>

</property>

<property>
<from regex=""[",1+,[",1+,[",1+,[",1+,[",]1+,([",1+),"/>
<to name="path" type="string"/>

</property>

<property>
<from regex=""[",1+,[",1+,[",1+,[",1+,[",1+,[",1+,([",1+),"/>
<to name="query_string" type="string"/>

</property>

<property>
<from regex=""[",1+,[7,1+,[7,1+,[7,1+,[",1+,[",1+,[7,1+,([0-9]+),"/>
<to name="status" type="int"/>

</property>

<property>
<from regex=""[",1+,[",1+,[",1+,([",1+),"/>
<to name="http_user" type="string"/>

</property>

<property>
<from regex=""[",]+,[",]1+, ([0-9]+\. [0-9]+\. [0-9]+\.[0-9]+),"/>
<to name="client_ip" type="string"/>

</property>

<property>

<from regex=""([",]+),"/>

<to name="timestamp" type="string"/>
</property>
</mapping>
<to streamName="accesslog_stream" version="1.0.0"/>
</eventBuilder>

Any errors in the file syntax will be reported in the log file:
wso2cep-3.1.0/repository/logs/wso2carbon.log

If tracing is enabled for input adapters, event streams, execution plans, or output
adapters, real-time monitoring is available through a log file; in this case:
wso2cep-3.1.0/repository/logs/wso2-cep-trace.log

The process monitor in Figure 2 is accessible from the GUI and displays statistics
of the number of tasks delivered, processed, and sent.

Figure 2 presents statistics from the event monitor on the whole WSO2 CEP
system level. Events are information which is sent to the CEP system, processed by
CEP, sent from CEP to the output source, and many others. In the event statistic

Application of the Complex Event Processing system for anomaly detection (...) 359

monitor, particular details may be seen about; e.g., streams, the event stream builder,
or the input adapter.

Event Statistics (All events)

Events vs Time
00— —

450 Request Count
400
350 Response Count
300
250
200
150
100
s
45 40 35 30 25 20 15 10 5 0
Request Statistics Response Statistics
Total Count 84717 Total Count 0
Updated Time Jun 26, 2015 2:55:57 PM Updated Time Jan 1, 1970 12:59:59 AM
Max Count / Sec 94 Max Count / Sec 0
Avg Count / Sec 0.034 Avg Count / Sec 0.0
Last Sec Count 76 Last Sec Count O
Last Min Count ~ 4185 Last Min Count ~ 0
Last 15 Min Last 15 Min
Count ~ 56349 Count ~0
Last Hour Count ~ 84717 Last Hour Count ~ 0
Last 6 Hour Last 6 Hour
Count ~ 84717 Count ~0
Last Day Count ~ 84717 Last Day Count ~ 0

Figure 2. CEP Events Statistics — all streams.

3.4. Execution plan and result storage

The final preparation step is creating an execution plan. This is a tool built into the
WSO2 system in order to group, correlate, and process events from multiple streams.
Correlation of events is performed by the Siddhi CEP engine using the Siddhi Event
Query Language[23]. The output can be stored into a separate event stream or sent
directly to the database for later visualization. Currently, only relational databases
are supported.

An exemplary rule that discovers users accessing the same account from distinct
IP addresses can be provided either by CEP GUI or by putting it in a file. The path
in this case is:
wso2cep-3.1.0/repository/deployment/server/executionplans/5f.xml

The query relates to the database named SECOR_DB, defined earlier in the
WSO2 Data sources page.
<?xml version="1.0" encoding="UTF-8"7>
<executionPlan name="5f_ExecutionPlan2" statistics="enable"

trace="enable" xmlns="http://wso2.org/carbon/eventprocessor"\>

360 Gerard Frankowski, Marcin Jerzak, Maciej Milostan, et al.

<description/>
<siddhiConfiguration>
<property name="siddhi.persistence.snapshot.time.interval.minutes">0
</property>
<property name="siddhi.enable.distributed.processing">false</property>
</siddhiConfiguration>
<importedStreams>
<stream as="ac" name="accesslog_stream" version="1.0.0"/>
</importedStreams>
<queryExpressions><! [CDATA[
accesslog_{}stream (IPal string, IPa2 string,
UserName string, timestamp string)
from (’datasource.name’=’SECOR_{}DB’,
’database.name’=’SECOR_{}DB’,
’table.name’=’accesslog_{}stream’,
’create.query’=’CREATE TABLE accesslog_{}stream (IPal VARCHAR(40),
IPa2 VARCHAR(40), UserName VARCHAR(40), timestamp VARCHAR(24))’});

http_{l}user http_{}user
client_{}ip client_{}ip
== al. client_{}ip
and http_{}user == al. http_{}juser
and http_{Juser == al. http_{}user]
1 min

lal.client_{}ip IPal,

a2.client_{}ip IPa2,
a3.http_{}user UserName,
a2.timestamp timestamp

accesslog_{}stream;
11></queryExpressions>
<exportedStreams>
<stream name="accesslog_duplicate_stream" valueOf="acsd" version="1.0.0"/>
</exportedStreams>

</executionPlan>

The CEP GUI provides the Event Flow diagram (cf. Fig. 3), which visualises
links between system elements like event adapters, event builders, event streams, and
execution plans. The direction of data flow is represented by arrows.

After the data correlation with Siddhi CEP in the WSO2 system, results showing
a successful attack discovery were sent to the defined MySQL database, structured as
follows:

IP address 1 IP address 2 Username Time 192.168.150.2 192.168.150.10 john
2014-11-07 12:35:44

Application of the Complex Event Processing system for anomaly detection (...) 361

_—»[awslog_dupllcate_sh'eam_event_bullder
accesslog_event_builder

Figure 3. CEP Event Flow.

The source IP address has changed from 192.168.150.2 to 192.168.150.10. While
this may be legitimate (IP addresses may change, especially when using mobile devi-
ces), this may also indicate that the session of the involved user has been hijacked.
Another factor that may be taken into consideration under these conditions is to
verify the user-agent HT'TP header, which should be constant for legitimate users.

3.5. Results

This chapter has been prepared to show how easy it is to deploy and configure the
Complex Event Processing framework (WSO2) and detect application layer misuse
in a simple scenario. The rules are quite simple to define and apply. This example is
based on a real web application vulnerability that may also be detected by manually
reviewing web server logs. The real strength of this solution, however, lies in the
fact that this type of attack may be also discovered when it has been camouflaged
with misleading background traffic (which is a common practice used by intruders for
decreasing the probability of detection).

4. CEP in the SECOR project

This chapter describes an exemplary use case originating from the SECOR project
based on the WSO2 and netflow records.
The chapter consists of the following sections:

1. The SECOR project — describing the motivation behind the project and a brief
introduction to its goals and foundation.

2. Component description — this paragraph shows several building components ne-
cessary for this scenario to succeed — from NetFlows and FlowCollectors to Cy-
pher queries and the Neo4j database.

3. Netflows — example — the specification of the used testbed, attack scenario de-
scription, proposed execution query, and test results.

4.1. The SECOR project

SECOR is an acronym for the national research project ”Sensor Data Correlation En-
gine for Attack Detection and Support of Decision Process” funded by Polish National

362 Gerard Frankowski, Marcin Jerzak, Maciej Milostan, et al.

Centre for Research and Development (NCBIiR) within the confines of the Applied Re-
search Programme. The project consortium consists of the Military Communication
Institute (the coordinator), PSNC, and an SME company — ITTI. SECOR finishes
in May 2015. The main goal of the project is to build different models of anomaly
detection and to correlate their results.

In SECOR, we utilize several novel approaches to achieve the desired functionality
of the next-generation IDS/IPS. The portfolio of investigated methods includes Graph
Clustering algorithms, Petri Nets, Neural Networks, and advanced statistical methods
[3] in conjunction with the Complex Event Processing engine.

The CEP component is the main module of the SECOR system. Its mission is
to aggregate and correlate information from the various components of the system.
Correlation primarily allows for combining data from different Blocks of Analysis,
sensors, and other systems like IPS/IDS. CEP collects and analyzes data about diffe-
rent events reported by the anomaly detectors as well as other unauthorized activities
and assesses the probability of an attack. In the SECOR project, the CEP module
allows for establishing a connection between other modules such as sensors, Blocks of
Analysis, the user management application, and the database.

The SECOR project is mainly focused on developing methodology that allows
for the construction of next-generation IDS/IPS systems with built-in artificial intel-
ligence that are capable of performing signature-less intrusion and anomaly detection.
The architecture of SECOR is presented in Figure 4.

| Sensors \
]] [
CEP + OSGi BA1l

- Behavioral

Correlation & analysis,
aggregation PetriNets
Reasoning \ s

Machine learning
Ontology

BA3

Statistical

Database methods

il

Graphical User
Interface

v

Mitigation

Figure 4. Architecture of the SECOR system.

Application of the Complex Event Processing system for anomaly detection (...) 363

4.2. Component description

A network flow is a unidirectional or bidirectional sequence of packets transferred
between the source and destination. A sequence is described by certain common at-
tributes. The most important key fields include: first and last time of flow received,
source/destination IP address, source/destination port number, OSI Layer 3 proto-
col type, types of services, bytes transferred, and input logical interface [11]. The
list of attributes can be further extended in most scenarios, and its contents depend
completely on the device, exporter, and importer capabilities.

In our analysis, we focus on monitoring network flows in the form of Cisco’s
NetFlow or IPFIX records. We assume that data is collected from a large number of
devices (flow probes) placed in several distant locations.

The sources of data could be firewalls, network switches or routers, and (in some
cases) software daemons monitoring particular hosts or a virtualized infrastructure.

NetFlows are collected by FlowCollectors periodically (e.g., every 5 minutes),
stored, and further processed (cf. Fig. 5).

In the next section, a novel representation of flows is proposed in the form of a
graph. The graph is stored in a dedicated graphical, NoSQL like, database — Neo4]j
(18, 13].

Flow data
storage

generation and '\
visualization
(Neod4j,

Figure 5. NetFlow data processing in one of the SECOR components.

NetFlows and graphs The idea of a graph model for NetFlows is to build a social
network of communicating hosts (clients and services), and observe how the topolo-
gical and quantitative properties of the graph (representing the interactions between
them) change over time.

364 Gerard Frankowski, Marcin Jerzak, Maciej Milostan, et al.

The proposed graph model (see Figure 6) is a trade-off between simplicity and the
technical constraints of graph databases; in particular, Neo4j (where it is implemented
in our case).

IPe

IP:172.16.115.87

IPe

Figure 6. A graph-based model for the representation of NetFlow/IPFIX data.

The analysis within the proposed model is mainly conducted using Cypher qu-
eries. Cypher is a specialized query language [8] designed by the Neo4j development
team. This language allows for relatively easy analysis of the graph — example queries
for our model are shown in Chapter 6.

Within the model, several types of vertices and edges can be distinguished. Clients
and services are represented by IP/Service vertices: the client has the port number
set to zero in the applied convention, and the service: a number other than zero. On
a host, there could be multiple services, or a host may simultaneously be client and
service provider. In such casesIPclust, nodes are used to represent this fact. To be
precise, the IPclust vertex is an artificial vertex that is used to represent clusters of
services on the same host. The IP/Service vertices represent particular services or
client machines. The Flow vertices represent individual flows along with aggregated
data from preceding flows. The src and dst directed edges are used to link particular
Flows with their source and destination machine or service. The IPe edges are used to
show that a particular service belongs to a particular cluster (e.g., a particular host).
The prev edge denotes a relationship between flow records gathered in consecutive
periods of time. Additionally, three kinds of TO edges connecting clients with services
are introduced (tcp, udp, and other).

The Neo4j database can easily be used to search for particular kind of traffic pat-
terns; e.g., the existence of extensively used services running on high ports (tcp/udp

Application of the Complex Event Processing system for anomaly detection (...) 365

port number greater than 1024), to analyze historical NetFlow data taking into ac-
count standard deviation, and to identify scan targets. However, the main advantage
of a graph database over a traditional relational database is the built-in support for
operations typical for graphs; for example, path traversal, identification of shortest-
paths, etc. Thus, it is easier to retrieve data about possible attack paths; for example,
in case of forensic investigation. In Neo4j, it could be achieved out-of-the-box by one
simple query; in MySQL, it is impossible without external software or utilizing stored
procedures.

In SECOR, the query results are gathered using JDBC, packed into a STIX-
compliant format, and sent to the CEP engine as an event. The queries can be cu-
stomized and are executed in regular periods of time (every 5 minutes by default)
whenever a new dump of flow records is received from flow probes. The flows are
analyzed in sliding windows (2 hours long), and a new graph is generated each time
new flow records are available (every 5 minutes). The statistical information about
each analyzed graph is stored in the relational database. Thus, in addition to Cy-
pher queries, it is also possible to analyze statistical profiles of graphs in various time
periods. It is worth noting that batch processing of netflows and regeneration of the
whole Neo4j graph database using low-level API is over two orders of magnitude (over
100x times) faster than updating the graph online using the transactional API and
Cypher merge command (in our experiments, the difference was 30s vs. 4h for 373,000
flow records).

4.3. Netflows — example

A Netflow-based approach is being tested in a virtualized testbed consisting of:

e a dozen Linux boxes with fprobe software (flow probe) installed

e server with nfcapd daemons (NetFlow collector) — one instance of a daemon on
the server for one monitored host

e nfdump for reading, aggregating, and converting flow records from the binary
format to a properly formated text

e Perl scripts importing flow records from nfdump text format into specially desi-
gned .csv files storing graph model in the format used by batch-importer

e batch-importer written in Java and downloaded from Neo4j repositories to import
data to Neo4j database

e dedicated query engine written in Java that sends a predefined set of Cypher
queries to the database in order to predict malicious activities

e bash scripts to combine all pieces together
e the attackers machine (IP address 192.168.101.100) with Kali Linux

The testbed may be used to simulate various scenarios; in this example, the
attention is focused on only one.

366 Gerard Frankowski, Marcin Jerzak, Maciej Milostan, et al.

Frequently (one of the earliest indicators of an impending network attack is the
presence of network reconnaissance!), certain attacks are preceded by a reconnais-
sance phase. Based on this information, we focused on detecting specific symptoms
indicating that a ground of attack is being prepared and the initial phase of the attack
is underway. One of these symptoms is a network scan. Network scanners (network
mappers) use a number of methods to discover hosts and enumerate running services
(open ports). In order to gather as much data about the target as possible, they ana-
lyze server responses, response times, headers, etc. Traces of such activities are hidden
in the flow records. With the help of the elements described above and using data
gathered from our testbed, we were able to successfully discover and qualify similar
types of malicious activity.

Below, the query used in the detection process is shown along with the obtained
results. As it is easy to note, the Source IP address is identical to the attackers IP
address in the SECOR testbed. The query returns TOP 5 (LIMIT 5) connection
initiators (n:IPnode) that established unique connections to over 10,000 (WHERE
clause) services. In this case, only one host meets these criteria.

>>Executing query:
START n=node(*) MATCH (n:IPnode)-[:T0]->(c:IPnode) WITH
n as IPnode,
n.ip_port as Source,
count (*) as Connections,
"Potential Scan Source" as Tag,
"0.9" as Confidence
WHERE Connections >10000 RETURN IPnode, Source,Connections,Tag,Confidence
ORDER BY Connections DESC LIMIT 5

>>Results:

IPnode: {
"ip":"192.168.101.100",
"port":0.0,
"ip_port":"192.168.101.100:0",
"type":"IS"

},

Source: 192.168.101.100:0,

Connections: 26981,

Tag: Potential Scan Source,

Confidence: 0.9

In our test for 300k flows, it takes less than 30s to generate a graph and send a
set of six queries returning information about the most-active hosts. The restart of
the database server takes 8s on average; the execution of queries, 12s; import from
the text file with flows exported using nfdump to the new Neo4j database, 10s. For 1k
flows, the overall time is 19s. The tests were performed on a four-processor machine
with Intel(R) Xeon(R) CPU E5-2603 v2 @ 1.80GHz processor and 16GB of RAM.
For 300k flows, around 98k edges and 49k nodes were generated.

1Detecting Network Reconnaissance Guide — Cisco

Application of the Complex Event Processing system for anomaly detection (...) 367

The representation of NetFlows in the form of a graph database along with a set
of queries can be successfully used as the source of information for CEP.

4.4. Results

Using the Complex Event Processing approach allows us to identify meaningful pat-
terns by analyzing multiple event streams, fulfilling carefully predefined conditions
during the defined time windows. A dedicated query language is used to represent the
rules in programmer-familiar SQL-like grammar. Its support for temporal windows
performs well in detecting anomalies. By combining several modules that operate on
different levels, a very important piece of information (i.e., attack confirmation) is
gained. SECOR contains a number of Blocks of Analysis, and each of them acts on
a different level and with a different dataset. In order to compromise the particular
network, intruders have to touch several of these levels: SECOR takes advantage of
this fact by monitoring seemingly separate elements. However, when the anomalies are
put together, the indication of intrusion is confirmed (which significantly reduces the
number of false positives [understood as unnecessarily raised alarms]). This type of
correlation has great potential in terms of detection capabilities, but further research
in this area is required to obtain a reliable and efficient detection rate.

This approach has also a drawback when the number of sensors is limited — not
only may the separated events be correlated improperly, but the attack may become
unnoticed. This proves once again that applying a security-in-depth strategy is crucial
to keep the security level high.

5. Conclusions and future work

Modern infrastructure is becoming more complex, and the consumed network thro-
ughput plus the potential volume of monitoring data are constantly increasing. This
situation creates an opportunity for Complex Event Processing to be applied.

The two described use cases certainly do not exhaust the number of possible
approaches to network monitoring and anomaly detection that may be successfully
used in connection with CEP.

The SECOR project is an example of such a use case; and due to its modular
architecture, its functionality may be further enhanced in order to employ different
scenarios and to cover more attack patterns. Because the correlation engine may ac-
cept data from arbitrary blocks of analysis, further developments to the system are
planned in the future (either by using the same methodologies [accordingly adju-
sted] to detect new types of cyber threats, or by applying different decision-support
methods).

Another aspect, however purely technical it may be, is the appropriate confi-
guration and instrumentation of the prepared environment in order to achieve the
best performance indicators. The environment built contains a lot of configuration
parameters, where modifying one or a certain combination of parameters may modi-
fy the processed events rate even by 1-2 orders of magnitude. Additionally, optimal

368 Gerard Frankowski, Marcin Jerzak, Maciej Milostan, et al.

configuration varies through different scenarios. Work on deriving a general optimal
configuration and automatically adjusting it to particular scenarios would, therefore,
be useful.

Using anomaly detection in conjunction with complex-event processing for ad-
vanced network monitoring is a great tool, and its capabilities may still be further
developed and enhanced. We envision, however, that it may be significantly more
useful for static environments where changes are rarely made and routine actions are
common; thus, rendering anomalies noticeable.

The integration with Intrusion Detection Prevention systems, firewalls, and other
protection systems should be taken into account to enable quick reactions to the
detected threats.

The strength of CEP lies in the numbers: analyzing data acquired from numerous
heterogeneous systems and information sources located all over the network allows
us to draw more-certain conclusions on the overall state of the infrastructure and
increases the protection level of the protected environment.

Concluding this study, we find the application of CEP for detecting particular
types of cyber threats as promising in general, but still requiring thorough research
and instrumentation per each application scenario in order to achieve the desired
results.

6. Examples of Cypher queries

IP/Service vertices are tagged with the IPnode label for simplicity purposes.

Example 1. Identification of services listening on high ports and their clients.
Cypher query:

MATCH (ip:IPclust)-->(s:IPnode)--> (f:Flow {current:truel})<--(d:IPnode)
WHERE d.port >1024
RETURN DISTINCT s.ip,d.ip;

Results of the query:

s.ip d.ip

172.16.114.168 194.27.251.21
172.16.114.168 197.182.91.233
172.16.114.168 195.115.218.108
172.16.114.50 194.27.251.21
172.16.114.50 197.218.177.69
172.16.114.50 195.115.218.108

Example 2. Analysis of historical NetFlow data to spot probable anomalies in win-
dows of 10 records by the analysis of the distance from the mean flow volumes, taking
into account standard deviation.

Application of the Complex Event Processing system for anomaly detection (...) 369

Cypher query:
MATCH (src:IPnode)-[:src]->(c:Flow {current:true})-[:prev*1l..10]->(p:Flow)
<-[:dst]-(dst:IPnode)
WHERE c.nf=p.nf+10 and p.nf>5 and c.mean>p.mean
RETURN src.ipport,dst.ipport,c.nf,c.mean,p.mean,
max (c.mean-(p.mean+2*sqrt(p.std/(p.nf-1))))
as delta_mean
ORDER BY delta_mean DESC;

Results of the query:

src.ipport dst.ipport c.anf c.mean p.mean stdev Amean
172.16.113.105:0 197.218.177.69:20 19 729 185 97.588 348.82
172.16.114.169:0 199.123.32.60:80 18 876 592 116.6 50.80
172.16.113.105:0 204.146.18.33:80 24 517 500 1.4936 14.17
172.16.115.5:0 207.90.155.39:80 30 540 531 0.3974 9
172.16.114.168:0.0 207.25.71.142:80 17 466 446 5.9301 8.17
172.16.117.103:0 205.180.59.51:80 17 471 440 12.517 6.02
172.16.117.103:0 206.132.25.41:80 17 484 470 4.1433 5.75

Acknowledgements

This work was partially supported by the Applied Research Programme (PBS) of the
National Centre for the Research and Development (NCBiR) funds allocated for the
Research Project number PBS1/A3/14/2012 (SECOR).

References

[1] Balis B., Kowalewski B., Bubak M.: Leveraging Complex Event Processing for
Grid Monitoring. In: Parallel Processing and Applied Mathematics, R. Wy-
rzykowski, J. Dongarra, K. Karczewski, J. Wasniewski, eds, Lecture Notes in
Computer Science, vol. 6068, pp. 224-233. Springer, Berlin-Heidelberg, 2010.
http://dx.doi.org/10.1007/978-3-642-14403-5_24.

[2] Balis B., Kowalewski B., Bubak M.: Real-time Grid monitoring based on
complex event processing. Future Generation Computer Systems, vol. 27(8),
pp- 1103-1112, 2011. http://www.sciencedirect.com/science/article/pii/
S0167739X11000562.

[3] Berezifiski P., Pawelec J., Malowidzki M., Piotrowski R.: Entropy-Based In-
ternet Traffic Anomaly Detection: A Case Study. In: Proceedings of the
Ninth International Conference on Dependability and Complex Systems DepCoS-
RELCOMEX. June 30 — July 4, 2014, Brundéw, Poland, Advances in Intelligent
Systems and Computing, W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak,
J. Kacprzyk, eds, vol. 286, pp. 47-58. Springer International Publishing, 2014.
http://dx.doi.org/10.1007/978-3-319-07013-1_5.

370 Gerard Frankowski, Marcin Jerzak, Maciej Milostan, et al.

[4] Bilge L., Dumitras T.: Before We Knew It: An Empirical Study of Zero-Day At-
tacks In The Real World. Proceedings of the 2012 ACM conference on Computer
and communications security, pp. 833-844, 2012. http://users.ece.cmu.edu/
“tdumitra/public_documents/bilgel2_zero_day.pdf.

[5] EGEE — Enabling Grids for E-sciencE, 2010. http://eu-egee.org.

[6] Frankowski G., Jerzak M.: Advanced Architecture of the Integrated IT Platform
with High Security Level. In: Multimedia Communications, Services and Security,
Communications in Computer and Information Science, A. Dziech, A. Czyzewski,
eds, vol. 287, pp. 107-117. Springer, Berlin-Heidelberg, 2012.
http://dx.doi.org/10.1007/978-3-642-30721-8_11.

[7] GEANT: the pan-European research and education network, 2014.
http://www.geant .net.

[8] Holzschuher F., Peinl R.: Performance of Graph Query Languages: Comparison
of Cypher, Gremlin and Native Access in Neo4J. In: Proceedings of the Joint
EDBT/ICDT 2018 Workshops, EDBT ’13, pp. 195-204. ACM, New York, NY,
USA, 2013. http://doi.acm.org/10.1145/2457317.2457351.

[9] Jerzak M., Wojtysiak M.: Distributed Intrusion Detection Systems — MetalDS
case study. Computational Methods in Science and Technology, Special Issue (1),
pp. 135-145, 2010.

[10] Kliarsky A., Atlasis A.A.: Responding to Zero Day Threats, 2011.
http://www.sans.org/reading-room/whitepapers/incident/responding-
zero-day-threats-33709.

[11] Li B., Springer J., Bebis G., Gunes M.H.: A survey of network flow applications.
Journal of Network and Computer Applications, vol. 36(2), pp. 567-581, 2013.
http://www.sciencedirect.com/science/article/pii/S1084804512002676.

[12] Lodi G., Aniello L., Luna G.A.D., Baldoni R.: An event-based platform for colla~
borative threats detection and monitoring. Inf. Syst., vol. 39, pp. 175-195, 2014.
http://dblp.uni-trier.de/db/journals/is/is39.html#LodiALB14.

[13] Neodj: Neodj — The World’s Leading Graph Database, 2012. http://neodj.org/.

[14] Security Experts Expect ‘Shellshock’ Software Bug in Bash to Be Signi-
ficant, 2014. http://www.nytimes.com/2014/09/26/technology/security-
experts—-expect-shellshock-software-bug-to-be-significant.html.

[15] PIONIER, 2014. http://www.pionier.net.pl.

[16] Polish Platform for Homeland Security, 2014. http://www.ppbw.pl/en.

[17] Poznan Supercomputing and Networking Center, 2014. http://www.psnc.pl.

[18] Robinson 1., Webber J., Eifrem E.: Graph Databases. O’Reilly Media, Inc., 2013.

[19] Storm, Distributed and fault-tolerant realtime computation, 2014.
http://storm.apache.org.

[20] Symantec Corporation: Internet Security Threat Report 2014, 2014.
http://www.symantec.com/content/en/us/enterprise/other_resources/
b-istr_main_report_v19_21291018.en-us.pdf.

Application of the Complex Event Processing system for anomaly detection (...) 371

[21] The Apache Software Foundation: mod_log_config: CustomLog Directive, 2014.
https://httpd.apache.org/docs/2.4/mod/mod_log_config.html#customlog.

[22] WSO2 Carbon System, 2005. http://wso2.com/products/carbon/.
[23] WSO2 Siddhi CEP engine, 2005. http://siddhi.sourceforge.net/.

Affiliations

Gerard Frankowski
Poznan Supercomputing and Networking Center, Institute of Bioorganic Chemistry,
Noskowskiego 10, 61-704 Poznan, Poland, Gerard.Frankowski@man.poznan.pl

Marcin Jerzak
Poznan Supercomputing and Networking Center, Institute of Bioorganic Chemistry,
Noskowskiego 10, 61-704 Poznan, Poland, Marcin. Jerzak@man.poznan.pl

Maciej Milostan
Poznan Supercomputing and Networking Center, Institute of Bioorganic Chemistry,
Noskowskiego 10, 61-704 Poznan, Poland; Institute of Computing Science, Poznan University
of Technology, Piotrowo 2, 60-965 Poznan, Poland, Maciej.Milostan@man.poznan.pl

Tomasz Nowak
Poznan Supercomputing and Networking Center, Institute of Bioorganic Chemistry,
Noskowskiego 10, 61-704 Poznan, Poland, Tomasz.Nowak@man.poznan.pl

Marek Pawlowski
Poznan Supercomputing and Networking Center, Institute of Bioorganic Chemistry,
Noskowskiego 10, 61-704 Poznan, Poland, Marek.Pawlowski@man.poznan.pl

Received: 30.11.2014
Revised: 10.01.2015
Accepted: 18.01.2015

	Gerard Frankowski, Marcin Jerzak, Maciej Miłostan, Tomasz Nowak, Marek Pawłowski, Application of the Complex Event Processing systemfor anomaly detection and network monitoring

