
Maciej Gierdziewicz∗

PARALLEL ALGORITHM
FOR SORTING ANIMAL PEDIGREES

In many analyses of animal genotype with the methods of quantitative genetics there is a need
to account for relationships among individuals. Incorrectly calculated relationship coefficients
may lead to biased estimates. The number of software packages exist which deal with that
problem; however, in many of them it is assumed that pedigrees of the individuals are sorted
chronologically, but in real data sets – containing information on traits and pedigrees – birth
dates are often missing. In extreme cases, when (almost) no birth dates are present, the
ordering must be made by comparing – at least once – each pair of individuals separately,
since it is not sufficient to compare adjacent elements in order to check whether the data
set is sorted. Two versions of parallel computer programs were compared, with constant or
variable distance between elements of compared pairs. The results indicate that the second
algorithm is more efficient.

Keywords: animal breeding, pedigree, chronological order, parallel computing

ALGORYTM W WERSJI WSPÓŁBIEŻNEJ
DO SORTOWANIA RODOWODÓW ZWIERZĄT

Badając genotypy zwierząt metodami genetyki ilościowej, trzeba uwzględniać spokrewnienia
między zwierzętami. Niepoprawnie obliczone współczynniki spokrewnienia mogą prowa-
dzić do oszacowań obciążonych błędem. W wielu gotowych pakietach ten problem jest
uwzględniony; jednak często wymagane jest chronologiczne uporządkowanie rodowodów, ale
w danych doświadczalnych często brakuje daty urodzenia zwierzęcia. W przypadkach skra-
jnych dla ustalenia porządku należy porównać – przynajmniej raz – każdą parę osobników
w celu ich posortowania. Porównano dwie wersje algorytmu – ze stałym albo zmiennym
odstępem między elementami pary w obrębie iteracji. Wyniki wskazują, że druga wersja
algorytmu działa szybciej.

Słowa kluczowe: hodowla zwierząt, rodowód, porządek chronologiczny, przetwarzanie współ-
bieżne

∗ Department of Genetics and Animal Breeding, Faculty of Animal Sciences,
rzgierdz@cyf-kr.edu.pl

28 czerwca 2010 str. 1/8

Computer Science • Vol. 10 • 2009

57



1. Introduction

1.1. Motivation

In quantitative genetics the common task is to estimate breeding (genetic) values of
individuals, and therefore there is a need to account for relationships among indi-
viduals (Quaas 1989 [7]; Kennedy et al. 1992 [4]). Incorrectly calculated relationship
coefficients may lead to bias in estimation of genetic values. The number of software
packages exist which deal with that problem, allowing to add the inverse of the animal
relationship matrix to Mixed Model Equations (MME) (Henderson 1976 [3]; Boldman
et al. 1993 [1]; Gilmour et al. 2000 [2]); however, in many of them it is assumed that
pedigrees of the individuals are sorted chronologically. The chronological order of
pedigrees is easy to achieve when they include birth dates but, especially for older
ancestors, when the data set contains information on traits and pedigrees, it often
happens that birth dates are missing. In extreme cases, when (almost) no birth dates
are present, the inference about the order of the animals must be made by comparing
– at least once – each pair of individuals separately; it is not sufficient to compare
adjacent elements in order to conclude that the data set is sorted. The corresponding
computer program may look quite simple. Step 1: for each pair, swap the elements
if they are incorrectly ordered; Step 2: repeat Step 1 until no swapping is done. The
method is easy to program but it uses a lot of computer time.

1.2. Related work

The solution of the problem of sorting pedigree files without birth dates presented
recently is called “pyramid algorithm”. It has been proposed this year (Zhiwu Zhang et
al. 2009 [9]). Unfortunately, it is rather difficult to parallelize. The program assigns –
step by step – generation numbers to the animals in such a way that progeny should
be given lower number than the ancestor. The problem is that if an animal is an
ancestor of two or more different animals, in parallel version of the algorithm it may
be assigned two different generation numbers at the same time. The solution would be
to include intra-process communication which slows down sorting speed considerably.
On the other hand, it would be profitable to parallelize pedigree sorting; parallel
computing has already been used to calculate breeding values of animals (Lidauer
et al. 1998 [5]; Lidauer, Stranden 1999 [6]; Stranden, Lidauer 2001 [8]). In that case,
in order to parallelize the programs, the iterations had to be made independent.

So, in order to obtain the solution as quickly as possible, an efficient way of
performing independent calculations has to be found, which means arranging pairs
of animals being compared in such a way that different iterations do not involve the
same animal.

28 czerwca 2010 str. 2/8

58 Maciej Gierdziewicz



1.3. Scientific objectives

The aim of the work was to create a parallel version of the simple algorithm to com-
pare and sort animal pedigrees without birth dates, basing on relationships between
ancestors and progeny.

2. Problem solution

Two attempts to solve the title problem are presented in this paper. In both solutions
each pair of animal pedigrees (n(n + 1)/2 pairs if there are n animals) had to be
compared; however, the pairs had to be arranged in such a way that allowed for
parallelization of the algorithm. For both algorithms, the arrangement of the pairs
within each iteration of the main programming loop is described below.

In the first algorithm the pairs were compared – and, if necessary, swapped –
according to the distance of the elements (pedigrees), beginning with the most distant
pairs: In the first phase of the algorithm the following comparisons were performed:
first, Pedigree 1 with Pedigree n (distance d = n− 1); then 1 with n− 1 and 2 with
n (d = n − 2); then 1 with n − 2, 2 with n − 1 and 3 with n; the distance within
a pair decreased and was: n− 1, n− 2, etc. and for each distance the iterations were
executed in parallel.

Let i = d + 1; the first phase ended when the distance within a pair was
small enough to create at least three subsets of elements: 1, . . . , d, d+ 1, . . . , 2d and
2d+ 1, . . . , n. If we number the subsets consecutively, then two parallel loops could
be executed: one for pairs with the first element from an “odd” subset and the second
one from next “even” subset and, afterwards, the second one, for pairs with the first
element from an “even” subset and the second one from next “odd” subset. The last
comparisons were made between least distant (adjacent) elements: first, simultane-
ously, for pairs (1,2), (3,4), (5,6), etc., then also independently, for pairs (2,3), (4,5),
(6,7) etc. In the second algorithm the pairs were arranged in the following way:

Two loops were designed. The first one began with the pair (element 1, element
n), then (2, n − 1), (3, n − 2) etc., and ended, depending on the number of animals,
with the pair (n/2, n/2 + 1) for even n, and with ((n− 1)/2, (n+ 1)/2 + 1) for odd n.
The second loop followed the same pattern, but the starting pair was (1, n−1) instead
of (1, n).

The calculations in the above two loops were performed in a kind of an “external”
loop assuming that the starting value (the position of the first element of the first
pair) varied from 1 to n; all other indices had to be shifted right (increased), with the
use of modulo function i.e. element n was followed by element 1.

In both algorithms, the calculations within each iteration in the main program
loop (which means comparing all possible pairs of pedigrees) were repeated until no
swapping was done during the whole iteration.

28 czerwca 2010 str. 3/8

Parallel Algorithm for Sorting Animal Pedigrees 59



3. Algorithms and methods

3.1. Algorithm with constant distance
between pair elements within iteration

The outline of the first algorithm (for equally distant pairs) is presented in listing 1,
using Fortran-like convention. First, the main program “loop” was designed, controlled
by the variable “iswp”. The positive value of iswp indicated that at least one swapping
of the elements has been done and more iteration is needed.

Then the inner “loop” was designed, controlled by the variable “i” which denotes
the distance between elements of the pair and varies from n−1 to 1. Within this loop
the following tasks are performed: if “i” is small enough, then the pairs which are
to be compared are arranged in at least two subsets. The positions of first elements
of these pairs are stored in an auxiliary array “ltab”. Then the comparisons can be
performed in parallel. Next, if the last subset of indices is smaller than the others, k1
and k2 are assigned values of positions of the first and second elements of the current
pair.

In order to compare a pair of elements the program verified if the animal in
the first pedigree was a progeny of the second animal. If this was true, the program
interchanged these two animals (pedigrees).

Listing 1: Outline of the first algorithm of sorting animal pedigrees (for equally distant
animal pairs per iteration)
111 continue

iswp = 0
i = n - 1

222 continue
j = 1

333 continue
if ( j .le. n-2*i+1 ) then

itt = 0
do k = j, n-2*i+1, 2*i

do l = k, k + i - 1
itt = itt + 1
ltab ( itt ) = l

enddo
enddo
ntt=itt

!$OMP PARALLEL DO [...]
do itt = 1, ntt

iswp = 0
l = ltab ( itt )
if ( "l is a progeny of l+i" ) then

swap ( l, l + i )
iswp = iswp + 1

endif
enddo

!$OMP END PARALLEL DO
endif

28 czerwca 2010 str. 4/8

60 Maciej Gierdziewicz



j = j + i
if ( j .le. i+1 ) goto 333
if ( mod ( n, i ) .gt. 0 ) then

k1 = n - mod ( n, i ) - i
k2 = n - i

!$OMP PARALLEL DO [...]
do k = k1, k2

if ( "k is a progeny of k+i" ) then
swap ( k, k + i )
iswp = iswp + 1

endif
enddo

!$OMP END PARALLEL DO
endif
i = i - 1

if ( i .ge. 1 ) goto 222
if ( iswp > 0 ) goto 111

3.2. Algorithm with constant number of pairs per iteration

In listing 2 the second solution of the title problem is presented.

Listing 2: Outline of the second algorithm of sorting animal pedigrees (for equal
number of animal pairs per iteration)
111 continue

iswp = 0
222 continue

ishift = 0
if ( mod ( nmax , 2 ) = 0 ) then

!$OMP PARALLEL DO [ ]
do i = 1, n / 2
i1 = min ( mod(ishift+i-1,n) + 1, mod(ishift+n-i,n) + 1 )
i2 = max ( mod(ishift+i-1,n) + 1, mod(ishift+n-i,n) + 1 )

if ( i1 is progeny of i2 ) then
swap ( i1 , i2 )
iswp = iswp + 1

endif
enddo

!$OMP END PARALLEL DO
!$OMP PARALLEL DO [ ]

do i = 1, n / 2 - 1
i1 = min ( mod(ishift+i-1,n)+1, mod(ishift+n-i-1,n) + 1 )
i2 = max ( mod(ishift+i-1,n)+1, mod(ishift+n-i-1,n) + 1 )
if ( i1 is progeny of i2 ) then

swap ( i1 , i2 )
iswp = iswp + 1

endif
enddo

!$OMP END PARALLEL DO
else

!$OMP PARALLEL DO [ ]
do i = 1, n / 2
i1 = min ( mod(ishift+i-1,n) + 1, mod(ishift+n-i,n) + 1 )

28 czerwca 2010 str. 5/8

Parallel Algorithm for Sorting Animal Pedigrees 61



i2 = max ( mod(ishift+i-1,n) + 1, mod(ishift+n-i,n) + 1 )
if ( i1 is progeny of i2 ) then

swap ( i1 , i2 )
iswp = iswp + 1

endif
enddo

!$OMP END PARALLEL DO
!$OMP PARALLEL DO [ ]

do i = 1, n / 2 - 1
i1 = min ( mod(ishift+i-2,n)+1, mod(ishift+n-i-2,n)+1 )
i2 = max ( mod(ishift+i-2,n)+1, mod(ishift+n-i-2,n)+1 )
if ( i1 is progeny of i2 ) then

swap ( i1 , i2 )
iswp = iswp + 1

endif
enddo

!$OMP END PARALLEL DO
endif
ishift = ishift + 1
if ( ishift < n ) go to 222
if (iswp > 0) goto 111

enddo

This time the distance between pair elements in each iteration was variable, but
the number of animal pairs per iteration was constant.

Like in the first method, the main program loop was repeated until there were
no swapped elements in the last iteration. Within the main loop, the second loop was
defined.

That second (inner) loop was controlled by the variable “ishift” which denoted
the distance of shifting (modulo n i.e. modulo number of pedigrees) of all the indices
of the elements to the right.

Within the second loop four parallel loops were designed; first and second were
executed when n was even, the last two – when n was odd. In each loop comparison
began with the most distant elements and then both indices were moved closer to-
gether, giving, as the result, pairs: (1, n), (2, n− 1), (3, n− 2) etc. When the number
of elements was even, no elements remained after such a loop; otherwise the middle
element remained. As mentioned above, the algorithm stopped when there was no
swapping done during the last iteration of the main program loop.

3.3. Data, software and hardware

The data were 63264 one-generation Polish Black-and-White cattle pedigrees. The
FORTRAN program was parallelized via “OMP PARALLEL DO” directive with
“DYNAMIC” scheduling: the calculations that were designed for parallelization were
distributed among processes in “slices” 1000 iterations each. The Fortran ifort com-
piler was used in SGI Altix 3700 computer (“Baribal”) with 256 Intel Itanium 2
processors, 1.5 GHz clock and SUSE Linux Enterprise Server 10 operating system,
and in SGI Altix 4700 computer (“Panda”) with the same operating system, 32 Intel

28 czerwca 2010 str. 6/8

62 Maciej Gierdziewicz



Itanium 2 processors and 1,66 GHz clock. Real (wall clock) time and CPU time were
used as measures of efficiency of the algorithms.

4. Results

In table 1 the time needed to perform the calculations for the two algorithms used
in the two computers is presented. Since calculations were often repeated for specific
combinations of computer, algorithm and number of threads (processes), only the
best results are shown.

Real time of sorting in single processor version was from ca. 303s (first method,
“Panda”) to ca. 411s (first method, “Baribal”). The best results of parallelizing
were achieved for 8 processors (first method, “Panda”) and for 16 processors (sec-
ond method, “Baribal”). The amount of time used for sorting in these two cases was
222s and 213s i.e. about 57.6% and 73.3% of single processor version time, respec-
tively. The corresponding speedup factors were ca. 1.36 and ca. 1.46 i.e. about 17%
and about 9% of the number of processors. It should be noted that the results are
very variable, especially when multiprocessor versions o the algorithm are concerned.
This may suggest that the algorithm is sensible to interference of the programming
environment eg. other users’ programs.

5. Conclusions and future work

Parallelization of sorting algorithm for incomplete information on relation among el-
ements of the data set, which takes place in the case of animal pedigrees, is rather
difficult. The speedup factor in this paper did not exceed 1/5 of the number of proces-
sors used for calculations. This does not mean that better results can not be obtained.
However, it is unlikely to get much better results.

Table 1
Time used for calculations for two algorithms of parallel sorting of pedigrees

Algorithm
Number of
processors

Computer
SGI Altix 3700 (“Baribal”) SGI Altix 3700 (“Panda”)
real time [s] CPU time [s] real time [s] CPU time [s]

I – constant
distance within
pair per iteration

1 411 408 303 295
2 588 1091 343 669
4 over 900 over 2700 531 1652
8 over 900 over 2700 222 1668
16 303 2248 314 4508

II – constant
number of pairs
per iteration

1 370 369 333 322
2 995 1986 881 1783
4 526 2103 467 1863
8 342 2732 292 2321
16 213 3375 320 3751

28 czerwca 2010 str. 7/8

Parallel Algorithm for Sorting Animal Pedigrees 63



In future more processors may be used to perform sorting faster, but it would
be more instructive to test the algorithms in single-user mode and/or for larger data
sets.

References

[1] Boldman K. G., Kriese L. A., Van Vleck L. D., Van Tassel L. A., Kachman S. D.:
A manual for use of MTDFREML, a set of programs to obtain estimates of vari-
ances and covariances. Clay Center, Nebraska, USA, USDA–ARS 1993

[2] Gilmour A. R., Cullis B. R., Welham S. J., Thompson R.: ASREML reference
manual. Harpedden, UK, IACR-Rothamsted Experimental Station 2000

[3] Henderson C. R.: A simple method of computing the inverse of a numerator rela-
tionship matrix used for prediction of breeding values. Biometrics, vol. 32, 1976,
69–79

[4] Kennedy B. W., Quinton M., Van Arendonk J. A. M.: Estimation of effects
of single genes on quantitative traits. Journal of Animal Science, vol. 70, 1992,
2000–2012

[5] Lidauer M., Mäntysaari E. A., Stranden I., Kettunen A., Poso J.: DMUIOD:
A multitrait BLUP program suitable for random regression testday models. [in:]
6th World Congress „Genetics Applied to Livestock Production”, Armidale,
NSW, Australia 1988

[6] Lidauer M., Stranden I.: Fast and flexible program for genetic evaluation in dairy
cattle. [in:] „International Workshop On Computational Cattle Breeding”, Tu-
usula, Finland 1999

[7] Quaas R. L.: Transformed mixed model equations. A recursive algorithm to elim-
inate A−1. Journal of Dairy Science, vol. 72, 1989, 1937–1941

[8] Stranden I., Lidauer M.: Parallel Computing Applied to Breeding Value Estima-
tion in Dairy Cattle. Journal of Dairy Science, vol. 84, 2001, 276–285

[9] Zhang Z., Li C., Todhunter R. J., Lust G., Goonewardene L., Wang Z.: An Al-
gorithm to Sort Complex Pedigrees Chronologically without Birthdates. Journal
of Animal and Veterinary Advances, vol. 8, 2009, 177–182

28 czerwca 2010 str. 8/8

64 Maciej Gierdziewicz


