
Joanna Patrzyk
Bartłomiej Patrzyk
Katarzyna Rycerz
Marian Bubak

TOWARDS A NOVEL ENVIRONMENT
FOR SIMULATION
OF QUANTUM COMPUTING

Abstract In this paper, we analyze existing quantum computer simulation techniqu-
es and their realizations to minimize the impact of the exponential complexity
of simulated quantum computations. As a result of this investigation, we pro-
pose a quantum computer simulator with an integrated development environ-
ment – QuIDE – supporting the development of algorithms for future quantum
computers. The simulator simplifies building and testing quantum circuits and
understanding quantum algorithms in an efficient way. The development envi-
ronment provides flexibility of source code edition and ease of the graphical
building of circuit diagrams. We also describe and analyze the complexity of
algorithms used for simulation as well as present performance results of the
simulator as well as results of its deployment during university classes.

Keywords quantum computation, quantum computer simulators, development
environment, quantum algorithms, SUS survey

Citation

8 kwietnia 2015 str. 1/27

Computer Science • 16 (1) 2015 http://dx.doi.org/10.7494/csci.2015.16.1.103

Computer Science 16 (1) 2015: 103–129

103

http://journals.agh.edu.pl/csci/

1. Introduction

In recent years, the field of quantum computing has developed significantly. In [25] and
[30], the results of experimental realizations of Shor’s Prime Factorization Algorithm
[44] are presented. Moreover, the first prototypes of a quantum central processing unit
were built: one realizing the von Neumann’s architecture [28] and another exploiting
quantum annealing [21, 24].

Quantum computers can offer an exponential speedup compared to conventional
computers [7]. However, universal quantum computers are not yet available. Also,
as it has been proven by Richard Feynman that a quantum system can be efficien-
tly simulated only by another quantum system [17]. Conventional computers require
exponentially-more time and memory to perform quantum computations.

Despite these restrictions, there is a need for quantum computer simulators to
help learn and develop algorithms for future quantum computers. In this paper, we
present the evaluation results of the most important simulation techniques in existence
as well as their realization. Up to our knowledge, the decribed simulators do not
fully support convenient and efficient way of learning quantum algorithms. Regarding
the support for convenient learning criterion, each of the simulators provided either
a complicated console interface, a raw library Application Programming Interface
(API), or an oversimplified graphical user interface. Therefore, as a result of our
research, we propose a new environment that combines the flexibility of library API
with the ease of use of a graphical Integrated Development Environment (IDE). This
makes it convenient to learn, develop, and analyze quantum circuits. Regarding the
efficiency criterion, we investigate different approaches to minimize the impact of
the exponential complexity of the simulator. We describe data structures used for
storing quantum state and analyze algorithms for using these data structures. Next,
we present the performance results of the simulator.

This paper is organized as follows. In Section 2, we introduce the basic terms of
Quantum Computation Theory. In Section 3, we review existing solutions for mode-
ling quantum computations on conventional computers. We briefly describe the data
structures and algorithms used for performing simulations. In Section 4, we review
the existing software for simulating quantum computing and classify them in terms
of their interfaces and capabilities. We also explain why we decided to build a new
simulator. In Section 5, we present the requirements for the new simulator and pro-
pose our solution to meet these requirements – the Quantum Integrated Development
Environment (QuIDE). Section 6 describes the architectural components of QuIDE,
explaining their responsibilities and interactions. In Section 7, we focus on the core
simulation module of QuIDE. We describe the algorithms and data structures used
for performing the actual simulations. In Section 8, we estimate their space and time
complexity. In Section 9, we demonstrate the capabilities offered by QuIDE’s user
interface. In Section 10, we present the results of functionality and performance eva-
luation of QuIDE. We also describe the results of deploying the QuIDE simulator in
academic classes. We present the usability evaluation and list the quantum algorithms

8 kwietnia 2015 str. 2/27

104 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

implemented on QuIDE. In Section 11, we summarize our work and propose ideas for
further steps.

2. Basics of quantum computing

The Quantum Information and Computation Theory is a wide field which cannot be
easily explained in this short section. An exhaustive explanation can be found in the
referenced books [35, 32].

Conventional computers operate on bits (classical bits – cbits). The quantum
computer performs computations on quantum bits (qubits). The classical bit can be
in one of the two states – either 0 or 1. The qubit can be in the superposition of the
states |0〉 and |1〉. The notation |·〉 is called the Dirac notation and is the standard
notation for states in quantum mechanics. The special states |0〉 and |1〉 are known as
computational basis states and form an orthonormal basis for this vector space.

Qubits can be realized by many different physical systems. For example, in the
atom model, the electron can exist in either the so-called ‘ground’ or ‘excited’ states,
which can be denoted as |0〉 and |1〉 respectively.

The state of a single qubit can be described as |Φ〉 = α |0〉 + β |1〉, where α and
β are complex numbers (α, β ∈ C). The α and β are called amplitudes and have to
fulfill the normalization condition |α|2 + |β|2 = 1. We say that the state eiθ |Φ〉 is
equal to |Φ〉, up to the global phase factor eiθ, where θ is a real number [35].

For the two-qubit system, the computational basis is formed by four states: |00〉,
|01〉, |10〉, and |11〉. We also denote them as |0〉2, |1〉2, |2〉2, and |3〉2, where the
subscript represents the number of qubits.

Similar to classical bits, qubits can form quantum registers. The state of the n-bit
classical register is one of the values between 0 and 2n − 1. The state of the n-qubit
quantum register is represented as

|Ψ〉n = α0 |0〉n + α1 |1〉n + . . .+ α2n−1 |2n − 1〉n , where
2n−1∑

j=0

|αj |2 = 1. (1)

The interpretation of such a state is that the register is simultaneously in multiple-
basis states. This phenomenon is called the quantum superposition. This is the
fundamental property of quantum computers. This is utilized in many algorithms,
such as Shor’s Factorization Algorithm [44], in order to achieve exponential speedup
over classical algorithms. However, there is one drawback – the actual state of the
register cannot be learned. It is only possible to measure this state. The measu-
rement yields only one label j with probability |αj |2. After the measurement, the
information about the other possible states and their amplitudes is lost. This model
of measurement is called projective or von Neumann measurement [35].

The state of the quantum register formed by several individual qubits can be
computed as a tensor product of their states. However, not every state of the n-
qubit quantum register can be split into the n states of the individual qubits. This

8 kwietnia 2015 str. 3/27

Towards a Novel environment for simulation of Quantum Computing 105

phenomenon is called quantum entanglement. The entangled qubits form a tightly-
coupled system where an operation on one qubit may affect the other qubits.

The operations on qubits are preformed using quantum gates. All quantum opera-
tions are reversible, except the measurement. A quantum gate can operate on a single
qubit or on multiple qubits. The quantum gates are described by unitary matrices.

The n-qubit quantum register is described by an 2n-element vector (called the
state vector). The application of a quantum gate is multiplying this vector by the
gate’s matrix.

The quantum computation consists of quantum gates applied to quantum regi-
sters. Similar to conventional computers built from electrical circuits containing wires
and logic gates, a quantum computer is build from a quantum circuit. A quantum
circuit contains wires and elementary quantum gates to manipulate quantum infor-
mation. The wires are not the physical wires; rather, they correspond to the passage
of physical particles such as photons. The computations are executed from left to
right, simultaneously for all wires.

3. Overview of quantum computing simulation techniques

The simulation of quantum computations is very time and memory consuming. Memo-
ry consumption is especially crucial because even simple systems can exceed available
memory, even in supercomputers. The trivial approach is to use vectors to represent
quantum registers and matrices for the operations. The n-qubit quantum system is
represented by a 2n-element vector. The whole quantum circuit is represented by
2n×2n matrix, which is constructed by multiplying and performing a Kronecker pro-
duct of the matrices representing the quantum gates. The result of the computation
is obtained by multiplying the matrix by the vector. Such operations require a large
amount of memory, which is presented in Table 1. Below, we present techniques which
are more efficient than the trivial approach.

Table 1
Memory usage of quantum computing simulation system based on matrix-vector

representation.

Number of qubits 5 10 20 21
Memory Usage (state vector) 512 B 16 kB 16 MB 32 MB

Memory Usage (operation matrix) 16 kB 16 MB 16 TB 64 TB

Numerical Linear Algebra Methods is the most general technique for simulating
the time evolution of a quantum system based on solving the Schrödinger’s equ-
ation. For this purpose, it exploits methods such as matrix diagonalization, Cheby-
shev Polynomial Algorithm, Short-Iterative Lanczos Algorithm [26], or Suzuki-Trotter
Product-Formula Algorithm [47]. These methods are reviewed and compared in [40].
Depending on the method, it requires from O(2n) to O(22n) memory. The latter,
with memory and computational complexity of O(2n), is used by Quantum Computer

8 kwietnia 2015 str. 4/27

106 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

Emulator [41]. However, these techniques should be chosen only when an exact simu-
lation of quantum system time evolution is needed.

Qubit-wise Multiplication approach allows us to store the 2n-element state vector
instead of computing the whole 2n×2n matrix representing the quantum circuit. The
quantum gates are applied one by one. To obtain the result of applying the gate,
only the state vector and gate matrix are needed. This approach reduces memory
complexity from O(22n) to O(2n), and it can be also parallelized [37]. This method
is widely used by quantum computer simulators: IT Java Mathematics Library [56],
qclib [36], or QCSim [8].

P-blocked State Representation [22] reduces the amount of memory for storing
the state vector from O(2n) to even O(n) in the best case. The state of the n-qubit
quantum system is represented by the so-called p-blocked state. The state is p-blocked
if it is a tensor product of k non-entangled states of at most p qubits. Such repre-
sentation requires O(k22p) memory. However, this approach needs an algorithm to
keep track of entangled states, and after each operation, the number p have to be
recomputed. The worst case is when all qubits are entangled; this is very common.

Binary Decision Diagrams (BDD) can be used instead of storing the 2n-element
state vector. In the best case, memory complexity is reduced even to O(1); but in the
worst case, it still requires O(2n) memory. Using BDD instead of simple vectors is
very complicated. The application of even the simplest gates requires the complicated
transformation of decision diagrams, while the most complex operations require many
such transformations and, thus, are very time consuming. This method was applied
in the QDD simulator [18] and further developed in QuiDDPro [53, 54].

Hash Table State Representation method, proposed in the libquantum simula-
tion library [11], uses the simple state vector to represent a quantum state. However,
the whole 2n-element vector does not have to be stored. Only the non-zero values of
the vector are stored in a hash table, as key-value pairs. The keys are the basis states
(for example, |0〉n) and the values are their amplitudes which makes it possible to
store the state vector using from O(2n) of memory in the worst case to even O(1) in
the best case. The advantage of this method is that the application of quantum gates
is very simple.

The quantum state was also simulated via Bayesian networks in the Quantum
Fog simulator [49], where the results were calculated by exploiting Monte Carlo me-
thods. There is also a proposition to model the quantum states with the tensor
network data structure [29] – a graph of tensors which are multidimensional gene-
ralization of matrices. In this method, memory and time complexity grow exponen-
tially with the dimension of the largest tensor. Another simulation technique uses the
Schmidt decomposition and applies it to represent a quantum state [16, 55]. Ho-
wever, this method is reasonably memory-efficient only when there is a small number
of entangled qubits.

8 kwietnia 2015 str. 5/27

Towards a Novel environment for simulation of Quantum Computing 107

Many of these techniques, such as p-blocked state representation, Bayesian ne-
tworks, tensor networks, or Binary Decision Diagrams are mostly theoretical. Also,
the complexity of operating on them often obscures their better memory results. The
linear-algebra-based methods are good for for modeling the evaluation of quantum
systems, but inappropriate for simulation of quantum computations which can be
realized in a more efficient way. Therefore, we decided to build a new simulator using
a variant of the Hash Table State Representation method. It is one of the
most memory-efficient techniques, and it is relatively easy to implement all needed
operations on this representation.

4. Evaluation of representative quantum computer simulators

Existing simulators can be divided into different types: simulation libraries, Quantum
Programming Languages, interpreters, graphical simulators, and toolboxes.

Simulation Libraries group includes the libraries for standard programming lan-
guages such as C, Java, C#, and Python. They provide functions for creating qubits
and operating on them. The simulation libraries provide significant flexibility due to
the fact that quantum operations can be integrated into classical programs. The users
can take advantage of all of the special features of the programming language, such as
classes, loops, or exception handling. On the other hand, simulation libraries can be
difficult to use. They can be used only by users with programming skills. They requ-
ire the knowledge of a specific programming language and usually cannot be used in
a different language. Another drawback of this group is that the user has to take care
of displaying the output of the simulation and implementing the stepping execution.
Each of these features has to be implemented manually. The examples of such simu-
lation libraries are: libquantum [11], Eqcs [4], QDD [18], Q++ [13] (for C/C++); m@th
IT Java Mathematics Library [56] for Java, Cove [39] for .NET, QuTiP [20] and
qclib [36] for Python, and even Haskell Simulator of Quantum Computer [45] for
Haskell and qlambda [48] for Scheme.

Quantum Programming Languages are designed especially for describing qu-
antum computations. Some of them are purely theoretical, but the others provide
interpreters or compilers. Quantum Programming Languages (QPLs) are much easier
to learn than Simulation Libraries. Also, they better represent the domain of quantum
computing. However, the QPLs offer less flexibility and a smaller set of directives than
classical languages. They cannot be integrated with any other libraries. Also, their
capabilities of displaying the output of the simulation are limited to the functions
included in the QPL. The examples of QPLs are qMIPS [51], CHP [1], QCL [38], LanQ
[34], kulka [33] LIQUid [59] or QuIDDPro [54].

Interpreters are simulators which provide the interactive Command Line Interface
(CLI). They are as easy as the language which they interpret – therefore, their ease
is comparable to the QPLs or Simulation Libraries. Their biggest advantage is their
interactivity, which enables users to execute simulations step by step and to preview

8 kwietnia 2015 str. 6/27

108 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

the quantum state at any point during the simulation. Their drawbacks are similar to
the QPLs: they provide a limited set of function and syntax constructions, and they
are inconvenient for performing a batch execution. The simulators that offer this type
of interface are CHP [1], QCL [38], LanQ [34], kulka [33] and QuIDDPro [54].

Graphical Simulators are the simulators which provide the Graphical User Interfa-
ce (GUI). They are convenient to use, even for users with no programming experience.
The GUI makes it easier to construct and analyze the algorithms. However, many such
tools enable users to simulate only a single algorithm or a very limited set of opera-
tions. Also, creating a quantum circuit using GUI editor is often more time consuming
than writing source code, especially for complex algorithms with repeated subrouti-
nes. The examples of graphical quantum circuit simulators are QCAD [58], Quantum
Computer Emulator [41], SimQubit [27], jQuantum [57], Qubit101 [52], Zeno [12], On-
line Quantum Computer Simulator [31] and Javascript Quantum Circuit Simulator
[60]. There are also graph-based quantum computation simulators: Quantum Fog [49]
and Quantomatic [15]. In addition, there are many simulation tools that allow users
to model only a single quantum phenomenon. These are Java Quantique Simulator
[9], Grovers Quantum Search Simulation Applet [50], or Bloch Sphere Simulation [43].

Toolboxes for the Scientific Software This group includes packages for MATLAB,
Octave, Mathematica, etc. They are a special kind of Simulation Libraries and, thus,
have similar advantages and drawbacks. However, an additional drawback is their
requirement for such scientific software.

The review of existing simulators showed that available software is insufficient
for convenient scientific usage, especially for educational needs. Many available simu-
lators only focus on some subfield of the Quantum Information Theory: they only
allow users to simulate a concrete quantum algorithm or effect, such as Quantum Key
Distribution [5] or Quantum Walks [23]. Moreover, most existing simulators provide
only command-line textual interfaces, which are difficult to read unless the simula-
ted system is very simple. For bigger systems, the results need to be visualized in
external tools, since the simulators do not provide such visualization methods. On
the other hand, GUI simulators usually have very limited functionality. Most of them
do not support building custom subroutines. Moreover, GUI simulators allow us to
use a limited (and rather small) number of qubits. In existing GUI simulators, there
is also no possibility of combining classical and quantum computations. Of course,
the Simulation Libraries provide all of these functions. They could be difficult to use,
however, especially for people with poor programming experience. What is more, in
such a case, users are responsible for programming every action during the simulation,
even the stepping execution or printing the visualization of the simulated quantum
state. These observations confirmed that there is a need for new simulation software.
In the following section, we present our idea of a quantum simulator that will not
suffer from the presented drawbacks.

8 kwietnia 2015 str. 7/27

Towards a Novel environment for simulation of Quantum Computing 109

5. A Concept of an innovative quantum computing simulator

In this paper, we propose the Quantum Integrated Development Environment that
supports learning, understanding, and analyzing quantum algorithms. The simulator
should be understandable and usable for any person with basic knowledge of quan-
tum information and computation theory. Additionally, its performance has to be
sufficient to execute the algorithms in a reasonable time on standard PCs. The si-
mulation environment has to include a set of example applications, such as the most
important quantum algorithms (like Shor’s Factoring algorithm [44] and Grover’s
Database Search [19]).

The main functional requirements of the simulator include providing and ma-
naging elementary quantum gates and quantum registers described in Section 2 and
performing actual computations. The proposed simulator should support: building cu-
stom computation subroutines out of the elementary gates, combining quantum and
classical computations, previewing of the internal state of the simulated quantum
system, and its step-by-step execution.

The simulator has to be easy to obtain, install, and run, even by users with no
programming experience. In Section 4, we divided existing simulators into different
groups: GUI-based simulators, Interpreters, and Simulation Libraries. QuIDE inte-
grates features from all of these groups, as illustrated in Figure 1.

Figure 1. QuIDE integrates the approaches from different groups of existing simulation
software.

Figure 2 presents the most important modules and features of the QuIDE simu-
lator. The simulator provides the Code Editor, which enables the user to program
simulations using quantum and classical operations. QuIDE also provides the Circuit
Designer, in which the quantum circuits can be interactively constructed. The user
is able to switch between the source code and graphical circuit at any time of the

8 kwietnia 2015 str. 8/27

110 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

designing process. It is possible to execute the simulation step-by-step. The internal
quantum state is presented in the Run-Time Preview during the simulation.

Figure 2. The key modules and capabilities of QuIDE simulator.

6. QuIDE architecture

QuIDE consists of the layers which separate the application logic from the interface
exposed to the user. This is achieved by the Model View ViewModel (MVVM) ar-
chitectural design pattern [46], which is presented in Figure 3. Each layer includes
components that are responsible for providing specific application functions.

Figure 3. The Model View ViewModel (MVVM) architectural pattern. In MVVM, the View
layer is concerned only about the graphical user interface, while the Model layer only about

the business logic. All communication between them is realized by the ViewModel layer.

The View layer contains no business logic. It is responsible for displaying the
GUI based on the data from the ViewModel layer as well as passing the user’s
actions on to the ViewModel layer. The ViewModel updates the Model, based
on the user’s actions passed on from the View layer. It also translates data from the
Model so it can be displayed by the View. The Model is the application logic layer.
It is responsible for representing the quantum circuits and performing computations.
It also implements all of the supporting functions of the simulator, such as source
code generation from the quantum circuit.

8 kwietnia 2015 str. 9/27

Towards a Novel environment for simulation of Quantum Computing 111

QuIDE components with respect to the Model-View-ViewModel layers are
shown in the Figure 4.

Figure 4. The architecture of QuIDE with respect to Model-View-ViewModel layers. The
core is formed by the Simulation Library, which can be used independently to simulate

quantum computations.

The top components interact directly with the users and offer them specific func-
tions. However, the actual realization of these functions is done by the cooperation of
multiple components; both in the UI and the core layer. The Interactive Circuit
Designer enables users to graphically construct the quantum circuits. It provides easy
methods for adding qubits or quantum gates as well as editing, copying, or deleting
them. Moreover, the user is enabled to build custom, complex blocks by composing
simpler blocks or built-in quantum gates. When the user wants to generate source
code from the circuit, the Interactive Circuit Designer passes the circuit model
to the Code Generator. Also, it displays the circuit model received from the Proxy
Classes when the user chooses to generate the circuit from the code. In order to eva-
luate the circuit, it passes the circuit model to the Step Evaluator. The Console

8 kwietnia 2015 str. 10/27

112 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

Output Window displays the standard output if the user decides to execute the
simulation in the console mode. This component shows the data received from the
Code Compiler. The Source Code Editor enables the user to write the program
code of the simulation. The source code written in the Source Code Editor can
be directly executed within QuIDE, saved or restored. If the user wants to execute
the written program, the source code is passed on to the Code Compiler. Also, the
Source Code Editor displays code generated by the Code Generator. The Qu-
antum State Preview displays the current quantum state of the simulated circuit.
It receives data to be shown from the Step Evaluator.

The Simulation Library is a core module, responsible for computing the results
of simulations. It is described in detail in Section 7. The Code Compiler processes
the code from the Source Code Editor. It compiles the code dynamically at runtime.
When the user wants to execute the code in the console mode, the Code Compiler
uses the Simulation Library for the compilation. In order to generate the quantum
circuit from the source code, the Code Compiler compiles the code using the Proxy
Classes. The Proxy Classes are used when QuIDE generates the circuit from the
source code. The Proxy Classes are mock libraries which are executed instead of
the Simulation Library in order to build the circuit. The Code Generator takes
the circuit model from the Interactive Circuit Designer and generates the source
code, which is then passed on to the Source Code Editor. The Step Evaluator is
used when the user wants to execute the quantum circuit. It takes the circuit model
from the Interactive Circuit Designer. Then, it executes each of its elements using
the Simulation Library. Then, it updates the Quantum State Preview.

7. Quantum Simulation Library

QuIDE is based on the Simulation Library, as shown in Figure 4. The library has
been developed especially for QuIDE. It is based on Hash Table State Representa-
tion, a simulation technique described in Section 3. The library is written in the C#
language. It is also available as an independent library.

In this section, we describe the data structures used for representing the quan-
tum state and the implementations of quantum operations. Then, we analyze the
complexity of the implemented algorithms.

7.1. Data structures

The simulation library is based on Hash Table data structures, because they are the
most memory efficient. We decided to use the Dictionary data structure, available in
C#, which implements the Hash Table concept.

Quantum registers are represented by a Register class. It has an attribute
Width, which stands for the number of qubits within the register. The internal quan-
tum state of the register is represented by the Dictionary data structure. As presented
in Figure 5, the dictionary’s keys are unsigned long integers representing the basis
states. The value for the given key is the complex amplitude of that basis state.

8 kwietnia 2015 str. 11/27

Towards a Novel environment for simulation of Quantum Computing 113

The user can define multiple Register instances. The Quantum Computer
is a singleton class which manages the lifetime of the registers and is responsible for
performing any cross-register operations.

Register
RegisterQuantumComputer

Dictionary <ulong, Complex>

Key Value

|0〉 α0

|1〉 α1

... ...

Register

creates

deletes

operates on
(when applying

quantum operations)

Figure 5. In QuIDE simulation library, the quantum register is represented by the Register

class. Many registers can be used at the same time, as they are allocated and deallocated
by a singleton QuantumComputer class. The data structure used for storing the information

about the internal quantum state is the dictionary.

7.2. Implementation of Quantum Operations

In this section, we present how to operate on the Dictionary representation of quantum
state to ensure maximum memory efficiency. We describe the algorithms for applying
the Controlled-Not (C-Not) gate, the universal U gate represented by the matrix, as
well as the measurement of quantum state.

7.2.1. The C-Not Gate

The C-Not gate is the simplest controlled quantum operation. The equation (2) shows
the C-Not applied to the 2-qubit register, where the 0th qubit is the control and the
1st is the target. The C-Not operation swaps the amplitudes of the basis states, if
and only if the control bit is set to 1:

C01(α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉) =

= α0 |00〉+ α1 |11〉+ α2 |10〉+ α3 |01〉 . (2)

The implementation of this gate is presented in Algorithm 1. For each basis state,
we have to exchange its amplitude with the state with reversed target bit. We use a set
S to perform this swapping only once for every such pair. Let us consider applying
the C-Not from equation (2). Without using the set S, the for loop from the line 3
would firstly encounter the state |01〉 and exchange its amplitude with the state |11〉,

8 kwietnia 2015 str. 12/27

114 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

and then swap those amplitudes again when encountering the state |11〉. We prevent
this by storing in S the states already exchanged (line 11) and checking before each
potential swap (line 4). The if statement in line 5 is responsible for performing the
swap only if the control bit is set to 1 – this is a way in which the controlled gates
act. Since the states with zero amplitude are not stored in D, the if-then-else block
was needed (lines 8–15). In the if block the amplitudes are simply interchanged. In
the else clause, the state with reversed target bit had formerly zero amplitude. Thus,
after swapping, the state gets amplitude equal to zero, so it has to be removed from
D (line 14).

Algorithm 1 C-Not implementation for the dictionary-based state representation
Require: A dictionary D representing the state vector. Its keys are the basis states, and its

values are the corresponding amplitudes. If any basis state has an amplitude equal
to 0, it should not be stored in the dictionary. To access a value for the given key,
we use the notation D[key].

Ensure: The actualized D, after the C-Not gate application.
1: procedure C-Not
2: S ← ∅
3: for all state ∈ keys(D) do
4: if state /∈ S then
5: if ControlBitIsSet(state) then
6: amplitude← D[state]
7: reversedTargetState← ReverseTargetBit(state)
8: if reversedTargetState ∈ keys(D) then
9: D[state]← D[reversedTargetState]

10: D[reversedTargetState]← amplitude

11: S ← S ∪ {reversedTargetState}
12: else
13: D[reversedTargetState]← amplitude

14: Delete(D[state])
15: end if
16: end if
17: end if
18: end for
19: end procedure

The function ControlBitIsSet(state) in line 5 checks whether the control bit
in the given state from the computational basis is set to 1. In equation (2) the
0th qubit is the control, so in this example ControlBitIsSet(|00〉) returns false,
ControlBitIsSet(|01〉) returns true, and so on. The bits are counted starting from
the rightmost (least significant) bit. The function ReverseTargetBit(state) in line 7
reverses the target bit in the given state from the computational basis. For example,
ReverseTargetBit(|01〉) = |11〉 and ReverseTargetBit(|11〉) = |01〉, where the first
qubit is the target. The Delete(D[state]) function in line 14 removes the entry with
key state from the dictionary D.

8 kwietnia 2015 str. 13/27

Towards a Novel environment for simulation of Quantum Computing 115

7.2.2. The matrix-defined universal gate

QuIDE enables the user to define and apply any 1-qubit quantum operation, represen-
ted by an arbitrary unitary matrix. The Algorithm 2 presents how it could be compu-
ted without any additional memory using Dictionary state representation. The similar
method was proposed and implemented in libquantum simulation library [11].

Similar to the C-Not operation, we need to find pairs of basis states, which differs
only in the target bit. Let α be an amplitude of the basis state |∗ · · · ∗ 0 ∗ · · · ∗〉 and
β an amplitude of |∗ · · · ∗ 1 ∗ · · · ∗〉 (the rest of bits – noted as ”*” – are exactly the
same for both states). The resulting amplitudes for these basis states, α′ and β′ can
be computed as shown in (3). If we perform these computations for each such pair of
basis states, we will obtain a final result

[
α′

β′

]
= U ·

[
α

β

]
=
[
a b

c d

]
·
[
α

β

]
=
[
a α+ bβ

cα+ dβ

]
. (3)

As in algorithm 1, we use a set S to prevent from processing the same pair of
states twice (lines 2, 4, 10). In line 5 we start to initialize α and β. After line 11,
they hold amplitudes of the currently-processed state and the corresponding state
with reversed target bit – as in equation (3). In (3) we assume, that the target bit
of the processed state is set to 0. The same is checked in line 12. Thus, in the if
clause we perform the same computations as in (3). For the opposite case, we need
to swap computations. The α′ and β′ become the new amplitudes for the processed
basis state (state) and the state with reversed target bit (reversedTargetState). In
lines 19–28, we assign these values by putting them into D. However, we first check,
if they are not extremely close to zero, which can be caused by a lack of precision for
floating-point operation. In such cases, we assume that these amplitudes are equal to
zero and remove them from D.

The functions ReverseTargetBit(state) in line 7 and Delete(D[state]) in line 20
are described in Section 7.2.1. The function TargetBitIsZero(state) in line 12 checks
whether the target bit in the given state from the computational basis is set to 0.
For example, if we apply this function to the 2-qubit register and the 1st qubit is the
target, TargetBitIsZero(|00〉) returns true, TargetBitIsZero(|10〉) returns false, and
so on.

7.2.3. The general multi-qubit operations

Any reversible quantum operation which is applied to k qubits can be represented by
a 2k × 2k unitary matrix. However, as explained in Section 3 and Table 1, using such
matrices entails inefficient and very high memory usage. QuIDE does not allow us
to define any multi-qubit operation by a unitary matrix. Instead, it provides adding
control bits to any 1-qubit gate, building composite gates from existing quantum
gates and creating subroutines from available gates which can be then accessed and
executed as a reusable, multi-qubit gates. It has been proven that any multi-qubit

8 kwietnia 2015 str. 14/27

116 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

Algorithm 2 Matrix-defined 1-qubit unitary gate application
Require: A dictionary D representing the state vector (as in algorithm 1); A 2× 2 unitary

matrix U , consists of numbers a, b, c and d, as in equation (3).
Ensure: The actualized D, after the unitary U gate application.
1: procedure Unitary(U)
2: S ← ∅
3: for all state ∈ keys(D) do
4: if state /∈ S then
5: α← D[state]
6: β ← 0
7: reversedTargetState← ReverseTargetBit(state)
8: if reversedTargetState ∈ keys(D) then
9: β ← D[reversedTargetState]

10: S ← S ∪ {reversedTargetState}
11: end if
12: if TargetBitIsZero(state) then
13: α′ ← a α+ bβ

14: β′ ← cα+ dβ

15: else
16: β′ ← a β + bα

17: α′ ← cβ + dα

18: end if
19: if |α′|2 < ε then
20: Delete(D[state])
21: else
22: D[state]← α′

23: end if
24: if |β′|2 < ε then
25: Delete(D[reversedTargetState])
26: else
27: D[reversedTargetState]← β′

28: end if
29: end if
30: end for
31: end procedure

reversible quantum operation can be built up from a small set of elementary gates
[3]. QuIDE provides all of these elementary gates.
Adding control bits to any 1-qubit gate is achieved by integrating Algorithm 1
and Algorithm 2. We check the control bit as in Algorithm 1 and then operate on
the amplitudes as in Algorithm 2. As a result, QuIDE allows to add a control bit to
any 1-qubit gate. In addition, several gates (e.g., Toffoli gate) can have any number
of control bits.
Composite gates are very simple mechanisms for building multi-qubit operations.
When users build a quantum circuit, they can select any part of this circuit and

8 kwietnia 2015 str. 15/27

Towards a Novel environment for simulation of Quantum Computing 117

group selected gates into a single, multi-qubit gate. This gate can be then reused and
is represented by a single quantum gate. During the execution of such gate, QuIDE
simply applies the inner gates of the composite gate, one by one.
Subroutines are the most-flexible method of defining multi-qubit operations. They
can be defined in the source code. They can be parametrized and can include classical
flow control statements, such as loops and conditions. Subroutines enable the user to
integrate classical and quantum operations, which is common in implementing several
quantum algorithms. In QuIDE, subroutines are represented as reusable blocks.

7.2.4. The measurement

In QuIDE, there are two methods for measuring the quantum bits. It is possible to
measure a single qubit or the whole quantum register. The Algorithm 3 describes the
dictionary-based implementation of the quantum register measurement.

Algorithm 3 Measurement implementation for the dictionary-based state repre-
sentation
Require: A dictionary D representing the state vector (as in algorithm 1).
Ensure: The result of the measurement – one of the possible basis states; the actualized D,

after the measurement operation.
1: function Measure
2: random← NextRandomReal(0.0, 1.0)
3: sum← 0
4: result← 0
5: for all state ∈ keys(D) do
6: result← state

7: α← D[state]
8: sum← sum+ |α|2
9: if sum ­ random then

10: break
11: end if
12: DeleteAll(D)
13: D[result]← 1
14: end for
15: return result

16: end function

At first, we pick a random real number between 0 and 1 (line 2) and initialize
auxiliary variables (lines 3, 4). The sum variable will hold the sum of the probabi-
lities of the subsequent basis states. Once it exceed the random value (line 9), we
stop the algorithm, and the currently-processed basis state becomes the result of the
measurement. In this way, we ensure that the measurement of the quantum state
returns a random state from possible-basis states. Before leaving the function block,
the quantum state has to be destroyed – in order to fully simulate the measurement
operation. The superposition of the basis states is collapsed; after this, it contains only
the measured state with probability 1. This is achieved by removing all values from

8 kwietnia 2015 str. 16/27

118 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

D and putting into it only the resulting state (as dictionary key) with its amplitude
equal to 1 (as dictionary value) (lines 12, 13).

The function NextRandomReal(0.0, 1.0) in line 2 returns a pseudo-random re-
al number within a given range; in this case the range is [0.0, 1.0). The function
DeleteAll(D) in line 12 removes all entries from the dictionary D.

8. Analysis of Simulation Complexity

Space Complexity. The quantum system’s state vector is stored in the dictionary.
It is the only data structure used for representing quantum computations. Only the
basis states for which the amplitudes are non-zero are stored in the dictionary. If the
n-qubit quantum system is in one of the pure basis states, the dictionary of size 1 is
sufficient to store the state. The space complexity in the best case is, therefore, O(1).
In the worst case, all of the 2n amplitudes of the n-qubit quantum system have to be
stored. As a result, space complexity in the worst case equals O(2n).

Time Complexity. The Algorithms 1, 2 and 3 present the examples of operations on
the quantum state. Each quantum operation in QuIDE is implemented in a similar
way using the for loop. This loop iterates over all of the entries in the dictionary
representing the state vector. For this reason, the complexity of any operation depends
on the size of this dictionary. As shown in Section 8, the size of the dictionary varies
from O(1) to O(2n). As a result, the time complexity of a single operation on an
n-qubit quantum system equals O(1) in the best case and O(2n) in the worst case.

9. QuIDE User Interface Capabilities

The Graphical User Interface of QuIDE is depicted in Figure 6. The program window
consist of three main parts: Source Code Editor, Interactive Circuit Designer
and Run-Time Preview.

In the Source Code Editor, the user can define the quantum simulation by
writing the source code. The user can execute the source code in the Console Output
Window by clicking the Run In Console button (2). The user can be working with
multiple source code files opened in tabs.

The Interactive Circuit Designer enables us to build the quantum circuit
using graphical symbols. The user can generate the circuit diagram from the source
code using the Build Circuit button (1). The circuit can be translated into the
source code using the To Code button (4).

QuIDE provides a set of elementary quantum gates. The reusable parts of the
circuit can be grouped using the Group button (6) into a single component. Such
compound gates can be ungrouped using the Ungroup button (5). There are also
predefined component gates available for the user – they can be selected from the
Select Composite Gate menu (7). All compound gates created by the user are
also available in this menu.

8 kwietnia 2015 str. 17/27

Towards a Novel environment for simulation of Quantum Computing 119

Figure 6. The Graphical User Interface of the QuIDE simulator. Main functionality, marked
by numbers in the figure, is described in the text of the paper.

The circuit can be evaluated step-by-step using the (3) button group. During
the stepping evaluation, the state of the quantum system is presented in the Run-
Time Preview section. The user can preview the state of the whole quantum system,
a specified register, or a range of qubits.

The Properties section is used to display detailed information about the selected
quantum gate or the quantum state from the Run-Time Preview.

10. Evaluation of functionality and performance

QuIDE was tested against its functionality and performance. In this section, we pre-
sent the results of these tests. We begin with comparing the functions of QuIDE with
the existing simulators in Section 10.1. The performance of the simulator is discussed
in Section 10.2.

10.1. Results of Functionality Evaluation

The Functionality Evaluation consisted in comparing the functions supported by Qu-
IDE with the functionality of existing simulators. Table 2 presents the comparison

8 kwietnia 2015 str. 18/27

120 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

in terms of the most important features described in the Requirements Specification,
introduced in Section 5. In the table, points 1 and 2 show the methods for designing
a quantum circuit. Criteria 3 and 4 check whether it is possible to switch between
graphical circuit representation and a source code. Point 5 stands for the possibility
to preview an internal quantum state during the simulation. Feature 6 enable users to
execute the simulation in a stepping mode. Criterion 7 shows whether users can build
reusable computation blocks (subroutines). The last point stands for the possibility
to build an algorithm with both classical and quantum operations.

Table 2
Results of the functionality evaluation.

Q
uI

D
E

Q
C

A
D

20
0

[5
8]

jQ
ua

nt
um

[5
7]

Si
m

Q
ub

it
[2

7]

qM
IP

S
[5

1]

Q
ub

it
10

1
[5

2]

Z
en

o
[1

2]

C
ov

e
[3

9]

lib
qu

an
tu

m
[1

1]

C
H

P
[1

]

L
an

Q
[3

4]

Q
+

+
[1

3]

Q
C

L
[3

8]

Q
uI

D
D

P
ro

[5
4]

Ja
va

sc
ri

pt
Q

C
Si

m
ul

at
or

[6
0]

O
nl

in
e

Q
C

Si
m

ul
at

or
[3

1]

1. Source code edition Yes No No No Yes No No Yes Yes Yes Yes Yes Yes Yes No No
2. Graphical circuit designing Yes Yes Yes Yes No Yes Yes No No No No No No No Yes Yes

3. Source code ⇒ Graphical circuit Yes No No No No No No No No No No No No No No No
4. Graphical circuit ⇒ Source code Yes No No No No No No No No No No No No No No No

5. Run-time preview Yes No Yes Yes Yes No Yes a a No a a Yes Yes No No
6. Stepping mode Yes No Yes No Yes Yes Yes b b No No b Yes Yes No No

7. Reusable subroutines Yes No No Yes Yes Yes No Yes Yes No Yes Yes Yes No Yes No
8. Mixing classical & quantum Yes No No No Yes No No Yes Yes No Yes Yes Yes Yes No No

aImplementable – the user could insert the printing command into the source code.
bImplementable – the user could write a program able to perform computations interactively,

step by step.

The results of the evaluation explain why the QuIDE simulator was created.
Although there were existing simulators, they lacked many useful features. We have
successfully implemented these features in QuIDE.

10.2. Performance results

In the first performance test, we checked what is the maximum number of qubits
that can be simulated in the best and worst cases. The worst case concerns the
situation when the simulator has to use the maximum amount of RAM. The results
are presented in Table 3.

In this comparison, QuIDE has almost the best results. Only two simulators
perform better – CHP and libquantum. CHP has the best result because it is very
simplified simulator, able to model only a few elementary quantum operations. It does
not allow us to build an arbitrary quantum circuit. libquantum is a powerful library
written in pure C and makes a use of MPICH functions. QuIDE used as a standalone
library, is only slightly worse than libquantum. The full GUI-based QuIDE is a little
bit worse; however, it surpasses other GUI simulators such as jQuantum or QCAD200.

8 kwietnia 2015 str. 19/27

Towards a Novel environment for simulation of Quantum Computing 121

Table 3
Maximum number of qubits that can be simulated in the best and worst cases by the quantum

computer simulators.

Simulator Name Maximum number of
qubits simulated in the
best case

Maximum number of
qubits simulated in the
worst case

QuIDE no limits 23
QuIDE.dll no limits 26
QCAD200 no limits 15
jQuantum 22 22
SimQubit 24 24

qMIPS 32 16
Qubit101 16 16

Zeno 24 20
Cove 13 12

libquantum no limits 27
CHP over 10 000 over 10 000

LanQ 7 7
Q++ 25 25
QCL 64 25

QuIDDPro no limits n/d
Javascript QC Simulator 9 9

Online QC Simulator 9 9

In the second performance test, we precisely measure the amount of RAM used
in the worst case. For this test, we have chosen two existing simulation tools – one
graphical simulator (jQuantum) and one simulation library (libquantum). They are
compared with QuIDE in both GUI and library modes. The results are presented
in Figure 7. The chart shows the relationship between the amount of RAM and the
number of qubits.

As we can see in Figure 7, memory consumption grows exponentially for all
simulators. These results confirm the theoretical complexity estimated in Section 8. All
presented simulators have O(2n) complexity, which is the best case of the exponential
complexity possible for quantum computer simulators. QuIDE in standalone library
mode performs almost as well as libquantum. In GUI mode, QuIDE needs the most
memory; however, it can simulate larger systems than jQuantum and offers more
functionality.

Figure 8 presents the execution time of QuIDE simulating Grover’s Fast Database
Search Algorithm [19]. We measured the execution time of a single iteration of the
algorithm. The figure shows the relationship between the simulation time and the
number of used qubits.

8 kwietnia 2015 str. 20/27

122 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

1

10

100

1000

10000

0 5 10 15 20 25 30

M
eg

ab
yt

es

Number of Qubits

Performance Results - The Memory Usage

QuIDE

jQuantum

QuIDE.dll

libquantum

Figure 7. The amount of memory used by the simulators for the worst case – when the
qubits are in a flat superposition state. The results are shown on a logarithmic scale. The
errors are negligible. For a number of qubits higher than 20, the lines on the chart can be
approximated by a common function y = αe0.68x, where y is the amount of memory used
and x is the number of qubits. The factor α is a constant, different for each of the simulators.
Approximately, this function can be expressed also as y = α2x. Thus, the space complexity

for simulating n-qubit quantum system is confirmed to be O(2n).

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25

Ti
m

e
[s

ec
o

n
d

s]

Number of Qubits

Simulation Time
of a single iteration of Grover's Fast Database Search Algorithm

Figure 8. The simulation time of a single iteration of Grover’s Fast Database Search Algo-
rithm [19]. The results are achieved by the QuIDE simulator. The points on the chart form
a line, which can be approximated by the function y = α2x. The errors are negligible. The

expected O(2n) time complexity is thus confirmed.

8 kwietnia 2015 str. 21/27

Towards a Novel environment for simulation of Quantum Computing 123

Simulation time grows exponentially with the number of qubits. It confirms the
complexity estimated in Section 8. For small amounts of qubits, the simulation time is
close to zero. It is convenient for educational and presentational purposes. It confirms
the achievement of our goal – QuIDE is fast enough to be used for teaching and
learning.

QuIDE was the main simulation software in the course ‘Mathematics for Future
Computer Systems’ for Master of Science in Computer Science at AGH University of
Science and Technology [2]. In past years, students were working on the libquantum
library. Apart from basic quantum gates, we have also implemented the complex sub-
routines and used them in the following quantum algorithms : Deutsch Problem [14],
Bernstein-Vazirani Problem [7] Grover’s Fast Database Search Algorithm [19], Shor’s
Prime Factorization Algorithm [44], Quantum Teleportation [6], Quantum Dense Co-
ding [35].

The usability of QuIDE was evaluated and compared to libquantum using the
System Usability Scale (SUS) surveys [10]. Students were also asked to give points to
the two additional statements I think that the system make it easier to understand
the quantum computations and I think that the system is a good tool to design and
analyze quantum algorithms. The obtained average usability score for the simulator
was 75 points (out of 100 possible). The obtained average usability score was better
then this for libquantum, which obtained 50 points. The average was calculated from
answers from about 100 students.

11. Conclusions and future work

In this paper, we present the simulation environment supporting convenient and effi-
cient learning and building quantum computer algorithms. In this study, we evaluated
existing quantum computer techniques and their most-popular implementations. As
a result of the evaluation, we proposed and built a novel quantum computer simula-
tion platform. The main features of the proposed environment regarding convenient
learning are: support for building quantum algorithms via source code and graphically
with conversion between both ways of algorithm presentation, step-by-step execution
with the step back option and preview of the actual internal quantum state. Regar-
ding the efficiency criterion, we evaluated the performance and functionality of our
solution and compared it to existing simulators. QuIDE was used in university classes
where students were asked to grade its usability. The results of this work demonstrate
that we developed a usable tool, which has been successfully used for educational
purposes. The performance and functionality evaluation proved that this is one of the
best currently-available tools of this type.

An interesting approach would be to transfer the presented simulator into a Web
application distributed in the Software as a Service infrastructure, and the simulation
library could be optimized for two targets: local execution on the user’s PC and for
execution on clouds or grids.

8 kwietnia 2015 str. 22/27

124 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

Acknowledgements

The research presented in this paper has been partially supported by AGH grant no
11.11.230.124. It was also partially supported by the European Union within the Eu-
ropean Regional Development Fund program no. POIG.02.03.00-12-137/13 as part of
the PLGrid Core project.

References

[1] Aaronson S., Gottesman D.: Improved simulation of stabilizer circuits. Phys. Rev.
A, vol. 70, p. 052328, 2004. http://dx.doi.org/10.1103/PhysRevA.70.052328.

[2] AGH: Syllabus – module Matematyka w informatyce przyszłości, 2012.
http://syllabuskrk.agh.edu.pl/2014-2015/en/magnesite/study_plans/
stacjonarne-informatyka-systemy-rozproszone-i-sieci-komputerowe/
module/iin-2-101-sr-s-matematyka-w-informatyce-przyszlosci.

[3] Barenco A., Bennett C. H., Cleve R., DiVincenzo D. P., Margolus N., Shor P.,
Sleator T., Smolin J. A., Weinfurter H.: Elementary gates for quantum computa-
tion. Phys. Rev. A, vol. 52, pp. 3457–3467, 1995.
http://dx.doi.org/10.1103/PhysRevA.52.3457.

[4] Belkner P.: Eqcs-0.0.8, 2012. http://home.snafu.de/pbelkner/eqcs/. Acces-
sed May 10, 2014.

[5] Bennett C. H., Brassard G.: Quantum cryptography: Public key distribution and
coin tossing. Proceedings of IEEE International Conference on Computers, Sys-
tems, and Signal Processing, p. 175. India, 1984.

[6] Bennett C. H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W. K.:
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels. Phys. Rev. Lett., vol. 70, pp. 1895–1899, 1993.
http://dx.doi.org/10.1103/PhysRevLett.70.1895.

[7] Bernstein E., Vazirani U.: Quantum Complexity Theory. In: SIAM J. Comput.,
vol. 26(5), pp. 1411–1473, 1997. ISSN 0097-5397.
http://dx.doi.org/10.1137/S0097539796300921.

[8] Black P. E., Lane A. W.: Modeling Quantum Information Systems. Proc. Quan-
tum Information and Computation II, Defense and Security Symposium. 2004.

[9] Bouvarel B., Oudin O., Vallier L.: Simulateur de Cryptographie Quantique, 2009.
http://sourceforge.net/projects/simu-quantique/. Accessed Sep 18, 2014.

[10] Brooke J.: SUS – A quick and dirty usability scale. In: P. W. Jordan, B. Tho-
mas, B. A. Weerdmeester, A. L. McClelland, eds, Usability Evaluation in Industry.
Taylor and Francis, 1996.

[11] Butscher B., Weimer H.: Simulation eines Quantencomputers, 2003.
http://www.libquantum.de/files/libquantum.pdf.

[12] Cabral G. E.: Zeno – Quantum Circuit Simulator, 2006.
http://dsc.ufcg.edu.br/~iquanta/zeno/index_en.html. Accessed Sep 18,
2014.

8 kwietnia 2015 str. 23/27

Towards a Novel environment for simulation of Quantum Computing 125

[13] Cybernet: Q++. http://sourceforge.net/projects/qplusplus/. Accessed
May 10, 2014.

[14] Deutsch D.: Quantum theory, the Church-Turing principle and the universal qu-
antum computer. Royal Society of London Proceedings Series A, vol. 400, pp. 97–
117, 1985. http://dx.doi.org/10.1098/rspa.1985.0070.

[15] Dixon L., Duncan R., Kissinger A.: Quantomatic, 2011.
https://sites.google.com/site/quantomatic/. Accessed Sep 18, 2014.

[16] Ekert A., Knight P. L.: Entangled quantum systems and the Schmidt decompo-
sition. American Journal of Physics, vol. 63(5), pp. 415–423, 1995.
http://dx.doi.org/http://dx.doi.org/10.1119/1.17904.

[17] Feynman R., Shor P. W.: Simulating Physics with Computers. SIAM Journal on
Computing, vol. 26, pp. 1484–1509, 1982.

[18] Greve D.: QDD: A Quantum Computer Emulation Library.
http://thegreves.com/david/QDD/qdd.html. Accessed May 10, 2014.

[19] Grover L. K.: A fast quantum mechanical algorithm for database search.
STOC’96: Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pp. 212–219. ACM Press, New York, NY, USA, 1996.
http://citeseer.ist.psu.edu/175549.html.

[20] Johansson J., Nation P., Nori F.: QuTiP 2: A Python framework for the dyna-
mics of open quantum systems. Computer Physics Communications, vol. 184(4),
pp. 1234–1240, 2013, ISSN 0010-4655.
http://dx.doi.org/10.1016/j.cpc.2012.11.019.

[21] Johnson M. W., Amin M. H. S., et al.: Quantum annealing with manufactured
spins. In: Nature, vol. 473(7346), pp. 194–198, 2011, ISSN 0028-0836.
http://dx.doi.org/10.1038/nature10012.

[22] Jozsa R., Linden N.: On the role of entanglement in quantum-computational
speed-up. Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, vol. 459(2036), pp. 2011–2032, 2003.
http://dx.doi.org/10.1098/rspa.2002.1097.

[23] Kempe J.: Quantum random walks – an introductory overview. Contemporary
Physics, vol. 44(4), pp. 302–327, 2003. Lanl-arXive quant-ph/0303081.

[24] Lanting T., Przybysz A. J., et al.: Entanglement in a Quantum Annealing Pro-
cessor. Phys. Rev. X, vol. 4, p. 021041, 2014.
http://dx.doi.org/10.1103/PhysRevX.4.021041.

[25] Lanyon B. P., Weinhold T. J., Langford N. K., Barbieri M., James D. F. V., Gil-
christ A., White A. G.: Experimental Demonstration of a Compiled Version
of Shor’s Algorithm with Quantum Entanglement. Phys. Rev. Lett., vol. 99,
p. 250505, 2007.
http://dx.doi.org/10.1103/PhysRevLett.99.250505.

[26] Leforestier C., Bisseling R., et al.: A comparison of different propagation schemes
for the time dependent Schrödinger equation. Journal of Computational Physics,
vol. 94(1), pp. 59–80, 1991.

8 kwietnia 2015 str. 24/27

126 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

[27] Lomont C.: SimQubit, Cybernet’s quantum circuit simulator, 2005.
http://sourceforge.net/projects/simqubit/. Accessed Sep 18, 2014.

[28] Mariantoni M., Wang H., et al.: Implementing the Quantum von Neumann Archi-
tecture with Superconducting Circuits. Science, vol. 334(6052), pp. 61–65, 2011.
http://dx.doi.org/10.1126/science.1208517.

[29] Markov I., Shi Y.: Simulating Quantum Computation by Contracting Tensor
Networks. SIAM Journal on Computing, vol. 38(3), pp. 963–981, 2008.
http://dx.doi.org/10.1137/050644756.

[30] Martin-Lopez E., Laing A., Lawson T., Alvarez R., Zhou X. Q., O’Brien J.: Expe-
rimental realisation of Shor’s quantum factoring algorithm using qubit recycling.
Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on
and International Quantum Electronics Conference, pp. 1–1. 2013.
http://dx.doi.org/10.1109/CLEOE-IQEC.2013.6801701.

[31] Mavridi P., Tsimpouris C.: Demo: Quantum Computer Simulator, 2010.
http://www.wcl.ece.upatras.gr/ai/resources/demo-quantum-simulation.
Accessed Sep 18, 2014.

[32] Mermin N.: Quantum Computer Science: An Introduction. Cambridge University
Press, 2007, ISBN 9781139466806.
http://books.google.pl/books?id=q2S9APxFdUQC.

[33] Miszczak J. A.: Probabilistic aspects of quantum programming. Ph.D. thesis, In-
stitute of Theoretical and Applied Informatics, Polish Academy of Sciences, 2008.

[34] Mlnař́ik H.: Quantum Programming Language LanQ. Ph.D. thesis, Masaryk Uni-
versity, 2007.

[35] Nielsen M. A., Chuang I. L.: Quantum Computation and Quantum Information.
Cambridge University Press, 2000, ISBN 521635039.
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=
ASIN/0521635039.

[36] Nowotniak R.: Wykorzystanie metod ewolucyjnych sztucznej inteligencji w pro-
jektowaniu algorytmów kwantowych. Master’s thesis, Politechnika Łódzka, 2008.

[37] Obenland K. M., Despain A. M.: A Parallel Quantum Computer Simulator, 1997.
http://arxiv.org/abs/quant-ph/9804039.

[38] Ömer B.: Quantum Programming in QCL. Master’s thesis, Technical University
of Vienna, 2000.

[39] Purkeypile M. D.: Cove: A Practical Quantum Computer Programming Frame-
work. Ph.D. thesis, Colorado Technical University, 2009.
http://arxiv.org/abs/0911.2423.

[40] Raedt H. D., Michielsen K.: Computational Methods for Simulating Quantum
Computers. M. Rieth, W. Schommers, eds., Handbook of Theoretical and Com-
putational Nanotechnology, vol. 3: Quantum and molecular computing, quantum
simulations, chap. 1, p. 248. American Scientific Publisher, 2006.
http://arxiv.org/abs/quant-ph/0406210.

8 kwietnia 2015 str. 25/27

Towards a Novel environment for simulation of Quantum Computing 127

[41] Raedt K. D., Michielsen K., Raedt H. D., Trieu B., Arnold G., Richter M., Lippert
T., Watanabe H., Ito N.: Massively parallel quantum computer simulator. Com-
puter Physics Communications, vol. 176(2), pp. 121–136, 2007, ISSN 0010-4655.
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2006.08.007.

[42] Samad Abdel W., Ghandour R., Hajj Chéhade M. N.: Memory Efficient Quantum
Circuit Simulator Based on Linked List Architecture, 2005.
http://arxiv.org/abs/quant-ph/0511079.

[43] Shary S., Cahay M.: Bloch Sphere Simulation, 2012.
http://www.ece.uc.edu/~mcahay/blochsphere/. Accessed Sep 18, 2014.

[44] Shor P. W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput., vol. 26(5), pp. 1484–
1509, 1997, ISSN 0097-5397.
http://dx.doi.org/10.1137/S0097539795293172.

[45] Skibinski J.: Haskell Simulator of Quantum Computer.
http://web.archive.org/web/20010803034527/http://www.
numeric-quest.com/haskell/QuantumComputer.html. Accessed May 10, 2014.

[46] Smith J.: WPF Apps With The Model-View-ViewModel Design Pattern. MSDN
Magazine, 2009.

[47] Suzuki M.: Decomposition formulas of exponential operators and Lie exponentials
with some applications to quantum mechanics and statistical physics. Journal of
Mathematical Physics, vol. 26(4), pp. 601–612, 1985.
http://dx.doi.org/http://dx.doi.org/10.1063/1.526596.

[48] Tonder van A.: A Lambda Calculus for Quantum Computation. SIAM Journal
on Computing, vol. 33(5), pp. 1109–1135, 2004.
http://dx.doi.org/10.1137/S0097539703432165.

[49] Tucci R.: Graphical computer method for analyzing quantum systems, 1998.
http://www.google.com/patents/US5787236. US Patent 5,787,236.

[50] Vaccaro J.: Quantum computer simulator, 2009.
http://www.ict.griffith.edu.au/joan/qucomp/qucompApplet.html.
Accessed Sep 18, 2014.

[51] Vázquez J.M.C.d.P.: qMIPS Quantum processor simulator, 2013.
http://institucional.us.es/qmipsmaster/qMIPS/documentation.php.
Accessed September 18, 2014.

[52] Vázquez J.M.C.d.P.: Qubit101 Quantum circuit simulator, 2013.
http://institucional.us.es/qmipsmaster/Qubit101/documentation.php.
Accessed September 18, 2014.

[53] Viamontes G. F., Markov I. L., Hayes J. P.: Improving Gate-Level Simulation of
Quantum Circuits. Quantum Information Processing, vol. 2(5), pp. 347–380,
2003, ISSN 1570-0755.
http://dx.doi.org/10.1023/B:QINP.0000022725.70000.4a.

[54] Viamontes G. F., Markov I. L., Hayes J. P.: Quantum Circuit Simulation. Sprin-
ger, 2009.

8 kwietnia 2015 str. 26/27

128 Joanna Patrzyk, Bartłomiej Patrzyk, Katarzyna Rycerz, Marian Bubak

[55] Vidal G.: Efficient Classical Simulation of Slightly Entangled Quantum Compu-
tations. Phys. Rev. Lett., vol. 91, p. 147902, 2003.
http://dx.doi.org/10.1103/PhysRevLett.91.147902.

[56] Vries de A.: math IT – Mathematics and Information Technology.
http://www.math-it.org/. Accessed May 10, 2014.

[57] Vries de A.: jQuantum: A Quantum Computer Simulator, 2010.
http://jquantum.sourceforge.net/jQuantum.pdf. Accessed May 10, 2014.

[58] Watanabe H., Suzuki M., Yamazaki J.: QCAD, GUI environment for Quantum
Computer Simulator, 2011.
http://qcad.sourceforge.jp/. Accessed Sep 18, 2014.

[59] Wecker D., Svore K. M.: LIQUid: A Software Design Architecture and Domain-
Specific Language for Quantum Computing, 2014.
http://research.microsoft.com/apps/pubs/default.aspx?id=209634.

[60] Wybiral D.: Quantum Circuit Simulator, 2012.
http://www.davyw.com/quantum/. Accessed Sep 18, 2014.

Affiliations

Joanna Patrzyk
AGH University of Science and Technology, Department of Computer Science, Krakow,
Poland, jpatrzyk@quide.eu

Bartłomiej Patrzyk
AGH University of Science and Technology, Department of Computer Science, Krakow,
Poland, bpatrzyk@quide.eu

Katarzyna Rycerz
AGH University of Science and Technology, Department of Computer Science, Krakow,
Poland, ACC Cyfronet AGH, Krakow, Poland, kzajac@agh.edu.pl

Marian Bubak
AGH University of Science and Technology, Department of Computer Science, Krakow,
Poland, ACC Cyfronet AGH, Krakow, Poland, University of Amsterdam, Institute for
Informatics, Faculty of Science, Science Park 904, 1098XH Amsterdam, The Netherlands,
bubak@agh.edu.pl

Received: 28.11.2014
Revised: 13.02.2015
Accepted: 15.02.2015

8 kwietnia 2015 str. 27/27

Towards a Novel environment for simulation of Quantum Computing 129

