COMPUTER SCIENCE e VOL. 10 e 2009

KRzYszTOF DOROSZ* **, ANNA SZCZERBINSKA***

ENHANCING REGULAR EXPRESSIONS
FOR POLISH TEXT PROCESSING

The paper presents proposition of regular expressions engine based on the modified Thomp-
son’s algorithm dedicated to the Polish language processing. The Polish inflectional dictio-
nary has been used for enhancing regular expressions engine and syntax. Instead of using
characters as a basic element of regular expressions patterns (as it takes place in BRE or
ERE standards) presented tool gives possibility of using words from a natural language or
labels describing words grammar properties in regex syntax.

Keywords: regular expressions, regex, natural language, the Polish language processing, CLP
library

MECHANIZM ROZSZERZONYCH WYRAZEN REGULARNYCH
DO PRZETWARZANIA TEKSTOW JEZYKA POLSKIEGO

W artykule zaprezentowano propozycje mechanizmu wyrazen regularnych w oparciu
o zmodyfikowany algorytm Thompsona dostosowany do przetwarzania tekstéw w jezyku
polskim. Prezentowane wyrazenia regularne wykorzystuja stownik fleksyjny jezyka polskiego
i pozwalaja na budowe wzorcéw, w ktorych elementami podstawowymi sa wyrazy jezyka pol-
skiego lub etykiety gramatyczne, a nie znaki (jak to ma miejsce w klasycznych wyrazeniach
regularnych standardu BRE czy ERE).

Sowa kluczowe: wyrazenia regularne, jezyk naturalny, jezyk polski, biblioteka CLP

1. Introduction

Regular expressions (also called regex) after years became a very important tool for
text processing. They provide concise yet still flexible way for describing patterns
of characters. Patterns, written in a formal language, generate a set of strings that
match given criteria. In general each regular expression represents a finite state ma-
chine (FSM). Evaluating an FSM on a string as an input gives an answer if the string

* Computational Linguistics Department, Jagiellonian University, Krakow, Poland
** PhD Student, Institute of Computer Science, AGH University of Science and Technology,
Krakow, Poland, dorosz®@agh.edu.pl
**#* Msc. student, Institute of Computer Science, AGH University of Science and Technology,
Krakow, Poland, szczerbi@student.agh.edu.pl

19

20 Krzysztof Dorosz, Anna Szczerbinska

matches the pattern. There are currently many standards of regular expressions syn-
tax, most popular are the POSIX Basic Regular Expressions (BRE), the POSIX Ex-
tended Regular Expressions (ERE) and a whole set of extensions to ERE introduced in
Perl regex. Regular expressions can be used for many purposes like: validating a string
format, searching patterns in text, replacing patterns with strings in text or even syn-
tax highlighting. A simple regular expressions that validates if a string is a well for-
mated zip code (Polish format) can be written as /~ [0-9] [0-9]-[0-9] [0-9] [0-91$/
or in a concise way (using the Perl notation) as /~\d{2}-\d{3}$/ where both mean
exactly the same — two digits followed by a dash, followed by three digits. Things get
a little bit complicated when it comes to processing a natural language. Texts are
build from sentences, which are basically sequences of words, punctuation and some
other symbols. The first very basic need of processing natural language texts is to to-
kenise them in order to work with tokens (that can be further recognised as words) —
instead of characters. This is a non trivial issue, because regex engines enable defining
patterns only from characters rather than high level entities. This brings a need of
defining another characters sets that will be helpful for shortening syntax. Some help
can be found in the POSIX character classes standard or in the Perl standard. They
introduce following character classes:

o [: word :] (POSIX), \w (Perl) — alphanumeric characters plus _ (underscore),
[A-Za-z0-9],
o [: space :] (POSIX), \s (Perl) — whitespace characters, [\t\r\n\v\f].

There are two different ways for text tokenising:

e splitting text using any whitespace characters /\s/ as a delimiter — will produce
a list of tokens that needs to be cleaned from other elements like punctuation,

e matching any string built from word class characters /\w + / — will produce a
list of words, but will omit other elements like numbers, punctuation, etc.

The problem of text tokenising with regular expressions is well described in other
papers ([3]) and will not be covered here, because of limitations of this article. A whole
bunch of issues connected with national characters, accents, the UTF-8 coding that
that have been solved mainly by choosing arbitrary code page also will not be discussed
in this article.

After text tokenising one can begin to build more complex regular expressions,
that involve dependencies between two tokens. One can find any word after the word
ladny (Eng. nice). Using regular expression /tadny\s+\w+/ pattern returns few pairs
like {adny dom (Eng. nice house) if evaluated with an enough large text corpus.
Results will be limited due to important reasons:

e Polish is highly inflectional — that means that the word ladny (Eng. nice) can
appear in many different forms like ladna, ladnie — one could extend the given
regex with some alternative of forms of the word fadny, but this is inconvenient,
especially considering wide availability of a digital inflectional language dictio-
nary,

Enhancing Regular Expressions for Polish Text Processing 21

e there is no possibility in this approach to give extra conditions on search criteria:
looking for a noun, or looking for a masculine noun, or nominative noun; this
can be done only with filtering results with an additional method that will make
lookups to an inflectional dictionary evaluating each word for the given criteria,

e given regex will not find a pair of words if something else than whitespace stands
between them (e.g. punctuation); this drawback can be easily corrected by ex-
tending the \s class with some punctuation marks, but then the following regex
would not be sensitive to the end of a sentence,

e it is hard to build a good representation of the end of sentence marker (for a given
language) that would be convenient to use in regex. Punctuations like periods,
exclamation marks, etc. do not necessarily end a sentence, as they can be a part of
abbreviations or quotations. Working with natural language texts is very limited
without such marker, because there is large scope of language processing that
requires working with sentences rather than whole texts.

Because of above limitations of regex in application to natural language pro-
cessing we propose a dedicated engine of regular expressions based on the following
assumptions:

e use of markers defining words and grammar labels instead of characters classes,

availability of classic regex syntax and operators, including greedy and non-greedy
operators,

possibility of querying words types, forms (inflection) and custom strings,

sentence by sentence text processing, rather than line by line or globally,

redefinition of the ~ and $ symbols with the begining and the end of sentence

markers.

To achieve these goals many additional tools are needed. Given text has to be
tokenised, divided into sentences and POS tagged to be useful for the FSM based
engine. Because tokenising and splitting into sentences is well described in literature
in the following section we discuss the inflectional Polish language dictionary that has
been used. Our regular expression syntax make use of some CLP data representation
conventions (e.g. word identification numbers).

2. The CLP library

The CLP library described in [1] is the Polish inflectional dictionary written in C in
the Computational Linguistics Group of Institute of Computer Science AGH-UST.
The library consists of two layers: inflectional and morphological. Current size of the
library amounts to over 150000 base words, what basically covers all common words
in the Polish. The library allows to identify a word in the Polish by its any form, return
a forms vector for any stored word, determine a grammatical label which describes
the pattern of a word inflection and also contains information determining a part of
speech.

The CLP library is mainly organised by following data structures:

22 Krzysztof Dorosz, Anna Szczerbinska

e a unique word number (CLP ID) — identify a word with a given inflection (if a
word have two different inflection patterns it has also two different CLP ID’s in
the library),

e a word label — describes some of grammatical properties, what basically determine
a word inflection pattern and a part of speach tagging,

e a vector of forms — a list of word inflection forms.

Each word is assigned a CLP ID number within the library. Multiple CLP IDs
are returned if the queried string is ambiguous. The first letter of a label has following
meaning;:

e A —noun,

e B — verb,

e C — adjective,

e D — numeral,

e £ — pronoun,

e ' — adverb,

e G — uninflected.

Following data is returned for word zamek (Eng. castle):

?> zamek

ID: 286975040

Forma podstawowa: zamek

Formy: zamek, zamku, zamkowi, zamkiem, zamki, zamkéw, zamkom, zamkami,
zamkach

Etykieta: ACABA

Opis etykiety: rzeczownik / meski niezyw. / M.Lp.-0 / M.Lm.-i / D.Lp.-u
Wektor odmiany: [1, 4]

ID: 286975056

Forma podstawowa: zamek

Formy: zamek, zamka, zamkowi, zamkiem, zamku, zamki, zamkéw, zamkom, zamkar
zamkach

Etykieta: ACABBA

Opis etykiety: rzeczownik / meski niezyw. / M.Lp.-0 / M.Lm.-i / D.Lp.-a /
D.Lm.-6w

Wektor odmiany: [1, 4]

As can be seen the word zamek is ambiguous in the Polish and has two different
patterns of inflection. The patterns can be distinguished by second position (genitive
singular) of the inflection vector (zamku and zamka). A word label is a hierarchical
structure describing its grammatical properties.

Both returned words having labels ACABA and ACABBA are nouns (due to
the first letter A) with some differences in inflection. These differences are described
by letters in labels that are not the same. The first label ACABA ends with ABA

Enhancing Regular Expressions for Polish Text Processing 23

and the second one ACABBA ends with ABBA. Using the CLP ID 286975040 one
can access to any form that refers to the given word: e.g. zamek, zamku, zamkowi,
zamkiem, zamki, zamkdéw, zamkom, zamkami, zamkach. The CLP returns also an
inflection vector that refers to an arbitrary described in [1] vector of case and number
different for every part of speech. Considering the first and the fourth position of the
inflection vector of the form zamek this form is nominative or accusative case singular
number.

3. Architecture

The architecture of the CLP regular expressions engine is illustrated in Figure 1. The
engine consists of several modules:

e sentence splitter — splits text into sentences; the principles of its work are de-
scribed in Section 4.6,

e CLP expressions parser — parses CLP regular expression in the form of a string
object into a list of tokens to be used by the automaton builder; the grammar of
a CLP regular expression is described in Section 4.2,

e automaton builder — constructs a nondeterministic finite automaton for a CLP
regular expression (using an altered version of Thompson’s algorithm) and min-
imizes the automaton by calculating e-closures of its states; no conversion of
the nondeterministic finite automaton to a deterministic finite automaton is per-
formed,

e CLP matcher — checks if tokens in the text match CLP regex symbols (such as
CLP labels, CLP IDs or period symbols); the matcher uses the PLP! wrapper of
the CLP library for Python,

e regex matcher — matches the CLP regular expression to the given text, verifying
if the constructed automaton accepts given sentences or parts of the sentences.
As an input, the engine takes the CLP regular expression pattern (in the form

of a string object) and the file containing the Polish text to be matched with the
pattern. As an output it produces a list of matches for the pattern.

4. Implementation

4.1. Overview of the implementation

The CLP regular expression engine is based on the extended definition of nonde-
terministic finite automaton (NFA) [5]. The modifications introduced to the classic
version of the NFAs are:
e non-greedy e-transitions — needed to introduce non-greedy operators (77, +7,
x7); a non-greedy transition should be used as few times as possible in order to
match a pattern,

L PLP — Python Language Processing; a Python wrapper for the CLP library.

24 Krzysztof Dorosz, Anna Szczerbinska

CLP regular Tokenized CLP
expression Expression regular expression Automaton
D parser > builder
Finite
automaton
based on the
CLP regular
expression
Polish text
Sentence List of sentences Regex
—> splitter D> matcher
Set of
regex
matches

Dictionary data
(labels, CLP IDs,
etc. of given
word forms) CLP

CLP library > 1 atcher

Results of matching
words with CLP symbols

Fig. 1. Architecture of the CLP regular expressions engine

e transitions labeled by ambiguous symbols, such as CLP IDs (which may match
more than one form of a word, e.g. \1058829 matches pilot, pilota, pilotowi —
Eng. pilot) or period symbol (which matches any word); for further explanation
of possible ambiguities see Section 4.4.

The engine first constructs a nondeterministic finite automaton according to the mod-
ified version of Thompson’s algorithm (described in detail in Section 4.3.1). Transi-
tions in the constructed automaton may be labeled with CLP symbols: CLP labels,
CLP IDs, words in given forms (incl. numbers), or a period symbol. Some of the
e-transitions are marked as non-greedy (it occurs while processing non-greedy opera-
tors). After the automaton is built, e-closures are calculated for each state (non-greedy
e-transitions not being considered as ordinary e-transitions are not used in this pro-
cess) and the automaton is minimized according to the algorithm described in Section
4.3.2.

The constructed automaton is subsequently processed by the regex matcher mod-
ule, which verifies whether the automaton accepts a sequence of tokens. The regex
matcher controls the use of non-greedy e-transitions and searches for the longest match
available for the pattern.

4.2. CLP regular expressions grammar

The CLP regular expressions grammar is similar to the classic regular expression
grammar [6]. The following symbols are available in CLP regex patterns:

Enhancing Regular Expressions for Polish Text Processing 25

4.3.

label — a minimum one-character long CLP label prefix, preceded by a backslash;
e.g. \B stands for a verb, and \AA for a noun of a masculine gender (for a detailed
description of label meaning see [1]),

CLP ID - ID of a word in the CLP library, preceded by a backslash; e.g. \ 1058829
for the word pilot (Eng. pilot),

string — a string built using the [a-z0-9] character class; possibly a word in
Polish in a given form, e.g. kotek (Eng. kitten), pojechata (Eng. went), 2008,
Janka (Eng. Janek’s),

unary operators: +, *, ?, {n,m}, () —to be interpreted as in classic regular
expressions grammar,

unary operator: <n,m,...> — may only be applied to CLP labels. If the la-
bel stands for a noun, pronoun or adjective, the operator specifies the word’s

grammatical case, gender and number (n,m, ... being indexes of the acceptable
forms); if the label stands for a verb, the operator specifies the tense, gender and
number; takes any number of operands (n,m, ... being indexes of the acceptable

forms). Indexes of the chosen forms must remain in accordance with the indexes
returned by the clp_vec() function from the CLP library,

binary operator: | — to be interpreted as in classic regular expressions grammar,
non-greedy operators: +7, *7, 7?7 — to be interpreted as in classic regular ex-
pressions grammar,

period (.) — symbol standing for a single word or number,

$ — the end of a sentence symbol,

~ — the beginning of a sentence symbol.

Automaton construction

4.3.1. Modified Thompson’s algorithm

The classic version of Thompson’s algorithm is described in [4]. The modified algo-
rithm used for constructing NFAs for CLP regular expressions is based on the following
rules:

1.

For e-transition construct an automaton as shown in Fig. 2.
M

Fig. 2. Automaton constructed for e-transition

. For a word W (e.g. pies — Eng. dog, wyszedt — Eng. went out, dziewczynkom

— Eng. girls, Kowalskiego — Eng. Kowalski’s) construct an automaton as shown
in Fig. 3.

. For I — a CLP ID preceded by a backslash (e.g. \10568829) — construct an au-

tomaton as shown in Fig. 4.

26 Krzysztof Dorosz, Anna Szczerbinska

w

—(O—0

Fig. 3. Automaton constructed for a word W

1

T

Fig. 4. Automaton constructed for

4. For L — a CLP label preceded by a backslash and optionally followed by op-
erator <n,m,...> (e.g. \AE or \AE<5,6>; for a detailed description of operator
<n,m,...> see Section 4.2) — construct an automaton as shown in Fig. 5.

L

—(O—0

Fig. 5. Automaton constructed for L

5. For S being one of the symbols: . (period), $ (end of sentence) or ~ (beginning
of sentence) construct an automaton as shown in Fig. 6.

S

et

Fig. 6. Automaton constructed for S

6. For X+, where X is an automaton representing a CLP regular expression, con-
struct an automaton as shown in Fig. 7.

. For X* construct an automaton as shown in Fig. 8.

. For X? construct an automaton as shown in Fig. 9.

© 0o

. For X | Y construct an automaton as shown in Fig. 10.

10. For XY (concatenation) construct an automaton as shown in Fig. 11.

11. For X+? construct an automaton (ey¢ standing for non-greedy €) as shown in
Fig. 12.

12. For X*? construct an automaton as shown in Fig. 13.

13. For X?? construct an automaton as shown in Fig.eps/14.

Enhancing Regular Expressions for Polish Text Processing 27

Fig. 7. Automaton constructed for X+

&

Fig. 8. Automaton constructed for X*

The X{n,m} expressions are transformed into either concatenations of X (e.g.
X{4} — XXXX), alternatives of concatenations (e.g. X{2,4} — XX | XXX |
XXXX), or more complex expressions (e.g. X{3,} — XXXX*).

In cases 11-13 non-greedy e-transitions are used. Such transitions should be used
as few times as it is possible for the automaton to accept a regular expression (just
as it is in classic regular expressions). Therefore non-greedy e-transitions are treated
separately by the NFA minimization algorithm (see Section 4.3.2).

4.3.2. Modified NFA minimization algorithm

The minimization algorithm used in the engine is a modified version of subset con-
struction — a standard method for converting nondeterministic finite automata to
deterministic finite automata (described in detail in [4]).

28 Krzysztof Dorosz, Anna Szczerbinska

Fig. 9. Automaton constructed for X?

Fig. 10. Automaton constructed for X | Y

- - — — F— = = =

:_:_X_:_l ‘ : : L:_:;Q:

Fig. 11. Automaton constructed for XY

The modifications introduced do not ensure that the obtained automaton is de-
terministic.

The minimization algorithm is very similar to its origin. The sole modification of
the algorithm is introduced during the construction of e-closure sets.

Enhancing Regular Expressions for Polish Text Processing 29

Fig. 12. Automaton constructed for X+9

¢ NG

Fig. 13. Automaton constructed for X*?

Elements of the sets are calculated just as in classic regular expressions, but in
this case non-greedy e-transitions are not treated as e-transitions — instead, during the
entire process of minimization, non-greedy e-transition is interpreted as a standard
CLP symbol (e.g. a word or a CLP label). Further on the algorithm is the same as
its classic version.

4.4. Ambiguities in finite state automata

Transitions in the finite state automata used in the CLP regex engine may be labeled
with ambiguous symbols, matching more than one token in the text.

30 Krzysztof Dorosz, Anna Szczerbinska

Fig. 14. Automaton constructed for X??

There are several kinds of ambiguity in CLP symbols:

e matching multiple words in the same form — the most obvious of the ambiguities;

a CLP label only specifies the part of speech and the grammar form of the word
searched, and so cannot be expected to match only one word.
Ezample: \A is a regex with the CLP label for a noun and matches all nouns in the
Polish language, e.g. kot (Eng. cat, singular, nominative, masculine), domku (Eng.
little house, singular, locative, masculine), lalki (Eng. dolls, plural, nominative,
feminine), dzieciom (Eng. children, plural, dative, neuter)

e matching multiple forms — most parts of speech in Polish are inflecting (e.g. by
case, number), therefore a single CLP ID may match more than one word form.
Ezample: \1058829 is a regex with the CLP ID of the word pilot (Eng. pilot) and
matches the forms: pilot (base form), pilota, pilotowi, pilotem, pilocie (singular
forms), piloci, pilotéw, pilotom and pilotami (plural forms).

e matching multiple words with common forms — some words in Polish have dif-
ferent meanings but one or more forms in common. In such cases a string in the
CLP regex pattern may match words with different CLP IDs.

Ezample: The string kotek (Eng. kitten — singular, nominative, masculine, or
female cats — plurar, genitive, feminine) in the CLP regex pattern matches words:

— kotek (Eng. kitten) — CLP ID 1031507, forms: kotek, kotka, kotkowi,
kotkiem, kotku, kotki, kotkow, kotkom, kotkamsi, kotkach,

— kotka (Eng. female cat) — CLP ID 1031509, forms: kotka, kotki, kotce, kotke,
kotkq, kotko, kotek, kotkom, kotkami, kotkach.

4.5. Pattern matching

Matching a regular expressions pattern means verifying whether a sequence of tokens
is accepted by the constructed automaton. Beginning in the automaton’s initial state,
the regex matcher module traverses subsequent states until it cannot make another

Enhancing Regular Expressions for Polish Text Processing 31

transition. If the matcher reaches an accepting state, it remembers the position and
length of the matched sequence, and carries on searching for a longer match.

Processing of the automaton by the regex matcher is similar to traversing an
automaton while matching a classic regular expression, with one exception: transitions
labeled with non-greedy e-transitions have lower priority than all others. The matcher
resorts to using non-greedy e-transitions only if no matching sequence of words can
be found omitting them.

A single token is matched to a simple CLP expression E (represented by a single
transition in the automaton). The matcher’s actions depend on the type of E. The
following types of E expressions and resulting actions are defined:

o If F represents a CLP ID (e.g. \12345678), the matcher retrieves from the CLP
library a list of possible CLP IDs for the token. The token matches if the CLP
ID provided in E appears on the list.

o If F represents a CLP label (e.g. \AC), the matcher retrieves from the CLP library
a list of possible labels for the token. The token matches if the label provided in
E is a prefix of at least one label on the list.

o If E represents a CLP label followed by operator <n,m,...> (e.g. \AC<1,3>),
the matcher retrieves from the CLP library a list of possible pairs of a label and
a corresponding inflectional vector for the token. The token matches if the label
provided in F is a prefix of at least one label from the returned pairs and in the
same time the inflectional vector from the selected pair contains at least one of
the operands of <n,m, ...>.

o If F is a string built using the [a-z0-9] character class (e.g. kotka; Eng. kitten,
dative, singular), the matcher returns the result of a simple case insensitive string
comparison between the token and the word provided in F.

4.6. Sentence splitting

The engine splits input text into sentences implementing following rules introduced
in [2] and stated below:

1. Unless preceded by a semicolon (;), a sentence may begin with either a number or
a word beginning with a capital letter. If a sentence is preceded by a semicolon,
it may also begin with a word beginning with a small letter.

Input: Ala ma kota. Ula ma psa; kiedy$ Ula miala kanarka. (Eng. Ala has a cat.
Ula has a dog; once Ula had a canary.)
Output:

e Ala ma kota. (Eng. Ala has a cat.)
e Ula ma psa; (Eng. Ula has a dog;)
e kiedy$ Ula miala kanarka. (Eng. once Ula had a canary.)

2. A sentence may finish with one or more of the punctuation marks: period (.),
question mark (?), exclamation mark (/) or semicolon (;).

32 Krzysztof Dorosz, Anna Szczerbinska

3. A period following an abbreviation or an ordinal number is not interpreted as
the end of a sentence.

4. A single letter followed by a period is considered an abbreviation.

5. A number followed by a period is considered an ordinal number.
Input: Pani prof. Nowak uczyla w szkole do 1999 r., po czym przeszta na emery-
ture. Byta laureatka 12. edycji konkursu na najlepszego nauczyciela. (Eng. Prof.
Nowak used to teach in school until 1999, and retired afterwards. She won the
12th best teacher contest.)
Output:

e Pani prof. Nowak uczyta w szkole do 1999 r., po czym przeszta na emery-
ture. (Eng. Prof. Nowak used to teach in school until 1999, and retired af-
terwards.)

e Byla laureatka 12. edycji konkursu na najlepszego nauczyciela. (Eng. She
won the 12th best teacher prize.)

A list of common Polish abbreviations has been used to distinguish abbreviations
in examined texts. The presented solution is however not optimal and in few cases
may result with an incorrect division of text into sentences.

5. Examples of use

The simplest way to present strength of the tool is to study a few examples made on
real text. All examples presented in this section are based on the PAP corpus which
contains over 50,000 notes from the Polish news agency and is available from our
Computer Linguistics Group. We consider simple examples based on matching the
specific words cases.

5.1. A noun with an adjective

The first search finds noun phrases represented in text by a noun with an adjective.

The search defined by the regular expression (\C\A) | (\A\C) will recognise every
pair of an adjective and a following noun as well as a noun followed by an adjective.
Selected output from matching this regex across the PAP corpus is presented below
(matched elements are shown in bold):

o W nocy ze srody na czwartek zmart po dlugiej i ciezkiej chorobie minister
kultury i dziedzictwa narodowego Andrzej Zakrzewski.

o W latach 1991-95 byl wysokim rangag urzednikiem w Kancelarii Prezydenta
1 jednym z najgblizszych wspotpracownikéow Lecha Walesy.

o Podkreslit, ze SLD rozpoczgl juz przygotowania do wyborow parlamentarnych
w 2001 r. ,Wedlug nas, wybory prezydenckie sq juz rozstrzygniete”.

e Wojska rosyjskie poinformowaly, Ze po raz pierwszy uzyly pottoratonowych,
a nie, jak dotychczas, 500-kilogramowych, bomb podczas nalotéw na gérskie bazy
bojownikow.

Enhancing Regular Expressions for Polish Text Processing 33

e 60 pasazerow natychmiast wystgpito o azyl polityczny w Wielkiej Brytanii.

o To jest kwestia bezpieczenstwa narodowego” — powiedzial deputowany My-
chajlto Kosiw, jeden z autorow dokumentu.

e Rosjanin Jewgienij Pluszenko zostal mistrzem FEuropy w tyZwiarstwie fig-
urowym w konkurencji solistow.

o Wyniki sondazu opinit publicznej ze stycznia, zgodnie z ktorym poparcie dla
PSL znacznie przewyzsza poparcie dla UW i niemal doréwnuje notowaniom AWS,
przedstawili dziennikarzom liderzy ludowcow.

o UW nie poprze AWS-owskiego projektu ustawy uwiaszczeniowey.

e Zdaniem Jerzego Wierchowicza, szefa klubu parlamentarnego UW, moze to
doprowadzi¢ do kolejnego kryzysu w koalicji przy drugim czytaniu ustawy
uwlaszczeniowey.

e Komitet Ekonomiczny Rady Ministrow uznal za wskazane dokapitalizowanie
Rafinerii Gdanskiej SA przed jej prywatyzacjg 30 proc. pakietem udzialow
Dyrekcji Eksploatacji Cystern.

5.2. Patterns with the verb be

A little different from described previously noun phrases can be considered. The verb
be (Pol. byc) is used for pointing sentences where a noun is described by an adjective.

The regular expression defined as \A \285323840 \C will find any noun followed
by any form of the verb byé (which has 285323840 CLP ID number), followed by any
adjective (matched elements are shown in bold):

o Zdaniem prezydenta, taka ustawa jest watpliwa moralnie, budzi roszczenia
innych Srodowisk, a jej skutecznosé jest ograniczona.

e Umowa jest wazna do korica roku.

e Vadim byt Zonaty pieciokrotnie.

e PoniecwaZ sytuacja jest stabilna, spodziewamy sie, zZe zarzqd gieldy odwiesi od
poniedzialtku, zawieszenie notowan akcji BIG BG — powiedzial.

e _Dla nas Zycie jest Swiete” — powiedziala.

e Minister edukacji Mirostaw Handke podkreslil niemniej, zZe ,studia bedg
bezplatne w takim zakresie, w jakim pozwoli wielko$é dotacji budzetowej [...]".

o Wyrok jest prawomocny.

o Ale to dobrze, zZe nasi politycy sq aktywni, bo mogg wtedy cos dobrego zrobic.

e Efekty sqg widoczne.

e Odbudowana z ruin Swigtynia bedzie poswiecona 13 sierpnia 2000 r.

e Jego stan jest ,ciezki, ale stabilny”.

o W trzech poprzednich, gra byla wyréownana.

o Wedlug SLD debata jest potrzebna.

34 Krzysztof Dorosz, Anna Szczerbinska

5.3. Patterns with comparison of nouns

Using comparison phrase structure in the given language one can search for relation
between two nouns. This relation can be represented as an adjective corresponding to
a topic of comparison. The following pattern is proposed as an example for Polish \A
\285323840 \C \285978416 \A . This regular expression is composed of a noun label
followed by any form of the verb byé (CLP ID 285323840), followed by an adjective
label, followed by the preposition niz (CLP ID 285978416, this word has to be defined
by the ID number because it is ambiguous), followed by any noun.

Selected results from the PAP corpus are presented below:

e Dla wiekszosci respondentéw CBOS wolnoéé jest wazniejsza nizZ réwnosé.

e Niestety, w bilansie dogrywek podaz bytla wieksza niz popyt — powiedzial Marek
Pokrywka, makler DM BOS.

5.4. Semantically depended adjectives

The next pattern aims at finding pairs of two adjectives joined with one of con-
junctions: and (Pol. i), or (Pol. lub, albo), as well as (Pol. oraz). Found adjective
pairs have various semantic dependencies and are interesting for further evaluation.
The regular expression used to prepare the search has form \C (i | lub | albo |
oraz) \C. Selected pairs from the PAP corpus are presented below:

dlugiej i ciezkiej, Poleglym i Pomordowanym, drobnego i Sredniego, Srodkowej
1 Wschodniej, najszybszego i najwiekszego, staby i umiarkowany, socjalistyczne i soc-
jaldemokratyczne, polityczny + symboliczny, spoinione 1 niewystarczajgce, chorych
1 uposledzonych, charytatywne i kosScielne, ogolnopolskim i regionalnym, prozatorskie
1 dramatyczne, umiarkowane i duze, trzeciego i czwartego, pierwszym i drugim, moral-
nego 1 prawnego, podatkowych i celnych, najstarszych i najdostojniejszych, wiec-
zorowych i zaocznych, fabularne i dokumentalne, panstwowych i koscielnych, kompro-
mitujgcy i Zenujgcy, malarska i graficzna, Srednim lub wyzszym, nieudolna i glupia,
konkretnych 1 szczegolowych, najwiekszych i najlepszych, Swiatowych i regionalnych,
zdolny i Swiatly, informacyjnej i telekomunikacyjnej, zawyzone i sprzeczne, niewol-
niczej i przymusoweyj, bici i upokarzani, prywatnych i publicznych, bici i torturowant,
politycznych i gospodarczych, niekompetentny i nieuczciwy, szybkiego i skutecznego,
panstwowych oraz jednoosobowych, zwarta i zdyscyplinowana, zagraniczni i krajows,
silny i porywisty, federalne i stanowe, wojskowych i politycznych, jasnych i pre-
cyzyjnych, rasowej lub religijnej, wilgotny i ciezki, cieplym i wilgotnym, chlodnym
1 wilgotnym, suchych i wilgotnych, sejmowe lub senackie, zniszczonych lub uszkod-
zonych, rakietowym lub moZdzierzowym, zniesione lub zlikwidowane, nuklearnej lub bi-
ologicznej, zywego lub martwego, przywlaszczone albo rozdysponowane, nierealny albo
mozliwy, czerwony albo bordowy, naiwnym albo obludnym, mieszkajgcych albo pracu-
jacych, angielskim albo niemieckim, faszystowskimi albo meonazistowskimi, rannego
albo zabitego.

Enhancing Regular Expressions for Polish Text Processing 35

6. Conclusion

Presented method for querying natural language texts can be interesting especially for
linguists. The CLP regex engine provides new possibilities of making easy search with
regex like syntax, yet still extended with grammar properties of words. Good quality
of results is also noticeable, because of using sentence splitting (avoiding matching
words across sentences boundaries). Presented solution can be easily adapted to any
inflectional language on condition that an inflectional dictionary is available for this
language. Some modifications to text splitting rules may also be required.

References

[1] W. Lubaszewski et. al.: Stowniki komputerowe i automatyczna ekstrakcja infor-
macji z tekstu. Wydawnictwo AGH, pp. 107-126, 2009

[2] E. Branny, M. Gajecki: Text Summarizing in Polish. Computer Science, Annual
of AGH University Of Science and Technology, pp. 31-46, 2005

[3] G. Grefenstette, P. Tapanainen: What is a word, What is a sentence? Problems
of Tokenization.. 3rd Conference on Computational Lexicography and Text Re-
search COMPLEX’94 Budapest, 1994

[4] A.A.R. Sethi, J.D. Ullman: Compilers: Principles, Techniques, and Tools..
Addison-Wesley, 1988

[5] J. Hoperoft, J. Ullman: Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, 1979

[6] Regular Expressions. The Single UNIX Specification, Version 2, The Open Group,
1997, http://opengroup.org/onlinepubs/007908775/xbd/re.html

A. Acronyms used in the article
BRE - Basic Regular Expressions, POSIX standard,

CLP — C Language Processing library, developed in the Institute of Computer
Science, AGH University of Science and Technology, Krakéw

CLP ID - a word identification number in the CLP library
ERE — Extended Regular Expressions, POSIX standard
FSM — Finite State Machine
PAP — Polska Agencja Prasowa (Eng. Polish News Agency)

PLP — Python Language Processing; a Python wrapper for the CLP library, used
in the implementation of the CLP regex engine

POS — Part of Speech
POSIX — Portable Operating System Interface for Unix
regex — regular expression

NFA — Nondeterministic Finite Automaton

