COMPUTER SCIENCE e 15 (4) 2014 http://dx.doi.org/10.7494/csci.2014.15.4.459

FL.ukasz OLEK
BARTOSZ ALCHIMOWICZ
JERZY NAWROCKI

ACCEPTANCE TESTING
OF WEB APPLICATIONS
WITH TEST DESCRIPTION LANGUAGE

Abstract | Acceptance tests are usually created by a client after a part of a system is
implemented. However, some methodologies propose the elaboration of test ca-
ses before implementing a system. This approach increases the probability of
system implementation that fulfills requirements, but may be problematic for
customers and testers. To allow acceptance testing in such conditions, we pro-
pose to define test cases by recording them on an interactive mockup (a low
detailed user-interface prototype). The paper focuses on Test Description Lan-
guage, a notation used to store test cases.

Keywords | acceptance test case, use case, mockup, Test Description Language

459

http://journals.agh.edu.pl/csci/

460 Lukasz Olek, Bartosz Alchimowicz, Jerzy Nawrocki

1. Introduction

The aim of acceptance testing is to make sure that a target system meets acceptan-
ce criteria [8]. Traditionally, tests are created by a client after a part of a system
is implemented. This is natural, because test cases can be executed only when the
corresponding features are ready. However, agile methodologies (see e.g., [3]) propose
a different approach: test cases should be elaborated before implementation. Unfor-
tunately, this may be problematic for customers and testers. Without seeing an ap-
plication, clients may create tests that are inadequate and contain mistakes. Testers,
due to a lack of details, may not be able to implement these test cases. Additionally,
if the requirements are modified, one needs to check all test cases and update them —
and this is a task which generates additional costs. An approach that provides a link
between tests and other artifacts in a project while being easy to use and maintain
by IT-laymen would be beneficial here.

To test a web-application, one may use a number of tools. One of them is Sele-
nium [4, 9]. It provides a record/playback tool which allows testing without learning
the domain-specific language used to write the tests. Unfortunately, recording a test
necessitates a working web application. It is possible to write tests without an ap-
plication (in the form of an HTML file or unit tests), but this requires additional
technical knowledge.

Another approach is using FIT tables [10, 1, 7]. FIT allows its users to specify
test cases as tables and then provide a code (called a fixture) to execute these tables
on a target system. The actual test results are directly visible in the table as particular
cells marked with green (success) or red (failure). However, this approach causes many
problems and is not easy to employ in practice. Firstly, it is difficult to comprehend
(not to mention to write) FIT tables for people without an IT education. Tables do
not represent the system visually and require a considerable effort in abstract thinking
to be well understood [11, 17]. Melnik observed: The test pages were so long (dozens
of screen scrolls) and wide (dozen of columns), that navigating and deriving meanings
from the test was extremely difficult [11]. Secondly, a substantial effort is required to
specify test cases as tables. Melnik’s participants were surprised at the amount of work
that is involved in specifying these tests. Thirdly, technology experts (programmers or
testers) feel an initial resistance to this method, due to the effort needed to invest in
programming the fixtures.

Cucumber is another tool that may be used for acceptance testing [20]. One
can describe an interaction between a user and a web application in plain text using
a domain-specific language called Gherkin. To check whether the described actions
can be accomplished using an application, testers need to write code that will interpret
a given text and run commands on a web page (enter a text, click an element, etc).
This tool also supports tables like FIT (with all their advantages and disadvantages).
A working application is not required, but without highly-developed abstract thinking,
it may be hard to create tests (similar to FIT).

Acceptance testing of web applications with Test Description Language 461

The approaches presented have one common disadvantage. Since there is no con-
nection between requirements and test cases, maintainability is a big issue. When
a requirement changes, one needs to browse all tests and update them manually. One
could try to use a traceability matrix to describe relations between tests and require-
ments; however, it is well known that programmers do not like to use documentation
[16]. Thus, it may become outdated.

In order to elaborate test cases before implementing a web application in an
easy-to-create and -maintain way, we propose a simple approach to defining test cases
by recording them on an interactive mockup. An interactive mockup is a kind of
user-interface prototype [6, 18, 14, 19] that can observe user actions and record them
as a test case. It is a low-fidelity prototype [15] that presents only the structure of
screens without any visual details, such as exact fonts, colors, or precise component
layout. The mockup presents user interactive screens. The user interacts with them
in a similar fashion as a real system. User actions are being recorded as a test case
and stored in Test Description Language. Each screen is presented to the user in two
modes: user-action mode and verification-point mode. In user-action mode, a screen
works very much like a real system, and the user can fully interact with its components.
In verification-point mode, a screen allows the user to define expected values of all
components. In this mode, the user can also set expected values of semi-compound
and compound components (e.g., add table rows). The order in which mockups are
shown is generated on the basis of steps (in use cases) linked with screen designs.
While recording a test case, one can set which tests need to be executed first — this
allows for putting a target system into its required state.

Test Description Language is associated with use cases (defined using FUSE [12])
and screen designs (in ScreenSpec [13]). Such associations allow us to automatically
check if test cases are in sync with requirements (use cases and screens) as well as
automatically adjust test cases when requirements change.

The focus of this paper is on Test Description Language with respect to tra-
ditional request-response web applications, without the interactive elements of Web
2.0.

This paper is organized as follows: In Section 2, an example of an acceptance test
case is presented. Section 3 describes Test Description Language. Next, in Section 4,
preconditions in test cases are examined. An early evaluation is detailed in Sections
5. Finally, in Section 6, the most important findings are discussed.

2. A simple test-case example

An example described in this section illustrates the process of recording a test case
on a mockup. The mockup is built from use cases (in FUSE) and screen designs (in
ScreenSpec). A user records test cases, which are stored in Test Description Language
in the Test Repository.

As the example, we will consider a simple application that can send e-mails to
a chosen recipient list: students or staff. Figure 1 presents a use case that describes this

462 Lukasz Olek, Bartosz Alchimowicz, Jerzy Nawrocki

UCl. Post a message to a mailing list

Main Scenario:

1. Author writes a message [MessageEditor].

2. System previews the message [MessagePreview]

3. Author selects a mailing list [MessagePreview].

4. System sends the message to all recipients and
displays a summary [SendinglInfo].

Extensions:

3.A. ALT: Author wants to correct the message.

3.A.1. Author goes back to the message editor

[MessagePreview] .
3.A.2. System returns to Step 1.

Figure 1. A use case that describes a feature of posting a message to a mailing list.

functionality: a user prepares a message to be sent, then he/she chooses a recipient
list. Finally, the system sends messages and presents a summary.

Use case UC1 (Fig. 1) is associated with three screens: MessageEditor,
MessagePreview, and SendingInfo. Their definition in ScreenSpec and visual repre-
sentation are presented in Figure 2.

Let us consider the simplest test scenario for this use case: sending a message to
one of the recipient lists (the sole main scenario). Let us assume that a user wants
to send a message entitled “My first email” with content “The content of my first
email” to the ’Students’ recipient list. This list contains 9 valid email addresses and
1 invalid. The corresponding test case is presented in Table 1. Steps of the test case
describe both verification points and user actions.

A reader can observe that, for each step of the exemplary test case (Table 1),
there are verification points or user actions specified. For some steps, there are both.
Which rule determines if a step will have a verification point or user actions specified?
Roughly speaking, for each screen that is displayed by a system to a user, we need to
have an ability to specify a verification point and user actions. When the same screen
is shown in consecutive steps, a verification point can be recorded in one step and
user actions in another (UCL.2 and UCL.3 in the example from Table 1).

A user records a test case using an interactive mockup. The mockup presents in-
teractive screens in an order determined by a test scenario. In the exemplary test case
(Table 1), three screens will be presented to a user, each in two modes: verification po-
int and user-action modes. In step 2, for instance, a user will see the MessagePreview
in verification-point mode (see Fig. 3a). In this mode, values of all DYNAMIC_TEXT
components (Subject, Content) can be set. For instance, a DYNAMIC_TEXT compo-
nent that represents a read-only text on a screen is shown in verification-point mode
as an edit box (Fig. 3a), which allows a value to be entered. This value will be used as
the expected value for this particular component in a test case. The verification point
described in step 2 (Table 1) can be recorded by setting expected values of screen
components (Fig 3b.).

Acceptance testing of web applications with Test Description Language

463

ScreenSpec Visual representation
Subject
S
E’ SCREEN MessageEdi t or: Content
9] Subj ect (EDI T_BOX)
& Cont ent (TEXT_AREA)
§ Pr evi ew(BUTTON)
=
Preview
Subject: Text
= | SCREEN MessagePrevi ew Content: Text
o Subj ect (DYNAM C_TEXT))
3 Cont ent (DYNAM C_TEXT) BackToEditor
o BackToEdi t or (LI NK) Lists: Name —]
g Li st s(TABLE) : M name 1 a
5 Choose(CHECK_BOX) NET TG
) Nane(DYNAM C_TEXT) Namo 3
= Send(BUTTON) v,
Send
L :
£ | SCREEN Sendi ngl nf o: NumberOfSent: Text
= Nunber O Sent (DYNAM C_TEXT) .
= Nunber Of Er r or s(DYNAM C_TEXT) NumberOfErrors: Text
8‘:)) Cl ose(BUTTON) Close

Figure 2. ScreenSpec definitions of screens used in the use case in Figure 1 with a their visual

representation.

Subject:

Content|

BackToEditor
Lists: | Name

]

Subject: [My first emalil

Content: | The content of my first

emalil
BackToEditor
Lists: Name |
[First tist A
Second list
Third list v
=+ |-

@

(b)

Figure 3. MessagePreview screen (see Fig. 2) in verification point mode: (a) before setting

expected values, (b) after setting expected values.

464 Lukasz Olek, Bartosz Alchimowicz, Jerzy Nawrocki
Table 1
The exemplary test case.
Step Verification Point User Actions

UC1.1. Author
writes a message
[MessageEditor].

Subject is empty.
Content is empty.

Enter “My first email” in
Subject

Enter “The content of my
first email” in Content.
Click Preview.

UC1l.1. System
previews the message
[MessagePreview]

Subject is “My first email”.
Content is “The content of my first
email”.

First list checkbox is unchecked.
Second list checkbox is unchecked.
Third list checkbox is unchecked.

UC1.3. Author selects
a mailing list
[MessagePreview]

Check First list.
Click Send.

UC1.4. System sends
the message to all
recipients and displays
a summary [SendingInfo]

NumberOfSent equals 9.
NumberOfErrors equals 1.

Click Close.

Subject: My first email
Content: The content of my first email
BackToEditor
Lists: Name |
E First list A
Second list
Third list v
Send

Figure 4. MessagePreview screen in user action mode. All components are interactive: a user

can choose checkboxes, click buttons, etc.

After setting the expected values of a verification point, the screen is switched

into user-action mode (Fig. 4). In this mode, screens are interactive and somehow
resemble the target system. For the purpose of the test case, a user chooses the
“Students” mailing list and clicks “Send”. Then, the user can move to the next step
of the test case.

Test cases are recorded with interactive mockups but stored in a special langu-
age called Test Description Language (TDL). Figure 5 presents the exemplary test
case coded in TDL. Each test case starts with a header (TESTCASE TC1) followed by
a declaration of a precondition (PRECONDITION), which points to a precondition-states
dictionary (see Section 4). A test case is a sequence of test steps (TESTSTEP) assigned

Acceptance testing of web applications with Test Description Language 465

TESTCASE TC1. Sending a“simple message to mailing lists.
PRECONDITION PreO1
TESTSTEP UC1.1(MessageEditor):
CHECK Subject=""
CHECK Content=""
SET Subject="My first email"
SET Content="Mistaken content of my first email"
CLICK Preview
TESTSTEP UC1.2(MessagePreview):
CHECK Subject="My first email"
CHECK Content="The content of my first email"
CHECK "First 1list"=NOT CHECKED
CHECK "Second 1list"=NOT CHECKED
CHECK "Third 1list"=NOT CHECKED
TESTSTEP UC1.3(MessagePreview):
CHECK "First list"=CHECKED
CLICK Send
TESTSTEP UC1.4(SendingInfo):
CHECK NumberOfSent=9
CHECK NumberOfErrors=1
CLICK Close

Figure 5. The exemplary test case written using Test Description Language.

to use-case steps and screens (TESTSTEP UC1.2 (MessageEditor)). Test steps can
describe both the verification point and user actions, but not necessary both for each
step. Verification points start with the CHECK keyword followed by the component’s
name and expected value. For instance, assertion CHECK Subject="" makes sure that
component Subject will have an empty value. User actions start with action key-
words: SET, CLICK. Action SET Subject="My first email" means that value My
first email will be entered into component Subject.

This simple example does not present more-complex language structures, such as
semi-compound components nor compound components. These elements are described
in details in Section 3.

3. Test Description Language

The basic structure of a test case is presented in Figure 6. The first line declares the
new test case. The next line declares a precondition that should be satisfied before
executing the test case (more details about preconditions can be found in Section 4).
The following lines describe the steps of a test case. Each test case is a sequence of
test steps (TESTSTEP), linked with use-case steps (by their tags) and screens (by their
names). Since use-case steps are already linked with screens (in FUSE), it may look
a bit redundant. However, the screens associated with particular steps may change, so
this information is important for checking the consistency of tests and requirements.

The grammar of TDL is available online!.

Thttp://www.se.cs.put.poznan.pl/projects

466 Lukasz Olek, Bartosz Alchimowicz, Jerzy Nawrocki

TESTCASE TC1. Sending a simple message to mailing lists.
PRECONDITION PREO1
TESTSTEP UC1l.1(MessageEditor):
TESTSTEP UCl1l.2(MessagePreview):
TESTSfEb UC1.3(MessagePreview):

TESTSTEP UC1.4(Sendinglnfo):

"
Figure 6. Basic structure of a test case in TDL.

3.1. Assertions

This section describes how to check the values of components in a test case.

3.1.1. Basic assertions

Basic assertions are assertions put on basic components. Some components can contain

only a single value (e.g., edit boxes). For such components, assertions look like:
CHECK ComponentName=Value

where the ComponentName is the name specified in ScreenSpec.

The basic form of a value is an explicit string (in double quotation marks). It is
used to check whether the component has exactly the same value as specified (e.g.
CHECK Name="0lek"’ checks if "0Olek" was typed into component Name).

One can also use simplified reqular expression—a string (in double quotation
marks) with wild card characters; e.g., "0le*" or "0le?". Character "*" represents
any string (with 0 or more characters), and character "?" represents any single cha-
racter. The component value needs to match the string.

When more-advanced tests are required, regular expressions can be used (the
syntax of regular expressions in TDL was borrowed from the AWK language [5], it
assumes that each regular expression is enclosed in slashes). For non-expert users, this
notation is rather hard to use and maintain, but it can facilitate the work of testers.
For example, one can combine a number of similar tests by determining a regular
expression on the basis of the available examples [2].

Table 2 summarizes the meaning of CHECK assertions for basic components.

3.1.2. Semi-compound assertions

Semi-compound components (Fig. 7) can hold many values, some of them can be
selected. For example, a combo box can have many options from which to choose,
and one of them can be chosen by default. A list box can also have many options,
and many of them can be chosen.

Acceptance testing of web applications with Test Description Language 467

Table 2
Meaning of the CHECK assertion for basic components.

Component type The meaning of the CHECK assertion

BUTTON Check if the caption of the button matches the value.
LINK Check if the title of the link matches the value.

IMAGE Check if the caption of the image matches the value.
STATIC_TEXT, DYNAMIC_TEXT Check if the actual text matches the value.

EDIT_BOX, PASSWORD, TEXT_AREA Check if the actual text matches the value.

CHECK_BOX Checks the checked status (possible values are: CHECKED and

NOT CHECKED)

Selected item ltem 1

Item 1 (J Item 1 Item 1

Item 2 Selected item Item 2 Item 2

Item 3 .

Selected item Item 3 Selected item MSelected item
(a) A combo box (b) Alist box (c) Radio buttons (d) Check boxes

Figure 7. Examples of semi-compound components.

An assertion for a semi-compound component is a compound sentence, which is
a conjunction of predicates. The assertion starts with the CHECK keyword followed by
the component name. The following lines (indented) describe the predicates. Predica-
tes can be constructed using relational operators: <, >, =, <=, >=, <> (not equal) and
the following functions:

e P0S(value) — returns the lowest position of an option which matches the given
value. Returns -1 if none such option can be found. Positions are numbered
starting with 0.

e COUNT (value) — returns the number of options which match the value.

e COUNT — returns the number of all options in the component.

e VAL (n) — where n is an expression that evaluates to an integer number. Returns
the value of n-th option.

e SORTED — returns true if the options are sorted ascending, SORTED DESC — returns
true when options are sorted descending.

e SELECTED(value) — returns true if all options that match the value are initially
selected.

The value in the presented functions is stated in the same way as for basic
components.
Figure 8 presents an example of semi-compound assertion for a combo box.

Table 3 summarises the meaning of CHECK assertions for multiple-value com-
ponents.

468 Lukasz Olek, Bartosz Alchimowicz, Jerzy Nawrocki

Countries: |Poland M CHECK Countries:
raraguday POS(,,Poland”)>0
Peru SELECTED(,,Poland™)
Philippines POS(,,Germany’)>0
Poland POS(,,France”)>0
Portugal POS(,,Europe™)=-1
Quatar COUNT=192

SORTED

Figure 8. An assertion for a semi-structured component.

Table 3
Meaning of the CHECK assertion for semi-structured components.

Component type The meaning of the CHECK assertion

COMBO_BOX, RADIO BUTTONS Checks values of component options. A single selected
option is allowed, which represents the option that should
be selected by default.

LIST_BOX, CHECK_BOXES Checks values of component options. Many selected
option are allowed, which represent the options that sho-
uld be selected by default.

ScreenSpec: Test Description Language:

SCREEN PaperList:
Papers(LIST):
Title(DYNAMIC_TEXT)

CHECK Papers:
FOR ANY INDEX:
CHECK Title="ABC”

Author (DYNAMIC_TEXT) CHECK Author="0lek”

ShowMore(LINK)

Figure 9. A ScreenSpec specification (left) and a corresponding structural assertion (right).

3.1.3. Compound assertions

Compound assertions are used to check values of compound components, such as ta-
bles or lists. Compound components represent a sequence of elements built from other
components; each element structure is described in ScreenSpec. Therefore, compound
assertions describe the expected values of components that belong to the elements.
For instance, for a screen that presents a list of academic papers, we could write
an assertion that, in the first place of such a list, there is a paper with a specific title.

Tables or lists in real-web applications usually contain many elements. From
a testing point of view, we are usually interested in checking some elements, but rarely
all of them. Therefore, requiring a tester to specify all elements explicitly would be
a waste of time. TDL introduces quantifiers to make describing compound assertions
easier.

Acceptance testing of web applications with Test Description Language 469

Every compound assertion starts with the CHECK keyword followed by a compo-
und component name (see Fig. 9). The following lines (indented) describe assertions
for elements of the compound component. They start with a quantifier specification
(e.g. FOR ANY INDEX), and the subsequent lines describe assertions for specific com-
ponents that belong to the compound component.

The example from Figure 9 assures that the Papers list will contain at least one
(FOR ANY INDEX) element, which Title equals “ABC” and Author equals “Olek”.

There are three types of quantifiers in TDL: EVERY (universal quantifier), ANY
(existential quantifier) and ONE (exactly one). There is also a quasi-quantifier INDEX=n:

e FOR INDEX = n — asserts that the element described by indented assertions will
be at the specified position n in the compound component.

e FOR ONE INDEX — asserts that there will be exactly one element in the compound
component that satisfies the indented assertions.

e FOR ANY INDEX — asserts that there will be at least one element in the compound
component that satisfies the indented assertions.

e FOR EVERY INDEX — asserts that every element of the compound component will
satisfy the indented assertions.

3.2. User actions

Test Description Language allows us to write user actions, which will be executed on
the target system during system testing. Various components allow us to act on them
differently. Table 4 summarizes all possible actions for ScreenSpec components. The
Label argument will be replaced with the actual component label in a TDL script
and Value with actual value.

Figure 10 presents a simple example of a screen containing a range of basic
components and exemplary user actions.

SCREEN RegistrationForm:
FormNumber (DYNAMIC_TEXT)
Instructions (STATIC_TEXT)
Username (EDIT_BOX)
Password (PASSWORD)
Description(TEXT_AREA)
Private (CHECK_BOX)
Country (COMBO_BOX)

Sex (RADIO_BUTTONS)
Newsletters(LIST_BOX)
Interests (CHECK_BOXES)

SET Username="Lukasz"

SET Password="Pass"

SET Description="Description"

SET CHECKED Private

SELECT Country="PL"

SELECT Sex="Male"

SELECT Newsletters("General", "News")
SET CHECKED Interests("IT", "Dance")

(b)

(a)

Figure 10. A sample ScreenSpec specification (a) used to illustrate examples of user actions
in TDL (b).

470

Lukasz Olek, Bartosz Alchimowicz, Jerzy Nawrocki

Table 4

User actions available for different components.

Component declara-

tion in ScreenSpec

User action in TDL

Meaning of the action

Label (BUTTON)
Label (LINK)
Label (IMAGE)

CLICK Label

Clicks the component.

Label (STATIC_TEXT)
Label (DYNAMIC_TEXT)

No action possible

Read-only components.

Label (EDIT_BOX)
Label (PASSWORD)
Label (TEXT_AREA)

SET Label=Value

Sets the value of the compo-
nent.

Label (CHECK_BOX)

SET CHECKED Label
SET UNCHECKED Label

Sets the state of the check
box.

Label (RADIO_BUTTON)

SELECT Label

Selects the radio button.

Label (RADIO_BUTTONS)
Label (COMBO_BOX)

SELECT Label=Value

Selects the option of the com-
ponent.

Label (LIST_BOX)

SELECT Label (Valuel, ...)

Selects values for the compo-

nent. Many values are accep-

ted.
Label (CHECK_BOXES) SET CHECKED Label (Valuel, Checks the check boxes that
L) match given values. Many va-
SET UNCHECKED Label (Valuel, lues are possible.
)

Imaginary screen: The corresponding ScreenSpec specification:

Papers:
e First paper - Olek, Nawrocki SCREEN PublishedPapers:
Show more Papers_(L 1ST):
* Second paper - Ochodek, Michalik Title(DYNAMIC_TEXT)
Show more Authors(DYNAMIC_TEXT)
e Third paper - Kopczynska, Mackowiak ShowMore(LINK)
Show more

Figure 11. A screen presenting a list of published papers (left), and a corresponding Screen-
Spec specification (right).

3.3. Labels and pointers

It is a bit more difficult to describe user actions for compound components because
such components can have many elements, and we need to know exactly for which
element a user action should be executed. For example, when a system displays a list of
published papers (Fig. 11), for each paper there is a separate “Show more” link. How
to choose the desired one? In order to do this, a pointer mechanism was introduced.
Pointers can be declared for compound components — every list element or table row
can be tagged with a label and pointed further in the TDL script. For example, in
Figure 11, there can be three pointers declared for the “Papers” list: first for the
“First paper”, second for the “Second paper”, and third for the “Third paper”. Then,

Acceptance testing of web applications with Test Description Language 471

CHECK Papers:
FOR ONE INDEX LABELED AS P1: P .
CHECK Title="First paper” = apers:
CHECK Authors="0lek, Nawrocki” \® First paper - Olek, Nawrocki P1,
FOR ONE INDEX LABELED AS P2: | Show more ‘
CHECK Title="Second paper” '+ Second paper - Ochodek, Michalik
CHECK Authors= Ochodek_, Michalik | Show more :
FOR ONE INDEX LABELED AS P3: e e
CHECK Title="Third paper” \® Third paper - Kopczynska, Mac¢kowiak p3 :
CHECK Authors="Kopczyrnska, Mackowiak” | Showmore |
CLICK P2.ShowMore

@ (b)

Figure 12. An example of a TDL script that uses labels to point a specific element on the
list (a), and a corresponding screen (b).

when we would like to invoke a CLICK user action on the ShowMore component from
the second element of the “Papers” list, we would prefix the label of the component
with a pointer.

In order to enable declaring user actions for compound components, we need to
have mechanisms for: 1) tagging elements of compound components with labels; and
2) pointing to them, when invoking user actions.

In order to point to a specific element, it is proposed to utilize the quantifiers
described earlier. Two of them, FOR INDEX=7n and FOR ONE INDEX, are able to choose
one and only one element of a compound component. These elements can be tag-
ged with labels. Declaring a label is done by appending the quantifier with keyword
LABELED AS followed by a label:

e FOR INDEX=n LABELED AS LabellName, or
e FOR ONE INDEX LABELED AS LabellName.

Both quantifiers assert that the target screen will contain one and only one ele-
ment of a compound component that satisfies the assertions declared inside them.
Such an element can be referenced further by the label LabelName.

When labels are specified, invoking user actions is quite easy. For the purpose of
TDL, the label of such a component is preceded with the label of an element and a dot.
For instance, let as assume that a label P2 is declared and it points to an element
that contains a button Submit. We can invoke a click action on this component by
writing: CLICK P2.Submit.

A complete example presenting labels and their usage is shown in Figure 12. The
screen is expected to have a list of papers, containing three elements: “First paper”,
“Second paper”, and “Third paper”. For these elements, corresponding pointers are
declared in TDL, labeled: P1, P2, and P3. Then, a user action is declared that performs
a click on the ShowMore link from the element pointed with the P2 label.

3.4. TDL and final web-applications

TDL can be used not only with mockups, but also with real web applications. To
run a test, each web page needs to have elements with attributes id identical to the

472 Lukasz Olek, Bartosz Alchimowicz, Jerzy Nawrocki

labels used in the mockup design. In the case of id being used by a different web
element, or being unavailable (e.g., due to a naming convention), a tester can provide
a mapping between labels (used in mockups) and XPaths, which points to an element
on a tested web page. Here is a basic example:

{
"MessageEditor": {
"Subject": "//input[@id=’SubjectInput’]",
"Content": "//input[@id=’ContentInput’]",
}
}

The above mapping uses JSON notation. It consists of an associative array with
the name of a screen as a key (i.e., MessageEditor). As the value, there is another
associative array. This time, a label of a component is used as a key (e.g., Subject)
and XPath is used as a value (e.g., //input [@id=’SubjectInput’]).

4. Test case preconditions

During the design and execution of test cases, one assumes that the system is in
a specific state. In TDL, required states can be achieved using preconditions. This
section describes how they can be defined and used.

4.1. Describing preconditions with natural language

This approach assumes the user describes preconditions using natural language and
a tester translates them into scripts (which will load the data into a system). Natural
language is well understood by both users and testers. It allows us to describe the state
in a vague way, taking a burden of detailed specification off of the user. For example,
one can specify The store contains 10,000 books, and among them, there is a book
of “Jerzy Nawrocki”, without the need to describe details of the other 9999 books.
However, this lack of precision can be misleading, and scripts can lack important data.

Examples of a state description and a corresponding script are shown on Figu-
re 13. At the early stages of a project, one can only use natural language (Fig. 13a).
But after the design and implementation of a database, the description can be trans-
formed into a script in SQL (Fig. 13b) or another language.

4.2. Describing Preconditions with FIT Tables

An alternative approach can be proposed using the FIT framework. A user can specify
a state by preparing a set of tables, each table for each type of business object. The
name of the fixture would determine the business object, and separate columns would
describe its attributes. The fixture (see Section 1) should read these values and create
objects in the system. A simple example is presented in Figure 14.

It is also possible to use FIT tables without using the FIT framework — a tester
can write a software that reads FIT tables and put data into a database.

Acceptance testing of web applications with Test Description Language 473

There is an author named ” Jerzy Nawrocki”, and he has three publications: ” Pair Program-
ming vs. Side-by-Side Programming”; ”Balancing Agility and Discipline with XPrince”;
and ”Describing Business Processes with Use Cases”.

(a)

DELETE * FROM authors;

DELETE * FROM publications;

INSERT INTO authors VALUES (’JN’, ’Jerzy’, ’Nawrocki’);

INSERT INTO publications VALUES (’JN’,’Pair Programming vs. Side-by-Side Programming’);
INSERT INTO publications VALUES (’JN’,’Balancing Agility and Discipline with XPrince’);
INSERT INTO publications VALUES (’JN’,’Describing Business Processes with Use Cases’);

(b)

Figure 13. A description of an initial system state in natural language (a) and a corresponding
SQL script created by a tester (b).

Authors:
ID First name Last name
JN Jerzy Nawrocki

Publications:

Author ID | Title

JIN Pair Programming vs. Side-by-Side Programming
JN Balancing Agility and Discipline with XPrince
JIN Describing Business Process with Use Cases

Figure 14. A specification of an initial system state by using FIT tables.

4.3. Usage of preconditions

To put a system into the required state (before executing a test case), one can use other
test cases or execute scripts which, for example, encode the preconditions described
in natural language.
In the first approach, all dependable test cases need to be listed after the keyword
PRECONDITON; e.g., PRECONDITON TC1, TC4 (see Fig. 5).
The second approach introduces three new actions:
e OPEN Label — open a screen with a given Label or a web page whose address is
in Label;
e RUNSCRIPT Label — run a script called Label (e.g. this may be a file with com-
mands in SQL or another language);
e RUNTEST Tag — run a test case marked with a Tag.

Figure 15 presents an exemplary precondition that may be used while testing.

One can use the keyword SETUP instead of PRECONDITION, which seems to be
a more-natural keyword for programmers who are familiar with unit tests.

474 Lukasz Olek, Bartosz Alchimowicz, Jerzy Nawrocki

PRECONDITION:
RUNSCRIPT CleanDataBase
OPEN StartView
RUNTEST CreateAccount

Figure 15. An example of preconditions in a TDL script.

5. Early evaluation

To check whether TDL is easy to use and maintain by IT-laymen, a small experiment
was performed.

Two surveys were prepared: one each for TDL and Selenium (we chose this tool
because of its popularity). Each survey had 2 tasks. In the first task, participants
were asked to explain the meaning of 5 keywords on the basis of a use case written
in FUSE notation, screen shots, and a test case in a given notation (the following
keywords were used for TDL: OPEN, STEP, CLICK, CHECK and SET; and for Selenium:
get, find_element_by_id, click, getAttribute and send keys). The presented use
case described a situation in which the actor logs into a web page and selects a layout
(either a new graphical version of the service or an old one). In the second task,
participants were asked to create a test case on the basis of a use case (adding a new
comment on a web page) and a set of screen shots.

We are aware that tests in Selenium can be stored in an HTML file; however,
using functions (like get) seems to be more popular among testers. In order to re-
duce complexity in the exemplary tests in Selenium, we decided to call function one
after another without using a temporary variable to store a web element. Specifically,
the notation find _element by_id("Login").click() was used instead of the follo-
wing version: e = find element_by_id("Login"); e.click(). When the parameter
passed to find_element by_id was incorrect but the usage of the next function was
correct (e.g. click), we treated it as a lack of understanding of the first function and
an understanding of the second function.

There were 14 participants, all in their first year of study in a university computer
science program. All of them declared to be unfamiliar with use cases and the testing
of web pages. Participants were randomly assigned to two groups of seven participants:
T that was asked to assess TDL and S that was asked to assess Selenium.

The average time in group 7 was 16 min, while in S it was 20 min. In group 7,
68.57% of the keywords were understood correctly (i.e., participants described their
meaning correctly and used them without any mistakes), while in group S, it was only
42.86% (see Table 5).

In the case of TDL, a common mistake was an incorrect reference to a step in
a use case (only two participants noticed this dependency). Participants in S gro-
ups often forgot to load a page using get function. An incorrect id for function

Acceptance testing of web applications with Test Description Language 475

Table 5
Results from the early evaluation (abbreviations: NCA — number of correct answers, PCA —
percentage of correct answers).

Keyword

OPEN STEP CLICK CHECK SET Average
TDL NCA 6 2 7 3 6
PCA | 85.7% 28.6% 100.0% 42.9% 85.7% 68.57%
get find click getAttr send_keys
Selenium NCA 2 4 0 2 2
PCA | 28:6% 571% 71.4% 28.6% 28.6% 42.86%

find element_by_id was also provided (an exemplary test case for Selenium used the
same notation as in TDL — the label of a component and its id were similar).

It is very interesting that one of the participant in S group tried to add references
to screens in tests.

6. Conclusions

This article presents the Test Description Language — a simple language that allows
us to create acceptance tests of web applications with a link between use cases (in
FUSE) and mockups (in ScreenSpec).

As was mentioned in the beginning of the article, this is only a small part of
a bigger work, whose purpose is to allow for the creation of test cases for web applica-
tions in their early stage of development (i.e., when only requirements and low-fidelity
prototypes of the layout are available).

The aim of TDL is to store test cases in a form that is easy to create and maintain
by customers who are IT-laymen. We detailed how a test case can be created using
this language, including verification points and user actions. We presented how to
put a system into a required state by using preconditions. Moreover, we described an
early experiment concerning the usage of TDL by IT-laymen, the results of which are
promising.

Acknowledgements

We would like to thank to the anonymous reviewers for helpful comments that allowed
us to improve the paper.

This work has been partially supported by the Polish National Science Center
based on the decisions DEC-2011/03/N/ST6/03016.

References

[1] Framework for Integrated Test (FIT). URL http://fit.c2.com/.

476 Lukasz Olek, Bartosz Alchimowicz, Jerzy Nawrocki

[2] Bartoli A., Davanzo G., De Lorenzo A., Medvet E., Sorio E.: Automatic Synthesis
of Regular Expressions from Examples. Computer, 2013.

[3] Beck K., Fowler M.: Planning Extreme Programming. Addison-Wesley, 2000.

[4] Burns D.: Selenium 2 Testing Tools: Beginner’s Guide. Packt Publishing Ltd,
2012.

[5] Close D., Robbins A., Rubin P., Stallman R., van Oostrum P.: The AWK Manual,
1995.

[6] Constantine L. L., Lockwood L.A.D.: Software for Use: A Practical Guide to
the Models and Methods of Usage-Centered Design. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1999. ISBN 0-201-92478-1.

[7] Haugset B., Hanssen G.K.: The Home Ground of Automated Acceptance Testing:
Mature Use of FitNesse. Agile Conference (AGILE), 2011, pp. 97-106. IEEE,
2011.

[8] ISO: ISO/IEC/IEEE 24765:2010 — Systems and software engineering — Vocabu-
lary. International Organization for Standardization, Geneva, Switzerland, 2010.

[9] Leotta M., Clerissi D., Ricca F., Tonella P.: Capture-replay vs. programmable
web testing: An empirical assessment during test case evolution. In: Reverse
Engineering (WCRE), 2013 20th Working Conference on, pp. 272-281, IEEE,
2013.

[10] Martin R., Melnik G., Inc O.: Tests and Requirements, Requirements and Tests:
A Mobius Strip. Software, IEEE, vol. 25(1), pp. 54-59, 2008.

[11] Melnik G.: Empirical Analyses of Executable Acceptance Test Driven Develop-
ment. Ph.D. thesis, University of Calgary, 2007.

[12] Nawrocki J.R., Olek L.: Use-Cases Engineering with UC Workbench. In: K. Zie-
linski, T. Szmuc (eds.), Software Engineering: Evolution and Emerging Techno-
logies, Frontiers in Artificial Intelligence and Applications, vol. 130, pp. 319-329.
I0S Press, 2005. ISBN 978-1-58603-559-4.

[13] Olek L., Nawrocki J.R., Ochodek M.: Enhancing Use Cases with Screen Designs.
In: Z. Huzar, R. Koci, B. Meyer, B. Walter, J. Zendulka, eds., CEE-SET, Lecture
Notes in Computer Science, vol. 4980, pp. 48—61. Springer, 2008. ISBN 978-3-
642-22385-3.

[14] Pressman R.: Software Engineering — A practitioners Approach. McGraw-Hill,
2004.

[15] Rettig M.: Prototyping for tiny fingers. Communication of the ACM, vol. 37(4),
pp. 21-27, 1994. ISSN 0001-0782.

[16] Roehm T., Tiarks R., Koschke R., Maalej W.: How Do Professional Developers
Comprehend Software? In: Proceedings of the 34th International Conference on

Software Engineering, ICSE ’12, pp. 255-265. IEEE Press, Piscataway, NJ, USA,
2012. ISBN 978-1-4673-1067-3.

Acceptance testing of web applications with Test Description Language 477

[17] Shore J.: FIT and User Interface.
URL http://wuw. jamesshore.com/Blog/Fit-and-User-Interfaces.html.

[18] Snyder C.: Paper Prototyping: The Fast and Easy Way to Define and Refine User
Interfaces. Morgan Kaufmann Publishers, 2003.

[19] Sommerville Y., Sawyer P.: Requirements Engineering. A Good Practice Guide.
Wiley and Sons, 1997.

[20] Wynne M., Hellesoy A.: The cucumber book: behaviour-driven development for
testers and developers. Pragmatic Bookshelf, 2012.

Affiliations

Fukasz Olek
Poznan University of Technology, Institute of Computing Science, Poznan, Poland,
Lukasz.0lek@cs.put.poznan.pl

Bartosz Alchimowicz
Poznan University of Technology, Institute of Computing Science, Poznan, Poland,
Bartosz.Alchimowicz@cs.put.poznan.pl

Jerzy Nawrocki
Poznan University of Technology, Institute of Computing Science, Poznan, Poland,
Jerzy.Nawrocki@put.poznan.pl

Received: 1.10.2014
Revised: 4.10.2014
Accepted: 4.10.2014

