
Arkadiusz Szymczak∗, Maciej Paszyński∗, David Pardo∗∗

GRAPH GRAMMAR BASED PETRI NET
CONTROLLED DIRECT SOLVER ALGORITHM

In this paper we present the Petri net setting the optimal order of elimination for direct
solver working with hp refined finite finite element meshes. The computational mesh is rep-
resented by a graph, with graph vertices corresponding to finite element nodes. The direct
solver algorithm is expressed as a sequence of graph grammar productions, attributing the
graph vertices. The Petri net dictates the order of graph grammar productions, representing
the execution of the solver algorithm over a graph representation of computational mesh.
The presentation is concluded with numerical experiments performed for a model L-shape
domain.

Keywords: Petri nets, graph grammar, direct solver

ALGORYTM SOLVERA DOKŁADNEGO
STEROWANY SIECIĄ PETRIEGO
WYKORZYSTUJĄCY GRAMATYKI GRAFOWE

W artykule przedstawiona została sieć Petriego sterująca kolejnością wykonania produkcji
gramatyki grafowej reprezentującej wykonanie algorytmu solvera dokładnego na h adap-
towanej siatce metody elementów skończonych. Siatka obliczeniowa przedstawiona została
w postaci grafu, którego wierzchołki odpowiadają węzłom elementów skończonych. Algo-
rytm solvera dokładnego wyrażony jest w postaci sekwencji produkcji gramatyki grafowej,
atrybutujących wierzchołki grafu. Sieć Petriego określa kolejność wykonania produkcji gra-
matyki grafowej, reprezentujących wykonanie algorytmu solvera na grafowej reprezentacji
siatki obliczeniowej. Artykuł podsumowuje eksperyment numeryczny dotyczący wykonanie
algorytmu solvera na problemie modelowym w kształcie litery L.

Słowa kluczowe: sieci Petriego, gramatyki grafowe, solvery dokładne

∗ Department of Computer Science, AGH University of Science and Technology, al. Mickie-
wicza 30, 30-059, Kraków, Poland, maciej.paszynski@agh.edu.pl

∗∗ Departamento de Matemática Aplicada, Estad́ıstica e Investigación Operativa, UPV/EHU,
Campus de Leioa, Vizcaya, and IKERBASQUE (Basque Foundation for Sciences), Bilbao,
Spain

7 października 2010 str. 1/15

Computer Science • Vol. 11 • 2010

65



1. Introduction

The paper presents the part of a direct solver algorithm that consists of finding an
optimal order of elimination for hp refined Finite Element Method (FEM) computa-
tional meshes. The algorithm is expressed in terms of graph grammar controled by
Petri nets. The process of generation of computational mesh for FEM was expressed
by graph grammar for two dimensional rectangular [3], two dimensional triangular [4],
as well as three dimensional tetrahedral elements [5]. The order of execution of graph
grammar productions can be expressed by control diagram [11] or, alternatively, by
Petri nets [6, 7]. The Petri nets model allows to analyze the correctness as well as
potential for deadlock or starvation of the considered algorithms.

In this paper we focus on modeling the solver algorithm by using graph grammar
based Petri nets. To illustrate it, we utilize the two dimensional L-shape domain model
problem [1, 2], solved by using h refined two dimensional rectangular finite element
mesh with uniform polynomial order of approximation p.

The frontal solver is a sophisticated implementation of a Gaussian elimination
algorithm suitable for sparse matrices [9]. It browses finite elements one by one, ag-
gregating the element local matrices into a single frontal matrix, and eliminating
fully assembled degrees of freedom. The multi-frontal solver [10] is a generalization
of a frontal solver algorithm by using multiple frontal matrices. It can be efficiently
used whenever the elimination tree is created, with frontal matrices assigned to the
elimination tree nodes. During the execution of a multi-frontal solver algorithm, the
elimination tree is processed, and frontal matrices coming from son nodes are merged
at parent nodes into a new single frontal matrix. The process is recursively repeated
until we reach the root of the elimination tree.

The process of mesh generation and h refinement expressed in terms of graph
grammar results in a graph representation of the computational mesh. The solver
algorithm will be expressed in terms of graph grammar productions controlled by the
Petri nets.

2. L-shape domain model problem

In this section we introduce the L-shape domain model problem [1, 2]. The problem
consists in solving Laplace equation

∆u = 0 in Ω (1)

over the L-shape domain Ω presented in Figure 1. The solution u : R2 ⊃ Ω 3 u 7→ R

is a temperature distribution inside the L-shape domain.

The zero Dirichlet boundary condition

u = 0 on ΓD (2)

7 października 2010 str. 2/15

66 Arkadiusz Szymczak, Maciej Paszyński, David Pardo



Fig. 1. The L-shape domain

is assumed on the internal part of the boundary ΓD. The Neumann boundary condi-
tion

∂u

∂n
= g on ΓN (3)

is assumed on the external part of the boundary ΓN . The exact solution with the
origin point located at O (Fig. 1) is given by:

g (r, θ) = r
2
3 sin

2
3

(
θ +

π

2

)
. (4)

The so-called strong form of the partial differential equation (PDE) (1-3) is trans-
formed into weak (variational) form of PDE

b (u, v) = l (v) ∀v ∈ V, (5)

b (u, v) =
∫

Ω
∇u∇vdx, (6)

l (v) =
∫

ΓN
gvdS (7)

by considering L2 (Ω) scalar products of (1) with test functions from the functional
space V

V = {v ∈ L2 (Ω) :
∫

Ω

(
‖v‖2 + ‖∇v‖2

)
dx <∞ : tr (v) = 0 on ΓD}, (8)

integrating by parts, and including boundary condition (3).
The Finite Element Method consists in constructing a subspace Vhp ⊂ V with

finite dimensional basis {eihp}i=1,...,Nhp . The subspace Vhp is constructed by partition-
ing the domain Ω into finite number of elements, and defining basis functions at finite
element vertices, over edges, and interiors. The exemplary partition of the L-shape
domain into three rectangular finite elements is presented in Figure 2.

7 października 2010 str. 3/15

Graph grammar based Petri net controlled direct solver algorithm 67



Fig. 2. Partition of the L-shape domain into three finite elements

Elements of the basis eihp restricted to a particular element are called shape
functions. We define the first order shape functions (pyramids) at element vertices,
second order shape functions (edge-bubbles) over element edges, and second order
shape functions over elements interiors, presented in Figure 3.

Fig. 3. Examples of vertex, edge and interior shape-functions

The exact solution u of the weak formulation (5)–(7) is approximated in subspace
Vhp as a linear combination of the basis functions

u ≈ uhp =
21∑

i=1

uihpe
i
hp (9)

The coefficients uihp are called degrees of freedom (d.o.f.). The degrees of freedom can
be obtained by solving the following system of equations

21∑

i=1

uihpb
(
eihp, e

j
hp

)
= l
(
ejhp

)
j = 1, ..., 21 (10)

b
(
eihp, e

j
hp

)
=
∫

Ω
∇eihp∇ejhpdx (11)

7 października 2010 str. 4/15

68 Arkadiusz Szymczak, Maciej Paszyński, David Pardo



l
(
ejhp

)
=
∫

ΓN
gejhpdS (12)

obtained by substituting (9) into (5) and considering {ejhp}, j = 1, ..., 21 test functions.

3. Expressing the solver algorithm by graph grammar
production controled by Petri nets

The direct solver is used to solve the system of linear equation (10)–(12). Following
[12, 13] the general idea of the solver is summarized in Figure 4. The solver discussed
in [12, 13] creates two frontal matrices for each refinement tree. The solver browses
elements from refinement tree from the bottom to the top, aggregates d.o.f. from
elements nodes to frontal matrices, and eliminates d.o.f. related to fully assembled
nodes. The situation presented in Figure 4 corresponds to the case where two leaf
elements have been already aggregated to two frontal matrices, and their interior
nodes have been eliminated. Now, the solver have aggregated three new elements to
each frontal matrix, located one level up at the refinement tree. The fully assembled
nodes that can be eliminated now are denoted by yellow color for the first frontal
matrix, and by brown color for the second frontal matrix. The not fully assembled
nodes are denoted by green and blue colors. The disadvantage of this method is
the fact that the number of not fully assembled d.o.f. on the border of two refined
elements is constantly growing while we go up the refinement tree. This results in
constant increase of the size of each of the two frontal matrices, which in turns slows
down the solver algorithm. These nodes will be eliminated at the very end, when
we reach the roots of the two refinement trees, and the two frontal matrices will be
merged. The alternative strategy proposed in this paper is to merge frontal matrices
coming from neighboring refinement trees before going up the refinement tree. The
idea is illustrated in Figure 5. This simple trick results in constant size of the frontal
matrix.

We focus on the computational mesh presented in Figure 6 for the L-shape do-
main problem, h refined in the direction of the central singularity. The graph rep-
resentation of 1/3 of such a mesh, corresponding to any of the three initial mesh
elements, four times h refined, is presented in Figure 7. The graph can be obtained by
executing a sequence of graph grammar productions described in [11]. The full graph
for the three refined elements is too large to be presented in a figure here.

There are five graph grammar productions responsible for execution of the direct
solver algorithm, presented in Figures 8–12.

The productions attribute by α or β symbols the graph vertices representing
element interiors, edges and vertices. The symbols represent the aggregation into a
frontal matrix, and the elimination of the node, for different levels of the refinement
tree.

7 października 2010 str. 5/15

Graph grammar based Petri net controlled direct solver algorithm 69



Fig. 4. Following the refinement trees results in increase of the size of the frontal matrix.
Green and blue colors denote the growing number of border nodes

Fig. 5. Merging the frontal matrices and elimination of the border d.o.f. results in the constant
size of the frontal matrix. Green color denotes the constant number of border nodes

Figure 13 presents the Petri net modeling the elimination process of the solver
algorithm. The sequence of elimination is represented by attributing the adaptation
tree.

The analyzed example is a L-shaped mesh comprising three initial elements. The
elements are numbered from 1 to 3 such that the middle element has number 2. N is
the number of adaptation levels and, in the analyzed example, N = 4. The transitions
are named after graph grammar productions they represent. The numbers after dash
in the transition names designate the number of the mesh element being attributed
by given transition. The elimination process is performed in different stages: first,
production P0 is executed, then all P1 productions are executed, second all P3
and so on. Productions attributing adjacent mesh elements (1 and 2 or 2 and 3)
modify vertices representing the common edge between the elements – therefore such
production pairs cannot be executed in parallel.

7 października 2010 str. 6/15

70 Arkadiusz Szymczak, Maciej Paszyński, David Pardo



Fig. 6. Left panel: 20 times h refined mesh for the L-shape domain problem. Right panel:
Amplification by a factor of 10 towards the central singularity

Fig. 7. Graph representation of 1/3 of the mesh for the L-shape domain problem,
after four h refinements

7 października 2010 str. 7/15

Graph grammar based Petri net controlled direct solver algorithm 71



Fig. 8. Graph grammar production PO attributing the corner vertex

Fig. 9. Graph grammar production P1 attributing the leaf of the refinement tree

Fig. 10. First graph grammar production P3 propagating the elimination from son
to parent nodes in the refinement tree

7 października 2010 str. 8/15

72 Arkadiusz Szymczak, Maciej Paszyński, David Pardo



Fig. 11. Second graph grammar production P4 propagating the elimination
from son to parent nodes in the refinement tree

Fig. 12. Graph grammar production P5 completing the elimination process

7 października 2010 str. 9/15

Graph grammar based Petri net controlled direct solver algorithm 73



Places P2, P4, P7, P9, P13, P16, P19, and P20 with initial marking of one token
ensure mutual exclusion of the transitions corresponding to conflicting productions.
Places P11, P15, and P18 determine the number of executions of production P4 for
each element of the initial mesh. In the analyzed example (4 adaptation levels) the
round of P4 productions should be repeated twice, therefore these places contain 2
tokens each in the initial marking.

Figure 14 presents the reachability graph generated with Platform Independent
Petri Net Editor for the Petri net presented in Figure 13 and initial marking of
(1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 1, 0, 2, 1, 1, 0) (a number at given position indi-
cates the number of tokens in the corresponding place). This graph has been ana-
lyzed for deadlock occurrence with the same software. To enable such analysis, one
additional place (P21) and transition (T15) have been artificially added to the Petri
net. Thanks to this addition, the net becomes live if a dead state cannot be reached
elsewhere. The analysis proved that the Petri net is live indeed so there is no risk of
deadlock in so defined elimination algorithm.

4. Numerical experiments

The solver algorithm has been executed for the L-shape domain problem, over a
computational mesh that has been 20 times h refined in the direction of central
singularity, see Figure 6. The polynomial order approximation has been uniformly
set to p over the entire mesh. Thus, the resulting number of d.o.f. is (p − 1)2 in
element interiors, p− 1 over element edges and 1 at element vertices. The sequence of
experiments has been performed for p = 2, 3, 4, ..., 8. The execution time of the solver
algorithm has been measured, compare Figure 15 with the following parts:

• partial forward elimination part, responsible for merging element nodes (deciding
which nodes are fully assembled and can be eliminated) as well as for merging of
suitable frontal matrices,
• dgemm part denoting the time spent by matrix-matrix computations within the

LAPACK calls,
• total denoting the sum of the two above parts,
• frontal solver denoting the total execution time of the algorithm traveling the

refinement trees separately, one by one, suffering from the increase of the size of
the frontal matrices,
• integration corresponding to the total integration time over all finite elements.

Additionally, Figure 16 presents the number of d.o.f. over the computational
mesh from Figure 6, for different polynomial orders of approximation p = 2, 3, 4, ..., 8.
In other words, we compare our algorithm with the frontal solver and the integration
algorithms. The reason why we do not compare the algorithm with the multi-frontal
algorithm, e.g. MUMPS [14] is because for the L-shape domain problem with a single
singularity there are between one and two fronts just following the refinement tree
from the bottom to the top of the refinement trees.

7 października 2010 str. 10/15

74 Arkadiusz Szymczak, Maciej Paszyński, David Pardo



Fig. 13. Petri net setting the order of execution of graph grammar productions expressing
the solver algorithm

7 października 2010 str. 11/15

Graph grammar based Petri net controlled direct solver algorithm 75



Fig. 14. The linear structure of the reachability graph for the Petri net expressing the
solver algorithm. The length of the reachability graph depends on the number of executed

refinements

7 października 2010 str. 12/15

76 Arkadiusz Szymczak, Maciej Paszyński, David Pardo



Fig. 15. Execution times for different parts of the Petri nets based solver as well as for the
frontal solver and for the integration algorithms

Fig. 16. Sizes of the computational meshes for different polynomial orders of approximation

5. Conclusions

The proposed algorithm scales very well. Actually, the partial forward elimination
execution time does not depend on p, since the structure of nodes within the mesh does
not change when we perform global p refinement. The execution time is increasing
slightly for the LAPACK dgemm part, but the increase is not so rapid as for the
frontal solver algorithm suffering from the constant increase of the size of the frontal
matrix. However, the frontal solver is faster for small p. This is because the frontal
solver algorithm utilized in this example does not work on the level of nodes, rather it
works directly on frontal matrix, and the algorithm is free from the overhead resulting

7 października 2010 str. 13/15

Graph grammar based Petri net controlled direct solver algorithm 77



from nodes management. It should be emphasized that for higher p meshes, the nodes
management cost becomes negligible in comparison to the actual matrix manipulation
time. The proposed algorithm is even faster then the integration algorithm itself. The
future work will include the development of the parallel version of the solver, as well
as interfacing with more challenging two and three dimensional problems.

Acknowledgements

The work has been supported by Polish MNiSW grant no. NN 519 447739. The work
of the third author was partially funded by the Spanish Ministry of Science and Inno-
vation under project MTM2010-16511.

References

[1] Babuśka I., Guo B.: The hp-version of the finite element method. Part I: The
basic approximation results. Comput. Mech., vol. 1, 1986, pp. 21–41.

[2] Babuśka I., Guo B.: The hp-version of the finite element method. Part II: General
results and applications. Comput. Mech., vol. 1, 1986, pp. 203–220.

[3] Paszyński M., Paszyńska A.: Graph transformations for modeling parallel hp-
adaptive FEM computations. Lecture Notes in Computer Science, vol. 4967, 2007,
pp. 1313–1322.

[4] Paszyńska A., Paszyński M., Grabska E.: Graph Transformations for Modeling
hp-Adaptive Finite Element Method with Triangular Elements. Lecture Notes in
Computer Science, vol. 5103, 2008, pp. 604–614.

[5] Paszyński M., Pardo D., Paszyńska A.: Parallel multi-frontal solver for p adap-
tive finite element modeling of multi-physics computational problems. Journal of
Computational Science, vol. 1, 2010.

[6] Szymczak A., Paszyński M.: Graph grammar based Petri nets model of concurren-
cy for self-adaptive hp-Finite Element Method with rectangular elements. Proc.
of Conference Parallel Processing and Applied Mathematics, 2009.

[7] Szymczak A., Paszyński M.: Graph grammar based Petri nets model of concurren-
cy for self-adaptive hp-Finite Element Method with triangular elements. Lecture
Notes in Computer Science, vol. 5545, 2009, pp. 845–854.

[8] Demkowicz L.: Computing with hp-Adaptive Finite Elements, Vol. I. One and
Two Dimensional Elliptic and Maxwell Problems. Chapman & Hall / CRC Ap-
plied Mathematics & Nonlinear Science, 2007.

[9] Irons B.: A frontal solution program for finite-element analysis. International
Journal of Numerical Methods in Engineering, vol. 2, 1970, pp. 5–32.

[10] Duff I.S., Reid J.K.: The multifrontal solution of indefinite sparse symmetric lin-
ear systems. ACM Transactions on Mathematical Software, vol. 9, 1983, pp. 302–
325.

7 października 2010 str. 14/15

78 Arkadiusz Szymczak, Maciej Paszyński, David Pardo



[11] Paszyński M.: On the Parallelization of Self Adaptive hp-Finite Element Method.
Part I. Composite Programmable Graph Grammar Model Fundamenta Informa-
ticae, vol. 94, 2009, pp. 411–434.

[12] Paszyński M., Schaefer R.: Graph grammar driven parallel partial differential
equation solver. Proc. of Concurrency & Computations, Practise & Experience,
2010.

[13] Paszyński M., Pardo D., Torres-Verdin C., Demkowicz L., Calo V.: A Parallel
Direct Solver for the Self-Adaptive hp Finite Element Method. Journal of Parallel
and Distributed Computing, vol. 70, 2010, pp. 255–276.

[14] A MUltifrontal Massively Parallel sparse direct Solver. http://www.enseeiht.
fr/lima/apo/MUMPS/.

7 października 2010 str. 15/15

Graph grammar based Petri net controlled direct solver algorithm 79


