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HYPERGRAMMAR-BASED PARALLEL
MULTI-FRONTAL SOLVER FOR GRIDS
WITH POINT SINGULARITIES

Abstract This paper describes the application of hypergraph grammars to drive a linear
computational cost solver for grids with point singularities. Such graph gram-
mar productions are the first mathematical formalisms used to describe solver
algorithms, and each indicates the smallest atomic task that can be executed
in parallel, which is very useful in the case of parallel execution. In particular,
the partial order of execution of graph grammar productions can be found, and
the sets of independent graph grammar productions can be localized. They can
be scheduled set by set into a shared memory parallel machine. The graph-
grammar-based solver has been implemented with NVIDIA CUDA for GPU.
Graph grammar productions are accompanied by numerical results for a 2D
case. We show that our graph-grammar-based solver with a GPU accelerator
is, by order of magnitude, faster than the state-of-the-art MUMPS solver.

Keywords hypergraph grammar, direct solver, h adaptive finite element method,
NVIDIA CUDA GPU

Citation

8 kwietnia 2015 str. 1/28

Computer Science • 16 (1) 2015 http://dx.doi.org/10.7494/csci.2015.16.1.75

Computer Science 16 (1) 2015: 75–102

75

http://journals.agh.edu.pl/csci/


1. Introduction

The multi-frontal solver is a state-of-the-art direct solver algorithm for solving systems
of linear equations [9, 10]. It is a generalization of the frontal solver algorithm first
proposed in [19]. In this paper, we focus on the class of matrices generated by the
adaptive finite element method [7, 8]. The finite element method is commonly used
to solve many engineering problems [1, 2, 18, 28].

The multi-frontal algorithm constructs an elimination tree based on the analysis
of the sparsity pattern of the matrix. The leaves in the elimination tree correspond
to frontal matrices associated with particular finite elements. The solver algorithm
identifies and eliminates the fully-assembled rows from the frontal matrices. The re-
sulting sub-matrices, called Schur complements, are merged at the parent nodes of the
elimination tree, and new fully-assembled nodes are identified and eliminated again.
This process is repeated until we reach the root of the elimination tree. The direct so-
lver algorithm can be generalized to the usage of matrix blocks associated with nodes
of the computational mesh (called supernodes) rather than particular scalar valu-
es [6]. This allows for a reduction of computational cost related to the construction
of the elimination tree. Different implementations of the multi-frontal solver algori-
thm also exist that target specific architectures (see, e.g., [13, 14, 15]). There is also
a linearly-computational cost direct solver based on the use of H-matrices [27] with
compressed non-diagonal blocks. However, the main limitation of these solvers is that
they produce a non-exact solution.

The state-of-the-art multi-frontal solvers determine the way of solving the pro-
blem based on the structure of the global matrix. It is possible to improve the per-
formance of the multi-frontal solver algorithm by leveraging the knowledge based on
the computational mesh instead of a matrix. Another question is what is the lowest-
possible computational cost that can be obtained for two-dimensional computational
meshes containing a singularity (adaptations proceed toward a point). The question
above should also be generalized onto an arbitrary number of singularities. The exam-
ple of such a 2D mesh is presented in Figure 1. Namely, it must be decided whether
a problem having s singularities instead of one increases the complexity only by a con-
stant factor.

Figure 1. Exemplary two-dimensional mesh.
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The last of the questions considered in this work concerns graph grammars and
states whether it is possible to express an efficient direct solver algorithm within the
graph grammar model.

Most known graph grammars are context-free: only one non-terminal is allowed
on the left-hand side of production. The non-terminal can be a label of a node, like
in Node Replacement Graph Grammars [26], or a label of an edge, like in Hyperedge
Replacement Graph Grammars [16, 17]. This kind of graph grammar does not allow
for modeling hp-FEM with uniform refinement. Most non-uniform adaptive FEM
codes fulfil the following 1-irregularity rule: a finite element can be broken only once
without breaking the adjacent large elements. This is a consequence of limitation for
approximation over the common edges of big and small elements. Thus, modelling
the non-uniform refinements enforces checking the neighborhood of the edge, which
can be modeled only by context-sensitive graph grammars.

The first graph grammar model of mesh transformation was presented in [11].
This approach allows only for modeling uniform refinement. In order to model non-
uniform refinements or solver operations, a context-sensitive graph grammar has to be
used. One of the context-sensitive graph grammars is the composite graph grammar
proposed in [12]. The composite graph grammar models have already been utilized for
both modeling of the mesh generation and adaptation process, as well as for modeling
of the solver algorithm [20, 21, 22, 23, 25, 30]. However, only the hypergraph grammar
model presented in this paper results in logarithmic computational cost of the solver
algorithm, as confirmed by numerical experiments. In future works, we also plan
to incorporate the reutilization technique discussed in [24]. The alternative for the
adaptive finite element method is the isogeometric finite element method [5, 3], where
the mesh is uniform and the polynomial order of approximation is increased globally.
The isogeometric FEM delivers the higher order global continuity of the solution, but
it suffers from a computationally more-expensive direct solver algorithm [4].

2. Problem formulation

Grids with point refinements (as the one presented in Figure 1) can be used for
solving numerical problems with point singularities. The examples of such problems
are a projection problem for functions having multiple point extrema or singularities,
or the solution of the heat transfer problem with several point heat sources (compare
Fig. 2), or any other problem where the solution exhibits multiple point gradients.

2.1. Projection problem

In this section, we formulate the projection problem that will be solved using the
graph-grammar-driven solver implemented on the GPU. The goal is to find appro-
ximation u of given function f , defined over Ω ⊂ R2 to minimize functional with
respect to u (1).

‖f − u‖L2 → min (1)
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Figure 2. Exemplary two-dimensional heat sources.

This problem is equivalent to the following minimization problem

1
2
b (u, u)− l (u)→ min (2)

where b(w, v) is a symmetric, bilinear form:

b(w, v) = 2
∫

Ω

wvdΩ (3)

and l(w) is a linear form defined as:

l(w) = 2
∫

Ω

wfdΩ (4)

Let b(w, v) be a bilinear form on W ×W and l(v) be a linear form on W = H1 (Ω).
Let J(w) be a quadratic functional defined as 1

2b(w,w) − l(w). Then finding u that
minimizes J(w) over the affine space V is equivalent to finding u that satisfies:

b (u, v) = l (v) ∀v∈W
For proof, please see [7].

By applying the above-mentioned fact, we obtain an equivalent problem:

b (u, v) = l (v) ∀v∈W (5)

Computational domain Ω is now partitioned into rectangular elements with se-
cond order shape functions defined over each finite element vertex, edge, interior. The
shape functions αi : R2 3 (x, y) 7→ R over master (0, 1)2 rectangular element are
defined in the following way:
• first order polynomials over four vertices

α1 = (1− x)(1− y) (6)

α2 = (1− x)y (7)

α3 = xy (8)

α4 = x(1− y) (9)
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• second order polynomials over four edges

α4+1 = (1− x)x(1− y) (10)

α4+2 = (1− x)y(1− y) (11)

α4+3 = (1− x)xy (12)

α4+4 = x(1− y)y (13)

(14)

• second order polynomial over element interior

α9 = x(1− x)y(1− y) (15)

Each of the vertex shape functions are equal to one-on-one vertex and vanish on
the remaining vertices. Each of the edge-shape functions is a second-order polynomial
over one edge, and equal to zero on all other edges. Each of the face-shape functions
is a second-order polynomial over one face and zero over all other edges and faces.

We utilize a linear combination of second-order polynomials for numerical solu-
tions, spread over finite elements vertices, edges, and interiors:

u =
n∑

i=1

uiei. (16)

The basis functions ej of space V belong to the space, and the form b is linear with
respect to first argument, then we can finally rewrite the problem as:

n∑

i=1

uib (αi, αj) = l (αj) ∀αj∈W (17)

Equation (17) is considered element wise, and we generate element frontal matri-
ces (one for each element) to be interfaced with the multi-frontal solver. Namely, for
each rectangular element, we utilize a set of graph grammar productions contributing
to the element matrix. The element matrix in this model projection problem looks
like this: 


b(α8, α8) ... b(α8, α1)

... ... ...
b(α1, α8) ... b(α1, α1)


 =




l(α8)
...
l(α1)




where rows and columns are ordered with interior, followed by edges, followed by
vertices shape functions.

In the numerical simulations, we have selected function f so it has a gradient
going to infinity at the bottom center of the rectangular domain Ω.

Ω = [−1, 1]× [0, 1] 3 (x, y) 7→ f(x, y) =

tan(
π

2
(1− |x|))tan(

π

2
(1− y)) (18)
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The graph grammar generates a sequence of two-dimensional, increasingly-refined
grids with rectangular finite elements with basis functions spread over finite element
vertices, edges, and interiors, approximating function f with increasing accuracy.

The numerical examples concern a simple projection problem, but they can be
easily generalized into heat transfer, linear elasticity, Maxwell equations, Stokes pro-
blem etc., provided the numerical problems generate local-point singularities.

3. Hypergraph grammar

This paper presents the hypergraph grammar([29]), which is an extension of Hype-
redge Replacement Grammar ([16, 17]) for modelling mesh transformation and linear
computational cost solver for grids with point singularities. The rectangular elements
of a mesh as well as the whole mesh are described by means of hypergraphs. The mesh
transformations are modelled by hypergraph grammar productions. Each hypergraph
is composed of a set of nodes and a set of hyperedges with sequences of source and
target nodes assigned to them. The nodes as well as the hyperedges are labelled with
labels from a fixed alphabet. To represent the properties of mesh elements, the attri-
buted hypergraphs are used; i.e., each node and hyperedge can have some attributes
like, for example, the polynomial order of approximation.

Let C be a fixed alphabet of labels for nodes and hyperedges. Let A be a set of
hypergraph attributes.

Definition 1. An undirected attributed labelled hypergraph over C and A is a system
G = (V,E, t, l, at), where:

1. V is a finite set of nodes,
2. E is a finite set of hyperedges,
3. t : E 7→ V ∗ is a mapping assigning sequences of target nodes to hyperedges of E,
4. l : V ∪ E 7→ C is a node and hyperedge labelling function,
5. at : V ∪ E 7→ 2A is a node and hyperedge attributing function.

The hypergraphs are created from simpler hypergraphs by replacing their sub-
hypergraphs by new hypergraphs. This operation is possible if, for new hypergraph
and the subhypergraph, a sequence of so-called external nodes is specified. The hyper-
graph replacing is defined as follows: the subhypergraph is removed from the original
hypergraph, and the new hypergraph is embedded into the original hypergraph. The
new hypergraph is glued to the reminder of the original hypergraph by fusing its
external nodes with the corresponding external nodes in the reminder of the original
hypergraph. The number of external nodes should be the same in both hypergraphs.

Definition 2. A hypergraph of type k is a system H = (G, ext), where:

1. G = (V,E, t, l, at) is a hypergraph over C and A,
2. ext is a sequence of specified nodes of V , called external nodes, with ‖ext‖ = k.

Definition 3. A hypergraph production is a pair p = (L,R), where both L and R

are hypergraphs of the same type.
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A production p can be applied to a hypergraph H if H contains a subhypergraph
isomorphic with L.
Definition 4. Let G1 = (V1, E1, t1, l1, at1) and G2 = (V2, E2, t2, l2, at2) be two hy-
pergraphs. G1 is a subhypergraph of G2 if:

1. V1 ⊂ V2, E1 ⊂ E2,
2. ∀e ∈ E1t1(e) = t2(e),
3. ∀e ∈ E1l1(e) = l2(e),∀v ∈ V1 l1(v) = l2(v),
4. ∀e ∈ E1at1(e) = at2(e),∀v ∈ V1 at1(v) = at2(v).

The application of a production p = (L,R) to a hypergraph H consists of re-
placing a subhypergraph of H isomorphic with L by a hypergraph R and replacing
nodes of the removed subhypergraph isomorphic with external nodes of L by the
corresponding external nodes of R.
Definition 5. Let P be a fixed set of hypergraph productions. Let H and H ′ be two
hypergraphs.

H ′ is directly derived from H (H ⇒ H ′) if there exists p = (L,R) ∈ P such that:
• h is a subhypergraph of H isomorphic with L,
• Let exth be a sequence of nodes of h composed of nodes isomorphic with nodes

of the sequence extL.
The replacement of h = (Vh, Eh, th, lh, ath) in H = (VH , EH , tH , lH , atH) by
R = (VR, ER, tR, lR, atR) yields the hypergraph G = (VG, EG, tG, lG, atG), where:

– VG = VH − Vh ∪ VR,
– EG = EH − Eh ∪ ER,
– ∀e ∈ ERtG(e) = tR(e),
– ∀e ∈ EH −Eh with tH(e) = t1, ..., tn, tG(e) = t′1, ..., t

′
n, where each t′i = ti if

ti does not belong to the sequence exth or t′i = vj (vj is an j-th element of
the sequence extR) if ti is an j-th element of the sequence exth,

– ∀e ∈ EH − Eh lG(e) = lH(e), atG(e) = atH(e), ∀e ∈ ER lG(e) = lR(e),
atG(e) = atR(e),

– ∀v ∈ VH − Vh lG(v) = lH(v), atG(v) = atH(v), ∀v ∈ VR lG(v) = lR(v),
atG(v) = atR(v).

• H ′ is isomorphic with the result of replacing h in H by R.
Let AT = V ∪E be a set of nodes and hyperedges of H, where H denotes a family

of hypergraphs over C and A.
Definition 6. A hypergraph grammar is a system G = (V,E, P,X), where:
• V is a finite set of labelled nodes,
• E is a finite set of labelled hyperedges,
• P is a finite set of hypergraph productions of the form p = (L,R), where L and R

are hypergraphs of the same type composed of nodes of V and hyperedges of E,
• X is an initial hypergraph called axiom of G.

The paper presents the hypergraph grammar for modeling mesh transformation
and solver. The rectangular elements of a mesh as well as the whole mesh are described
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by means of hypergraphs. The hypergraph nodes represent mesh nodes and are labeled
by v. The hyperedges represent interiors, edges, and boundary edges of rectangular
finite elements, and are labelled by I, F and B, corresponding to interior, edge, and
boundary edges, respectively. Figure 3 presents an exemplary mesh and its hypergraph
representation.

Figure 3. Exemplary mesh and graph.

4. Mesh generation

We start with the graph grammar productions that can be used for both sequential
and parallel generation of the initial mesh with point singularity located at the center
of the bottom of the mesh. We start with executing the production in Figure 4 that
transforms the initial state into the initial mesh.

F1B I

B

B

S I

B

B

B

v

v

v

v

v

v

Figure 4. Pinit

Next, we proceed with refinements of the left and right elements by executing the
production in Figure 5. It needs to be explained why it is not allowable to break the
interface edge between these element. This is due to the so-called 1-irregularity rule,
which states that the neighboring elements cannot vary in their refinement levels by
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more than one. Before breaking their interface edge, we need to ensure that both of
the adjacent elements are at the same refinement level.

(a) (b)

Figure 5. Productions breaking the initial mesh: Pinitleft (a), Pinitright (b).

After breaking the two adjacent elements, we can break the central edge shared
between them by executing the graph grammar production presented in Figure 6.

Figure 6. The graph grammar production breaking the edge Pirregularity.

In order to proceed with further refinements towards the central singularity, we
can use the following productions: Pbreakinterior breaking the interiors of the two
elements adjacent to the point singularity (due to symmetry, now we can use a single
production for breaking interior I of both left and right innermost elements), and
Penforceregularity breaking the common edge between them (Fig. 7 and 8). These
productions can lead to a mesh refined to the arbitrary level.

Figure 7. Pbreakinterior

Figure 8. Penforceregularity
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5. Graph grammars for the sequential solver

Assuming we applied the following chain of productions: Pinit 7→ Pbreakinitleft 7→
Pbreakinitleft 7→ Pregularity 7→ Pbreakinterior 7→ Pbreakinterior 7→ Penforceregularity we
receive output mesh as in Figure 9.

Figure 9. Browsing order of the linear solver.

The solver processes the mesh from the two bottom elements surrounding the
singularity, level by level, up to the level of initial elements. To convey the idea of
the graph-grammar solver, we present its behavior for the first two elements being
processed. In this section, we present the complete process for building up and elimi-
nating the element matrix for the first element browsed. This means the left innermost
element of the adapted grid.

We begin with generating a contribution to the element frontal matrix coming
from the interior node of the processed elements. This is done by production Paddint
presented in Figure 10.

Figure 10. Production Paddint adding interior node to the element matrix.

There, we mark the hypergraph nodes already generated in the matrix. The
system of equations for the element looks like

(
b(α8, α8)

)
=
(
l(α8)

)

where α8 is the shape function related to the interior node. The element frontal
matrix is also graphically illustrated on the right panel of Figures 10–22. In the next
step, we add the contributions to the element frontal matrix related to interactions
of the boundary node with the interior node. This is done by executing productions
Paddboundary presented in Figures 11. The system of equations for the element after
this operation looks like

(
b(α8, α8) b(α8, α5)
b(α5, α8) b(α5, α5)

)
=
(
l(α8)
l(α5)

)
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where α5 corresponds to the shape functions associated with bottom edge.

Figure 11. Production Paddboundary adding the boundary node to the element matrix.

Next, we add the contributions to the element frontal matrix related to the
interactions of the left interface edge node with the interior and boundary nodes.
This is done by executing productions PaddF1layer presented in Figure 12.

Figure 12. Production PaddF1layer adding the left interface edge to the element matrix.

The system of equations for the element after this operation looks like



b(α8, α8) b(α8, α7) b(α8, α5)
b(α7, α8) b(α7, α7) b(α7, α5)
b(α5, α8) b(α5, α7) b(α5, α5)


 =




l(α8)
l(α7)
l(α5)




where α7 corresponds to the shape functions associated with left interface edge.
Next, the same operation is done for the upper interface edge node, as illustrated

in Figure 13 by production PaddF2layer, as well as for the vertices, as illustrated in
Figure 14 by production Paddvertices. Each time, the frontal matrix is augmented with
new entries, as graphically illustrated in the right panels.

Figure 13. Production PaddF2layer adding upper interface edge to the element matrix.

The resulting state of the element matrix is depicted in Figure 14. At this time,
we completed the addition of the first element’s nodes to the matrix. Now, we can
proceed with the elimination of the fully-assembled nodes. Fully-assembled nodes
are the ones that have all contributions already present in the matrix. It is worth
mentioning that interior nodes are always fully assembled, since they vanish on all
edges and have support on just one element. Edges are always shared by two elements
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(unless they are boundary edges). Vertex nodes can be shared by between one and
four distinct elements.

Figure 14. Production Paddvertices adding vertices to the element matrix.

We start with eliminating the interior’s contribution from the matrix. This is
done by executing production Pelimint presented in Figure 15.

Figure 15. Production Pelimint eliminating interior’s contribution from the matrix.

We mark the eliminated nodes in a dark color. The only other fully-assembled
node is the boundary node B. Thus, we proceed with its elimination by executing
production Pelimboundary presented in Figure 16.

Figure 16. Production Pelimboundary eliminating boundary edge from the element matrix.

At this time, we are done with the first element. No more nodes can be eliminated
without further knowledge about the neighboring elements. We move onto the right
element and start adding the contributions of its nodes. Again, first we add contribu-
tion coming from the interior node of the second element. This is done by executing
production Paddint2, see Figure 17.

Figure 17. Production Paddint2 adding interior of the second element to the matrix.
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Then, we add the contribution coming from the boundary edge by running pro-
duction Paddboundary2 (Fig. 18).

Figure 18. Production Paddboundary2 adding boundary edge to the matrix.

And the upper and right interface edges (productions PaddF1layer2, PaddF2layer2,
see Fig. 19).

Figure 19. Productions PaddF1layer2, PaddF2layer2 adding layer nodes to the matrix.

Once we add all vertices (Fig. 19), we can proceed with the elimination of the
fully-assembled nodes for the second element.

Again, we start with eliminating the contribution coming from the interior node
(production Pelimint2, see Fig. 20).

Figure 20. Production Pelimint2 eliminating interior of the second element.

Similar to the first element, we can also eliminate boundary edge (production
Pelimboundary2, Fig. 21).

Figure 21. Production Pelimboundary2 eliminating boundary edge in the element matrix.

After adding the second element, we also have all contributions for the inter-
face edge and vertex between elements, so now we can eliminate both (production
Pelimcommon, Fig. 22).
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Figure 22. Production Pelimcommon eliminating the common edge.

We continue accordingly with the next productions following the order shown in
Figure 9 until we reach the very last element. Then, we can proceed with backward
substitution that provides us with the solution with the given accuracy.

Figure 23. Production Pseparatetop for separation of the top layer.
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6. Graph grammar for the parallel solver

6.1. Concurrency analysis

In this section, we mark a partial order of the productions and decide how many of
them can be executed in parallel.

6.1.1. Mesh generation

Compared with the remaining parts of the algorithm, mesh generation based on graph
grammars is cheap, and there is no point in parallelizing this part. Besides, most of the
productions must be executed in a strictly-enforced order, since most steps depend
on the mesh being in a certain state.

However, to enable parallel processing, once the mesh is generated, we fire some
additional graph grammar productions, Pseparatetop presented in Figure 23 as ma-
ny times as there are layers of the mesh, except for the last layer, where we fire
Pseparatebottom, presented in Figure 24. These graph grammar productions separa-
te particular layers of the mesh so we can process them independently, without the
overlapping of nodes.

Figure 24. Production Pseparatebottom for separation of the bottom layer.
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Figure 25. Production Pmergetop for merging of the two top layers with interface matrices.
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Figure 26. Production Pelimtop for elimination of the common layer over the two already
marged top layers.
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6.1.2. Processing of each layer

Having the computational mesh partitioned into layers, we can process each layer
fully in parallel, independently from the other layers.

The considerations presented for the bottom layer with two elements can be
generalized into an arbitrary layer. The general idea of the graph grammar for the
arbitrary layer is the same; however, the number of productions is two times larger,
since there are four elements instead of two. Each layer can be processed independently
at the same time. In other words, the graph grammar productions responsible for
aggregation and merging over one layer can be executed in parallel

Paddint 7→ Paddboundary 7→ PaddF1layer 7→
PaddF2layer 7→ Paddvertices 7→ Pelimint 7→ (19)

Pelimboundary 7→ ...

where ... denotes the additional productions for layers consisting with four elements
instead of two for each layer.

Moreover, for point singularities located inside the elements, all of the conside-
rations presented in this paper remain the same; however, the bottom layer consists
of four elements and upper layer consists of eight elements.

6.1.3. Processing of the interfaces

Unlike the sequential algorithm, we keep all of the interface nodes for the parallel
algorithm uneliminated until all of the layers are processed.

Having the interiors of all layers eliminated, we have several frontal matrices
associated with all of the layers, one frontal matrix per layer. The frontal matrices
contain the nodes from both interfaces, located on the top and bottom sides of each
layer.

We execute graph grammar productions Pmergetop merging the top two layers
into one layer, additionally merging the two frontal matrices into one matrix, in such
a way that the rows of the merged matrix associated with the common interface are
now fully assembled. This is denoted in Figure 25, with fully-assembled nodes denoted
by the color red.

Having the single frontal matrix with fully-assembled nodes related to the com-
mon interface allows us to eliminate these nodes by executing the graph grammar
production Pelimtop presented in Figure 26. The fully-assembled nodes are elimina-
ted, which is denoted by changing their color from red to green.

The same scenario applies to the two bottom layers, which is denoted by produc-
tions Pmergebottom and Pelimbottom presented in Figures 27 and 28.
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Finally, we merge the patches of two layers (obtained in the previous steps)
into a single path. This is expressed by production Pmergetop presented in Figure 29.
Additionally, the two frontal matrices associated with the two patches are merged
into one frontal matrix, with the rows associated with nodes on the common interface
fully assembled. These nodes are denoted in Figure 29 by the color red. At this point,
we can solve the top problem since all of the nodes are fully assembled, including the
top boundary nodes. This is expressed by production Psolvetop presented in Figure 30.

Figure 29. Production Pmergetop for merging of the bottom and top layers, resulting in a top
problem.
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Figure 30. Production Psolvetop for solving the top problem.

Having the top problem solved, we process with analogous backward substitu-
tions, which basically can be expressed by identical graph grammar productions, but
executed in reverse order.

For more than four layers, the procedure is identical; we only need to generate
additional productions for merging patches of four, eight, or more layers.

We will illustrate this technique in the Numerical results section with the exam-
ples in two dimensions.

7. Solver algorithm for GPU

The graph-grammar-based solver has been implemented on a GPU with NVIDIA
CUDA. The graph grammar productions have been partitioned into sets of indepen-
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dent tasks, and scheduled set by set concurrently, into the nodes of the GPU. The
algorithm is the following:

• Execute in serial the graph grammar production constructing the mesh with
point singularity Pinit 7→ Pbreakinitleft 7→ Pbreakinitleft 7→ Pregularity 7→
[Pbreakinterior 7→ Penforceregularity]n where n corresponds to the number of gene-
rated layers.
• Execute in serial the graph grammar production partitioning the mesh into layers
Pseparatetop 7→ Pseparatetop 7→ Pseparatebottom.
• Execute in concurrent the graph grammar productions responsible for generation

and aggregation of interior nodes from particular layers Paddint 7→ Paddboundary 7→
PaddF1layer 7→ Paddvertices 7→ Pelimint 7→ Pelimboundary 7→ ... where ... corre-
sponds to additional productions for upper layers.
• Execute graph grammar productions for merging and elimination of the interface

nodes from top layers Pmergetop 7→ Pelimtop in concurrent with graph grammar
productions for merging and elimination of the interface nodes from bottom layers
Pmergebottom 7→ Pelimbottom. For more than four layers, we obtain the binary tree
structure here, processed level by level in concurrent.
• Execute the graph grammar production responsible for merging and solving the

top problem Pmergetop and Psolvetop.

NVIDIA GPU CUDA (Compute Unified Device Architecture) is a perfect archi-
tecture for these kind of problems, as it allows us to process data much more efficiently
than with ordinary CPUs. Calculations are performed in parallel by hundreds of thre-
ads, allowing us to achieve logarithmic scaling of our solution.

To quickly outline modern GPU architecture – it consists of several multiproces-
sors (usually 8–12), each containing many cores (8 for GTX 260, 32 for Tesla C2070).
Moreover, there are 4 kinds of memory: global, shared, constant, and texture. For
this article, we are only interested in the first two types of memory. We could use
constant and texture to speed computation, although the algorithm would then be
tied to CUDA forever. Global memory can have up to 1.5GB of space and can be ac-
cessed from every multiprocessor, but its latency is considerably high, while its shared
memory (up to 48KB per multiprocessor) can be accessed by all threads running on
one multiprocessor. This memory is really small, but compared to global memory, it
has much lower latency and much higher throughput. Our implementation tries to use
global memory as efficiently as possible (avoiding scattered access) and makes heavy
use of shared memory to speed up computation.

8. Numerical experiments

In order to prove theoretical discoveries in this paper, a series of experiments have
been conducted to compare and contrast the efficiency of the graph-grammar driven
parallel GPU solver and a well-known, sequential MUMPS solver over 2D grids with
singularities. The numerical tests were performed on a GeForce GTX 260 graphic card
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with 24 multiprocessors, each equipped with 8 cores. The total number of cores equals
192. The global memory on graphic card was 896 MB. The polynomial approximation
level p is set to two. This means we employ h-adaptive Finite Element Method [7, 8]

We present the results in eight graphs (Fig. 31–34).

We compare the performance of the traditional MUMPS solver with the graph-
grammar driven linear GPU solver starting from a 2D grid with a single point singu-
larity (see Fig. 31). It can be easily observed that the GPU solver is very predictable
in terms of computational costs, which increase logarithmically with the number of
degrees of freedom. In the case of MUMPS, it is full of sharp rises and drops, but
generally rises in a linear way.

Figure 31. 2D mesh with point singularity.

For p = 3 this difference remains visible in favor of the GPU solver (compare
Fig. 32).

Figure 32. 2D mesh with 2× 2 point singularities.
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With the increase of the number of singularities, this difference becomes even
more obvious. MUMPS computational cost still seems linear, but it rises at much
steeper angle. In the case of one GPU available, we can process each of the singularities
one by one and then submit the remaining Schur complements for the top problem
to the MUMPS solver in order to solve the 2× 2 regular grid, with element matrices
replaced by Schur complements coming from elimination of the point singularities.
This scenario is called “4*GPU+top” for 2 × 2 singulariites or “16*GPU+top” for
4×4 singularities and “64*GPU+top” for 8×8 singularities. We compare this approach
to submitting the entire problem to the MUMPS solver and solving it once (denoted
by “MUMPS” solver).

The comparison of the MUMPS solver with GPU based solver is presented in
Figures 32–34 for 2× 2, 4× 4 and 8× 8 singularities, respectively.

Figure 33. 2D mesh with 4× 4 point singularities.

Figure 34. 2D mesh with 8× 8 point singularities.

We also present a convergence of our h adaptive method for increasing the num-
ber of layers, and comparison with the hp adaptive case, where we also change the
polynomial order of approximation, but the computational cost is only asymptotically
linear (linear with respect to the maximum order), see Figure 35.
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Figure 35. Comparison of h and hp adaptivity for the heat transfer problem with point
singularities.

9. Conclusion

In this paper, we presented the hypergraph grammar based model of multi-frontal
solver algorithm for computational grids with point singularities. The expressing
of the solver algorithm in terms of hypergraph grammar allows for the identifica-
tion of sets of graph grammar productions that can be concurrently executed. The
graph-grammar-based solver algorithm was implemented in NVIDIA CUDA for two-
dimensional problems with point singularities. The numerical results showed that our
graph-grammar-based solver with GPU accelerator outperform the sequential CPU
MUMPS solver by the order of magnitude.
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