
Piotr Nawrocki
Aleksander Mamla

DISTRIBUTED WEB SERVICE REPOSITORY

Abstract The increasing availability and popularity of computer systems has resulted in

a demand for new language- and platform-independent ways of data exchange.

This demand has, in turn, led to significant growth in the importance of systems

based on Web services. Alongside the growing number of systems accessible via

Web services came the need for specialized data repositories that could offer

effective means of searching the available services. The development of mobile

systems and wireless data transmission technologies has allowed us to use dis-

tributed devices and computer systems on a greater scale. The accelerating

growth of distributed systems might be a good reason to consider the develop-

ment of distributed Web service repositories with built-in mechanisms for data

migration and synchronization.

Keywords Web services, repository, heterogeneity, data replication, node balancing

Citation

2015/04/08; 21:58 str. 1/19

Computer Science • 16 (1) 2015 http://dx.doi.org/10.7494/csci.2015.16.1.55

Computer Science 16 (1) 2015: 55–73

55

http://journals.agh.edu.pl/csci/

1. Introduction

There has been a very rapid development of computer systems architecture in recent

years. Furthermore, the role of computer systems in business and everyday life has

increased significantly. Along with the decrease in hardware prices came a greater

availability of computer systems that support modern business.

Many corporations started to replace their expensive dedicated mainframe solu-

tions with those based on microcomputers, personal computers, and clouds [12]. Com-

panies developed special computer systems to support their production and research.

Those systems were required to communicate and exchange data with one another.

However, the increasing number of participating systems made this collaboration ever

more complicated. Moreover, these systems not only needed to communicate with the

remaining systems within the company but also had to be compatible with those used

by the companys business partners. Such requirements resulted in a need for a new

method of data exchange that would be independent of programming languages, op-

erating systems, or hardware platforms. All of this has led to the development of Web

services in a number of areas, such as Smart Building, Internet of Things, and Cloud

Computing [16].

Web services offer programmers entirely new possibilities when designing and

developing distributed systems or Web applications. They introduce a new layer of

abstraction above application servers, operating systems, and hardware platforms.

With the growing popularity of systems using Web services emerged the demand

for special tools that could manage Web service metadata and allow effective Web

service discovery. Increasingly often, special Web service repositories are used for that

purpose. Figure 1 illustrates the role of Web service repositories in the Web service

architecture and the lifecycle of a single service.

Web Services

Repository

Service

Consumer

Service

Provider

2. Service lookup 1. Service registration

3. Service call

4. Response

Figure 1. Role of a Web service repository in the Web service architecture.

2015/04/08; 21:58 str. 2/19

56 Piotr Nawrocki, Aleksander Mamla

The rapid development of mobile devices and wireless data transmission technolo-

gies has also accelerated the spread of Web services and the metadata that describe

them. This spread has, in turn, resulted in the need for a distributed repository of

Web service metadata with additional aspects of distributed systems that must be

considered, such as data persistence, consistency, and availability.

2. Related work

Numerous studies and publications have appeared on Web service repository issues.

However, few of them deal with the replication of data between repositories.

The best-known solution for public repositories used to be UDDI (Universal Dis-

tribution, Discovery and Interoperability). This was developed by an international

consortium founded by Microsoft, IBM, and Ariba. UDDI [8] was meant to deliver

a public repository of Web services and a unified standard for publishing and discover-

ing the Web services available. However, the solution did not see widespread adoption;

and so, Microsoft and IBM decided to shut down their public UDDI registries in 2006.

Many articles discuss the problem of efficient Web service discovery mechanisms

in repositories [11][7]. In [13], the authors propose a Semantic Web services Clustering

(SWSC) method that extends the semantic representation of Web services. With the

introduction of this method, the Web service discovery process has been improved,

allowing for the precise location of Web services with expected properties. In another

article [5], the authors propose a heuristic approach to the semi-automatic classifica-

tion of Web services. It allows consumers and repository administrators to categorize

services manually, thus improving the automatic organization and discovery of Web

services. Neural networks may also be used in the discovery of Web services. In [2],

the authors propose a framework for enabling the efficient discovery of Web services

using Artificial Neural Networks (ANN).

As suggested by Atkinson, Bostan, Hummel, and Stoll [3], a new approach to

the design and implementation of Web service repositories is required; one that limits

human maintenance of repositories and increases the role of automated management

mechanisms. Other papers [6, 15] state that new kinds of Web service repositories

could be helpful in the area of service composition and providing QoS for Web services.

An important aspect concerning the information collected in a Web service repos-

itory is ensuring that it is up to date. A situation may occur where a Web service

stops working, changes its QoS and other parameters (such as cost or URI). There

are different approaches to solving this problem. One of them is checking whether

the entry in the repository is up-to-date. However, in cases where it is found that the

Web service in question has stopped working or its parameters have changed, the user

is only informed that the Web service is not working properly. Therefore, a better

solution, proposed in article [1], is an integrated approach for dynamically adapting

web service compositions based on non-functional requirements (NFRs). The pro-

posed solution provides methods for identifying semantically-equivalent services to

allow the selection of the best possible Web service to be invoked. This approach

2015/04/08; 21:58 str. 3/19

Distributed Web service repository 57

focuses more on providing Web services with a specific functionality and appropriate

QoS than on continuously checking whether a particular Web service is available.

Recent publications have attempted, inter alia, to combine the concept of clouds

and repository services [9], with issues related to storage, replication, and migration

of data across multiple repository storage providers [17].

Referring to the solutions already developed, the authors of this article have

sought to respond to contemporary challenges of storage and automatic replication of

information, particularly with respect to services in distributed data repositories.

3. Web service repository

In the design and development of a distributed Web service repository, the following

issues had to be considered:

• data replication – due to the distributed nature of the repository being de-

veloped, the system has to provide reliable and effective mechanisms for data

replication between cooperating instances;

• error detection – the repository should detect and handle errors affecting single

nodes;

• data security – the system developed ought to implement security mechanisms

with respect to stored data.

The designed system must incorporate special mechanisms that address all of

these requirements.

3.1. System architecture

The developed Web service repository has been designed and implemented as a dis-

tributed system. Other features of this system include:

• platform independence – the repository is intended to operate with different

operating systems;

• fault tolerance – the repository is supposed to detect and handle any outages

or errors affecting integrated hosts;

• self-organization – cooperating hosts organize themselves in a hierarchical

structure to reduce the number of connections maintained and improve the speed

of data synchronization across the repository;

• extensibility – the data model used by the repository offers users considerable

discretion with respect to storing Web service description entries.

A single system instance (node) may work as a standalone repository or may

connect with other instances to create a distributed repository. The system introduces

the concept of a group – a set of data on Web services and the users with rights to

access them, which is stored on at least one node.

Each node may maintain multiple groups at the same time (see Figure 2). All

group data (i.e., Web service entries and user information) are synchronized across

all of the nodes that maintain the group in question.

2015/04/08; 21:58 str. 4/19

58 Piotr Nawrocki, Aleksander Mamla

Node
Group

Node

Node

Group
Group

Figure 2. Concept of groups in the implemented repository.

Each node may create a new group, connect to an existing group, or disconnect

from a group. If group data has only been stored on a single node, disconnecting that

node from the group is tantamount to permanently deleting this groups data.

Groups have unique identifiers and private keys that are used when new nodes

connect to the group and during communication between connected nodes.

Figure 3 presents the architecture of the implemented system. The roles of indi-

vidual modules are:

• network communication module – responsible for receiving and sending mes-

sages from/to other nodes;

• group management module – responsible for creating new groups and con-

necting to/leaving existing groups. When a node creates a new group or connects

to an existing one, this module is responsible for maintaining contact with other

nodes organized into the group and for ordering data replication between nodes;

• data replication module – performs data replication between cooperating

nodes;

• database access module – provides an interface to the data persistence layer;

• user interface module – makes the system functionality accessible to the user

through the HTTP interface.

The entire network communication between subgroup members and neighbors

is encrypted with the groups private key (requested from the node at the time it

connects to the group). If any node receives a message encrypted with an invalid key,

this message is disregarded. This mechanism gives system administrators control over

access to the repository.

2015/04/08; 21:58 str. 5/19

Distributed Web service repository 59

Node

User

Network

communication

module

User

interface

module

Group

management

module

Data

replication

module

Database

access

module

HTTP

HTTP

CouchDB database

TC
P

T
C

P

...

Other node

Other node

Figure 3. System architecture.

3.1.1. Hierarchical structure of the repository

Where multiple nodes connect to the same group, they work together as a single dis-

tributed repository and, thus, require mechanisms for mutual communication and data

replication. The implemented system takes advantage of the built-in data replication

features provided by CouchDB. However, to use these features effectively, a repository

has to maintain information about cooperating nodes and formulate the best strategy

for effective data replication.

Subgroup

Subgroup’s leader

Node

Figure 4. Hierarchical structure created by nodes.

2015/04/08; 21:58 str. 6/19

60 Piotr Nawrocki, Aleksander Mamla

In order to ensure the fastest and most-effective data replication, cooperating

nodes automatically organize themselves into a hierarchical structure (see Figure 4).

Individual nodes connected to the group divide into special subgroups. Each sub-

group may contain up to five nodes, with one designated subgroup leader. Every

subgroup may have up to three neighbors (adjacent subgroups). A subgroup leader

is responsible for:

• checking the availability of other subgroup members;

• checking the availability of leaders of adjacent subgroups;

• ordering data replication between subgroup members and subgroup neighbors.

A subgroup leader continuously monitors the availability of subgroup members

and sends them information on current subgroup status; i.e., a list of active members

and neighbors. As a result, all subgroup members have up-to-date information about

subgroup structure. Regular members also monitor the availability of the leader. If

the leader is inactive for an excessively-long period, the remaining members elect

a new leader.

Leaders of adjacent subgroups also maintain continuous communications with one

another, exchanging information about other neighbors and overall group structure.

The hierarchical structure of the repository is managed upon the connection

of new nodes (Figure 5 contains a detailed diagram of the algorithm used for that

purpose). Cooperating nodes tend to achieve a well-balanced graph structure (see

Figure 6).

3.1.2. Data replication

Each node monitors changes to the database using the CouchDB changes feed mech-

anism. Where a change in data is detected, the node has to notify other nodes about

this in order to synchronize the data across the repository. The notification process

depends on the type of the node in question:

• if the node is a subgroup leader, it replicates its database to all subgroup members

and neighbors;

• if the node is a regular member, it notifies the subgroup leader about the change.

The leader replicates data from the node in question and then replicates it to

other members and neighbors.

As a result, all changes are propagated across the entire repository. The time

required for complete replication reaches maximum where a change is made on a node

that is not a subgroup leader and its subgroup is the first or last vertex of the graph

diameter. Thus, the maximum time required to propagate changes across a repository

consists of:

• the time required to replicate changes from a member of the first subgroup on

the graph diameter to its subgroup leader;

• replication times between leaders of subgroups that belong to the graph diameter;

• the time required to replicate changes to a member of the last subgroup on the

graph diameter from its subgroup leader.

2015/04/08; 21:58 str. 7/19

Distributed Web service repository 61

START

STOP

Join request

received.

Am I the subgroup

leader?

Redirect request to the

subgroup leader.

N

Does subgroup

contain max number

of members?

Y

N Add node as subgroup

member.

Was the request

redirected for purpose

of balancing?

Y

Add node as new

neighbor.

Do neighbors’

branches have similar

depths?

Y

Y

Redirect to neighbor

with lowest branch

depth.

NDo neighbors’

branches have similar

depths?

N

Redirect to neighbor

with greatest branch

depth.

Mark request as

balanced.N

Y

Does my subgroup

have max number of

neighbors?

N

Y

Does my subgroup

have max number of

neighbors?

Y

N

Figure 5. Algorithm for adding a new node to the repository.

2015/04/08; 21:58 str. 8/19

62 Piotr Nawrocki, Aleksander Mamla

Node_10

Node_12
Node_13

Node_11

Node_14

Node_5

Node_0

Node_2

Node_3

Node_4

Node_1

Node_2

Node_2 Node_2

Node_2

Figure 6. Graph structure created by nodes (subgroup leaders are framed).

The time required to propagate changes can be expressed by the following for-

mula:
diam(G)+2∑

i=1

(Twi + Tri) (1)

where:

diam(G) – the diameter of the graph created by subgroups,

Twi – the time required to discover data change on node i; ∀i Twi ∈ 〈0 s, 30 s〉,
Tri – the time required to replicate changes between node i and node i+ 1.

Replication from the subgroup leader to other subgroup members and neighbors is

conducted simultaneously, and thus, the delays that might occur due to the replication

sequence have been disregarded.

3.2. Implementation

The main criteria adopted when selecting technologies to implement the repository

were as follows:

• multi-platform – the repository was intended to work in heterogeneous environ-

ments, and thus, the need for technologies that can be used on multiple computer

platforms;

• support for distributed processing – the technologies used should enable

operation in distributed environments;

• high level of mutual integration – the technologies selected should be easy

to integrate with one another.

2015/04/08; 21:58 str. 9/19

Distributed Web service repository 63

Apache CouchDBTMis a NoSQL, document-oriented, and schema-free database.

Data is stored in the form of documents saved in the JSON format (a sample document

is shown in Listing 1). Each document has a unique identifier. Documents are stored

in a flat address space, and there are no correlations between them. CouchDB also

offers the ability to attach files to saved documents. This allows the database to store

data that cannot be represented in the JSON format (e.g., images, binary files).

Listing 1. Sample Apache CouchDBTM document.

{

"_id": "58 e045044a00783cfc73a8c8c5a658f4",

"_rev": "15- e28f2dc7b36a769df2a369ee683a93d4",

"title": "Sample document",

"description ": "Example of CouchDB doc",

"create_date ": 1401895317183 ,

"version ": 15

}

The aggregation and representation of stored data is achieved using the special

views mechanism. Views are functions written in JavaScript and saved in special

design documents. When generating the result of a view, the database iterates through

all documents and passes them to the view function. The function must determine if

the document in question should be considered part of the result and then provide its

representation as a key-value pair. Passing documents to views does not affect them,

and thus, multiple views may operate on database content and provide different data-

representation models depending on current requirements.

Among the most-important features of CouchDB are its replication mechanisms.

The database offers incremental, fault-tolerant master-master replication of data with

conflict management. This means that the same database can be stored on multi-

ple servers, and all of them can query for data as well as create, edit, and remove

documents from their local copy of the database. Later, those changes can be bi-

directionally replicated among all instances.

All interactions with the CouchDB database occur via the HTTP interface.

Node.js is a software platform created on the basis of the V81 JavaScript engine

developed by Google. It makes it possible to build fast, scalable, data-intensive net-

work applications written in JavaScript. Node.js uses an asynchronous, non-blocking,

event-driven model of I/O operations.

Since its debut in 2009, Node.js has become a very popular programming plat-

form [4]. It has a broad set of built-in libraries and an enormous base of user-created

modules available through the NPM2 tool.

Both the Apache CouchDBTMand Node.js are multi-platform systems available

for the Windows, OS X, and Linux operating systems [14, 10].

1V8 – created by Google, open source JavaScript engine. It was originally developed for the
purpose of Google Chrome web browser.

2NPM (Node Package Manager) – package management tool for Node.js.

2015/04/08; 21:58 str. 10/19

64 Piotr Nawrocki, Aleksander Mamla

4. Tests

This section presents the results of the conducted test cases. All test cases can

be divided into two categories. The first category encompasses performance tests

conducted in order to analyze application stability and its ability to handle heavy data

traffic. The second category includes tests concerning the organization of autonomous

repository nodes. These tests cover cases related to the hierarchical structure of the

repository, such as the correct creation of repository structure, the impact of node

organization on repository performance, and node-rebalancing mechanisms.

4.1. Performance tests

Performance tests have been performed on a single node running on a machine with

the following hardware specifications:

Processor – Intelr CoreTMi7-2630QM CPU, 8x2.00 GHz, 8 GB RAM

Operating system – Ubuntu 12.04 LTS

Node.js version – v0.10.10

Apache CouchDBTMversion – 1.3.0

The tests have been performed with the JMeter3 tool calling the RESTful inter-

face, provided by the repository.

The test case included creating a new Web service entry in the repository and

attaching a wsdl file to it. The test was performed in three different configurations.

Each configuration resulted in a total of one thousand calls to the application, but

individual configurations differed in the number of users simultaneously using the

repository. The first configuration simulated ten users making one hundred calls

each, the second one simulated one hundred users with ten calls each, and the last

one simulated one thousand users with one call each.

Figure 7 presents test results for a simulation of ten simultaneous users perform-

ing 100 requests each. After about 200 requests, server response time stabilized, and

the average response time was 55 ms. The achieved system throughput level was

165 calls/s.

In Figure 8, results for a simulation of 100 users performing ten calls each are

shown. The average response time was equal to 316 ms and throughput amounted to

273 calls/s. The final configuration simulated 1000 simultaneous users performing one

request each. The average response time reached 1587 ms and throughput amounted

to 257 calls/s (Fig. 9).

The results of the tests performed demonstrate that the repository created is able

to handle increased load without a significant performance hit. Even with a large

number of users simultaneously interacting with the repository, response times were

satisfactory, and the application did not experience any unexpected issues.

3Apache JMeterTM– tool written in Java, allows to execute load tests and performance tests of
various types applications.

2015/04/08; 21:58 str. 11/19

Distributed Web service repository 65

60 __

0

re
sp

on
se

 t
im

e
[m

s]

sample number1 1000

th
ro

ug
hp

ut
 [

ca
lls

/s
]

Average
response time

Median
response time

Throughput

Overall for all
samples

55 ms 54 ms 165 calls/s

Current average response time

Current median response time

Current throughput

30 __

45 __

15 __

__ 180

 0

__ 90

__ 135

__ 45

Figure 7. System response time for creating a new repository entry with a file attached

(10 users, 100 requests each).

re
sp

o
n

se
 t

im
e

 [
m

s]

sample number1 1000

th
ro

u
g

h
p

u
t

[c
a

lls
/s

]

Average
response time

Median
response time

Throughput

Overall for all
samples

316 ms 263 ms 273 calls/s

Current average response time

Current median response time

Current throughput

__ 300

 0

__ 150

__ 225

__ 75

480

0

240

360

120

Figure 8. System response time for creating a new repository entry with a file attached

(100 users, 10 requests each).

2015/04/08; 21:58 str. 12/19

66 Piotr Nawrocki, Aleksander Mamla

re
sp

on
se

 t
im

e
[m

s]

sample number1 1000

th
ro

ug
h

pu
t

[c
al

ls
/s

]

Average
response time

Median
response time

Throughput

Overall for all
samples

1587 ms 1414 ms 257 calls/s

Current average response time

Current median response time

Current throughput

2500 __

0

1250 __

1875 __

625

__ 280

 0

__ 140

__ 210

__ 70

Figure 9. System response time for creating a new repository entry with a file attached

(1000 users, 1 request each).

These results demonstrate that the implemented solution is able to maintain

satisfactory performance while operating under heavy user load.

4.2. Hierarchical repository structure

Tests of hierarchical structure of the repository were performed using multiple coop-

erating system instances. Single instances were run on virtual machines.

In order to test if the repository maintains a correct structure while adding new

nodes, a new group was created. Subsequently, a total of 23 nodes connected to the

newly-created group. All of the joining nodes sent requests to the same node, so it

was possible to test whether the join requests would be properly redirected. Listing 2

shows the redirection information captured in the application logs of one of the nodes.

Listing 2. Join request redirection noted in application logs.

[22:16:47][group_manager][3 d365c236e057c6ef04477dab4502cac] Join

request from 192.168.1.107:8725 redirected to 192.168.1.107:8125

All log entries have the following form:

[time][module name][group identifier] message

Figure 10 presents the graph created by the connecting nodes, which indicates

a successful test result.

2015/04/08; 21:58 str. 13/19

Distributed Web service repository 67

192.168.1.106:8325

192.168.1.107:8625

192.168.1.107:8125

192.168.1.100:8125

192.168.1.106:8525

192.168.1.106:8725

192.168.1.106:8825
192.168.1.106:8425

192.168.1.106:8625

192.168.1.106:8925

192.168.1.106:8225

192.168.1.106:8025

192.168.1.100:8025

192.168.1.100:8225

192.168.1.107:8725 192.168.1.107:8525

192.168.1.107:8825

192.168.1.107:8925

192.168.1.107:8225

192.168.1.107:8425

Figure 10. Graph created by repository nodes (subgroup leaders are framed).

In the test of new subgroup leader election, six nodes were connected to cooperate

within a group. As expected, the nodes created two subgroups (one with five members

and the second with a single node). Both subgroups had a designated subgroup leader.

During the test, the leader of the first subgroup was disabled. As expected, the other

subgroup members discovered that the leader did not communicate, elected a new

one, and notified their subgroup neighbors. The election of the new leader is reflected

in the application logs shown in Listing 3. Individual lines are taken from the logs of

the new leader(1), a subgroup member(3), and a subgroup neighbor(5).

Listing 3. New subgroup leader election noted in application logs.

[14:22:20][group_manager][f83487eafe9e7d44a6f8e1e44a0d4c06] Elected for

leader of group test_group

[14:22:20][group_manager][f83487eafe9e7d44a6f8e1e44a0d4c06]

192.168.1.106:8025 elected for leader of group test_group

[14:22:20][group_manager][f83487eafe9e7d44a6f8e1e44a0d4c06] Neighbour

group leader 192.168.1.100:8125 changed to 192.168.1.106:8025

The conducted tests have demonstrated that an automatically-created repository

maintains the proper node structure. Already at the stage of connecting a new node,

the other nodes cooperate to select the right location for that node so the structure

of the repository remains balanced. During subsequent collaboration as well, nodes

tend to preserve the correct structure of the repository. The most important observa-

tion is that the structure of the repository is maintained automatically without any

intervention from users. Owing to that fact, the repository is self-organizing in order

to improve its performance.

2015/04/08; 21:58 str. 14/19

68 Piotr Nawrocki, Aleksander Mamla

4.3. Rebalancing repository structure

The objective of the next test was to demonstrate the impact of node structure on

the time required to replicate data across the repository. For the purpose of testing,

two repository configurations were prepared. Both consisted of 23 cooperating nodes,

but only in one of them were the nodes arranged into subgroups of five, and every

subgroup tended to have three neighbors (adjacent subgroups). The configurations

used in the test described are shown in Figure 11.

192.168.1.106:8525

(a) (b)

192.168.1.106:8325

192.168.1.107:8625

192.168.1.107:8125

192.168.1.106:8125

192.168.1.100:8125

192.168.1.106:8525

192.168.1.106:8725

192.168.1.106:8825
192.168.1.106:8425

192.168.1.106:8625

192.168.1.106:8925

192.168.1.106:8225

192.168.1.106:8025

192.168.1.100:8025

192.168.1.100:8225

192.168.1.107:8025

192.168.1.107:8425
192.168.1.107:8225

192.168.1.107:8325

192.168.1.107:8725

192.168.1.107:8525

192.168.1.107:8825

192.168.1.107:8925
192.168.1.106:8325

192.168.1.107:8525

192.168.1.107:8225

192.168.1.106:8125

192.168.1.100:8125

192.168.1.106:8725
192.168.1.106:8825

192.168.1.106:8425

192.168.1.106:8625

192.168.1.106:8925
192.168.1.106:8225

192.168.1.106:8025

192.168.1.100:8025

192.168.1.100:8225

192.168.1.107:8025

192.168.1.107:8425

192.168.1.107:8625

192.168.1.107:8325

192.168.1.107:8725

192.168.1.107:8125

192.168.1.107:8825

192.168.1.107:8925

(a) (b)

Figure 11. Repository configurations used in the replication time test – balanced tree (a)

and unbalanced tree (b).

During the test, two nodes that were the most distant from each other were

selected. Then, a new Web service entry was added on one of them, and the time

required to replicate this change to the second node was measured.

For each configuration, ten trials were performed. The average time of change

propagation across the repository with a balanced node structure amounted to 89.3 s.

When compared to the unbalanced structure (where the average propagation time was

152.2 s), a considerable impact of the structure created by the nodes can be observed.

In this particular scenario, propagation time for the unbalanced tree was 1.7 times

greater than for the balanced tree (see Figure 12).

As shown in the previous test, the tree structure plays a key role in replication

time within the repository. The implemented system is able to detect an invalid node

structure and rebalance it.

For the purpose of tree-rebalancing tests, an unbalanced tree was prepared. As

expected, the system discovered the unbalanced structure and initiated the rebalanc-

ing process. Tree structures before and after rebalancing are shown in Figure 13.

Repository balancing is performed by sending requests to single nodes with com-

mands to reconnect to the group. Owing to that, rebalancing uses the same algorithm

as when a new node is connected. As a result, nodes are once again connected to

2015/04/08; 21:58 str. 15/19

Distributed Web service repository 69

Balanced tree Unbalanced tree
0

20

40

60

80

100

120

140

160

89,3

152,3

ch
a

n
g

e
 p

ro
p

a
g

a
tio

n
 ti

m
e

 [
s]

Figure 12. Comparison of change propagation times in the balanced and unbalanced tree.

(a) (b)

192.168.1.106:8325

192.168.1.107:8625

192.168.1.107:8125

192.168.1.106:8125

192.168.1.100:8125

192.168.1.106:8525

192.168.1.106:8725

192.168.1.106:8825
192.168.1.106:8425

192.168.1.106:8625

192.168.1.106:8925

192.168.1.106:8225

192.168.1.100:8025

192.168.1.107:8025

192.168.1.107:8425
192.168.1.107:8225

192.168.1.107:8325

192.168.1.107:8725

192.168.1.107:8525

192.168.1.107:8825

192.168.1.107:8925
192.168.1.106:8325

192.168.1.107:8625

192.168.1.10:8125

192.168.1.106:8125

192.168.1.100:8125

192.168.1.106:8525

192.168.1.106:8725192.168.1.106:8825

192.168.1.106:8425

192.168.1.106:8625

192.168.1.106:8925

192.168.1.106:8225

192.168.1.100:8025

192.168.1.107:8025

192.168.1.107:8425

192.168.1.107:8225192.168.1.107:8325

192.168.1.107:8725

192.168.1.107:8525

192.168.1.107:8825

192.168.1.107:8925

(a) (b)

Figure 13. Tree structure before (a) and after (b) rebalancing.

form a balanced structure. Listing 4 shows a log entry from one of the nodes that

was ordered to reconnect to the group.

Listing 4. Reconnect request noted in application log.

[22:10:24][group_manager][3 d365c236e057c6ef04477dab4502cac] Rebalancing

request received from 192.168.1.106:8325. Rejoining group at:

192.168.1.106:8325

[22:10:42][group_manager][3 d365c236e057c6ef04477dab4502cac]

successfully reconnected to group: 3

d365c236e057c6ef04477dab4502cac

2015/04/08; 21:58 str. 16/19

70 Piotr Nawrocki, Aleksander Mamla

The results of the tests performed have demonstrated the crucial role of proper

repository structure for its performance. As demonstrated in Figure 12, the repository

structure has a tremendous impact on the time required to propagate data changes

across all connected nodes. This has been one of the main reasons to implement

the rebalancing mechanism, which is responsible for detecting irregularities in the

structure of the repository and restoring the balance between cooperating nodes.

5. Conclusions and further work

The implemented system is a very flexible tool for storing Web service information.

The created repository can be used as a self-maintained, distributed system composed

of autonomous nodes that can work in heterogeneous environments.

The nodes cooperating within the distributed repository organize themselves au-

tomatically into a hierarchical, balanced-graph structure. This structure, alongside

the powerful data-replication mechanism provided by CouchDB, results in a fault-

tolerant, fast, and safe data-synchronization strategy.

The system provides a rich user interface in the form of a Web application and

a convenient RESTful Web service.

Multiple sets of test cases have been performed to analyze application behavior.

They have demonstrated that the created repository is able to withstand substantial

load without a significant decrease in performance. The tests have also demonstrated

that the nodes cooperating in order to create the repository form a self-organized and

self-balancing collective of autonomous units. Future work may include further anal-

ysis of different node tree structures that could additionally improve data replication

performance within the repository.

It is worth pointing out that the technologies used for the implementation of

the system and its modular architecture allow for the further development of the

repository in order to store data other than Web service information.

Acknowledgements

The research presented in this paper was partially supported by the Polish Ministry

of Science and Higher Education under AGH University of Science and Technology

Grant 11.11.230.124 (statutory project).

References

[1] Agarwal V., Jalote P.: From Specification to Adaptation: An Integrated QoS-

driven Approach for Dynamic Adaptation of Web Service Compositions. In: Web

Services (ICWS), 2010 IEEE International Conference on, pp. 275–282, 2010.

http://dx.doi.org/10.1109/ICWS.2010.39.

[2] Al-Masri E., Mahmoud Q. H.: Discovering the best web service: A neural

network-based solution. In: Systems, Man and Cybernetics, 2009. SMC 2009.

2015/04/08; 21:58 str. 17/19

Distributed Web service repository 71

IEEE International Conference on, pp. 4250–4255, 2009. ISSN 1062-922X.

http://dx.doi.org/10.1109/ICSMC.2009.5346817.

[3] Atkinson C., Bostan P., Hummel O., Stoll D.: A Practical Approach to Web

Service Discovery and Retrieval. In: ICWS, pp. 241–248. IEEE Computer Society,

2007.

[4] Cantelon M., Holowaychuk T., Harter M., Rajlich N.: Node.js in Action. Running

Series. Manning Publications Company, 2013. ISBN 9781617290572.

[5] Corella M., Castells P.: Semi-automatic Semantic-Based Web Service Classifica-

tion. In: Business Process Management Workshops, J. Eder, S. Dustdar, eds,

Lecture Notes in Computer Science, vol. 4103, pp. 459–470, Springer, Berlin Hei-

delberg, 2006. ISBN 978-3-540-38444-1.

http://dx.doi.org/10.1007/11837862_43.

[6] Dustdar S., Schreiner W.: A Survey on Web Services Composition. Int. J. Web

Grid Serv., vol. 1(1), pp. 1–30, 2005, ISSN 1741-1106.

http://dx.doi.org/10.1504/IJWGS.2005.007545.

[7] Garofalakis J., Panagis Y., Sakkopoulos E., Tsakalidis A.: Web Service Discovery

Mechanisms: Looking for a Needle in a Haystack? In: International Workshop

on Web Engineering, 2004.

[8] Kreger H.: Web Services Conceptual Architecture (WSCA 1.0). Tech. rep., IBM

Software Group, 2001.

[9] Li S., Xu L., Wang X., Wang J.: Integration of hybrid wireless networks in

cloud services oriented enterprise information systems. Enterprise IS, vol. 6(2),

pp. 165–187, 2012.

[10] Malcontenti-Wilson A.: Node.js for Raspberry Pi Project, 2013.

[11] Mukhopadhyay D., Chougule A.: A Survey on Web Service Discovery Ap-

proaches. In: Advances in Computer Science, Engineering and Applications,

D. C. Wyld, J. Zizka, D. Nagamalai, eds, Advances in Intelligent and Soft

Computing, vol. 166, pp. 1001–1012, Springer, Berlin Heidelberg, 2012, ISBN

978-3-642-30156-8. http://dx.doi.org/10.1007/978-3-642-30157-5_99.

[12] Nawrocki P., Soboń M.: Public cloud computing for Software as a Service plat-

forms. Computer Science, vol. 15(1), 2014. ISSN 2300-7036.

[13] Nayak R., Lee B.: Web Service Discovery with additional Semantics and Clus-

tering. In: Web Intelligence, IEEE/WIC/ACM International Conference on,

pp. 555–558, 2007, http://dx.doi.org/10.1109/WI.2007.82.

[14] Niec M., Pikula P., Mamla A., Turek W.: Erlang-based Sensor Network Man-

agement for Heterogeneous Devices. Computer Science, vol. 13(3), 2012. ISSN

2300-7036.

[15] Ran S.: A Model for Web Services Discovery with QoS. SIGecom Exch., vol. 4(1),

pp. 1–10, 2003. ISSN 1551-9031. http://dx.doi.org/10.1145/844357.844360.

[16] Soliman M., Abiodun T., Hamouda T., Zhou J., Lung C. H.: Smart Home: Inte-

grating Internet of Things with Web Services and Cloud Computing. In: Cloud

Computing Technology and Science (CloudCom), 2013 IEEE 5th International

2015/04/08; 21:58 str. 18/19

72 Piotr Nawrocki, Aleksander Mamla

Conference on, vol. 2, pp. 317–320, 2013.

http://dx.doi.org/10.1109/CloudCom.2013.155.

[17] Waddington S., Zhang J., Knight G., Jensen J., Downing R., Ketley C.: Cloud

repositories for research data addressing the needs of researchers. Journal of

Cloud Computing, vol. 2(1), 13, 2013.

http://dx.doi.org/10.1186/2192-113X-2-13.

Affiliations

Piotr Nawrocki
AGH University of Science and Technology, Krakow, Poland piotr.nawrocki@agh.edu.pl

Aleksander Mamla
AGH University of Science and Technology, Krakow, Poland alek.mamla@gmail.com

Received: 26.09.2014

Revised: 12.12.2014

Accepted: 14.12.2014

2015/04/08; 21:58 str. 19/19

Distributed Web service repository 73

