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IMPROVEMENTS
TO GLOWWORM SWARM OPTIMIZATION
ALGORITHM

Glowworm Swarm Optimization algorithm is applied for the simultaneous capture of multiple
optima of multimodal functions. The algorithm uses an ensemble of agents, which scan the
search space and exchange information concerning a fitness of their current position. The
fitness is represented by a level of a luminescent quantity called luciferin. An agent moves
in direction of randomly chosen neighbour, which broadcasts higher value of the luciferin.
Unfortunately, in the absence of neighbours, the agent does not move at all. This is an
unwelcome feature, because it diminishes the performance of the algorithm. Additionally,
in the case of parallel processing, this feature can lead to unbalanced loads. This paper
presents simple modifications of the original algorithm, which improve performance of the
algorithm by limiting situations, in which the agent cannot move. The paper provides results
of comparison of an original and modified algorithms calculated for several multimodal test
functions.
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ULEPSZENIA ALGORYTMU
GLOWWORM SWARM OPTIMIZATION
Algorytm Glowworm Swarm Optimization jest stosowany do równoczesnego odnajdywania
wielu optimów funkcji multimodalnych. Algorytm używa zespołu agentów przeszukujących
przestrzeń poszukiwań i wymieniających się informacjami o wartości funkcji przystosowa-
nia w danym położeniu. Funkcja przystosowania jest reprezentowana przez poziom emitu-
jącego światło pigmentu – lucyferyny. Agenci poruszają się w kierunku losowo wybranego
sąsiada, który rozgłasza wyższą wartość poziomu lucyferyny. Niestety w przypadku braku
sąsiadów agent nie porusza się wcale. Stanowi to niepożądaną cechę algorytmu ogranicza-
jącą jego wydajność. W przypadku przetwarzania równoległego cecha ta może prowadzić do
niezrównoważenia obciążenia. Praca ta przedstawia proste modyfikacje oryginalnego algo-
rytmu zwiększające jego wydajność poprzez ograniczanie liczby takich sytuacji, w których
agent nie może się poruszyć. Przedstawione zostały wyniki porównania pracy oryginalnego
i zmodyfikowanych algorytmów dla kilku funkcji testowych.

Słowa kluczowe: inteligencja roju, optymalizacja
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1. Introduction

Glowworm Optimization Algorithm (GSO) [1, 2] is a novel algorithm, which belongs
to the group of algorithms based on swarm intelligence [3].

Observation of behaviour of ants, honeybee swarms, fish schools, flocking of birds
proves that complex goals can be achieved by interactions of relatively simple indi-
viduals. Such observations help to construct multi agents algorithms, where decisions
are not taken centrally.

The development of the optimization algorithm called Glowworm Optimization
Algorithm has been based on the behaviour of glowworms (insects, which are able to
modify their light emission and use the bioluminescence glow for different purposes).

GSO algorithm is especially useful for a simultaneous search of multiple optima,
usually having different objective function values. To achieve this goal, a swarm must
have an ability to split into disjoint groups. Otherwise, only one (local or global)
optimum will be found. In GSO agents exchange information locally. Moreover, their
movements are non deterministic.

It should be pointed out, that GSO algorithm computes multiple optima in par-
allel during one program run, what provides a set of alternative solutions to the user.
This is especially beneficial when search space represents parameters of e.g. a real
production process, where some conditions are easer to set up or simply financially
cheaper.

Another algorithm, which can be used for locating multiple alternative solutions
is a Niching Particle Swarm Optimization (NichePSO) algorithm [4], which is a vari-
ant of Particle Swarm Optimization (PSO) algorithm [5]. NichePSO divides particles
into subswarms and for each subswarm uses Guaranteed Convergence Particle Swarm
Optimization algorithm [6, 7] to move particles. A direct comparison of NichePSO
and GSO [1] on three different test functions has shown that GSO performs better
than NichePSO in terms of the number of successfully located solutions.

A comparison of GSO with gradient-ascent approach, which has been performed
under noise conditions, can be found in [8]. The advantage of GSO has been indicated.

The scientific aim of this paper is to further improve performance of GSO al-
gorithm. An improved algorithms should locate more optimum, effectively use small
swarms and require less iterations i.e. it should consume less computer resources both
CPU and memory.

The paper is organized as follows. Original and modified GSO algorithms are
presented in Section 2. Test functions, performance measure and model constants are
given in Section 3. Section 4 contains result of simulations. Conclusions are enclosed
in the Section 5.
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2. Algorithms

2.1. Glowworm Swarm Optimization

In GSO a swarm is composed ofN agents called glowworms. A state of a glowworm i at
time t can be described by the following set of variables: a position in the search space
(xi(t)), a luciferin level (li(t)) and a neighbourhood range (ri(t)). GSO algorithm
describes how these variables change over time.

Initially, agents are randomly distributed in the search space. Other parameters
are initialized by predefined constants. Each, next iteration is composed of three
phases: luciferin level update, glowworm movement and neighbourhood range update.

To encode in the luciferin level the fitness of the current position of a glowworm
i, the following formula is used:

li(t) = (1− ρ)li(t− 1) + γJ
(
xi(t)

)

where: ρ is the luciferin decay constant, γ is the luciferin enhancement constant and
J is an objective function.

Then, each glowworm tries to find neighbours. In GSO a glowworm j is a neigh-
bour of a glowworm i only if the distance between glowworms i and j is shorter than
the neighbourhood range ri(t) and additionally glowworm j has to shine brighter than
i (lj(t) > li(t)). If one glowworm has multiple neighbours, chooses one by random
with probability proportional to the luciferin level of this neighbour. Finally, glow-
worm moves one step in direction of the chosen neighbour. Step size is constant and
equals s.

In the last phase, the neighbourhood range ri(t) is updated in order to limit the
range of the communication in an ensemble of agents. The following formula is used:

ri(t+ 1) = min
{
rs,max

[
0, ri(t) + β

(
nd − |ni(t)|

)]}

where: rs is a sensor range (a constant, which limits the size of the neighbourhood
range), nd is a desired number of neighbours, |ni(t)| is a number of neighbours of
a glowworm i at time t, and β is a model constant.

2.2. Modified GSO

All proposed modifications aim to eliminate situations, in which the glowworm does
not change its position.

2.2.1. GSO v1

In the first version of modified GSO, in the case of no neighbours an agent tries
to jump to a new location. The new coordinate j of the glowworm i is randomly
generated on the basis of previous location by means of the formula:

χij(t+ 1) = xij(t) + (0.5−R)s
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where: R is a random number having a uniform distribution in the range [0, 1) and s
is the step size.

New, trial location (χ) is inside a hyper-cube whose side length equals to the
step size and a centre is at old glowworm position. The jump is accepted only if the
current solution will not be worsen. Otherwise the position of the glowworm remains
not changed.

2.2.2. GSO v2

In the second version of modified GSO the concept of trial movements from GSO v1
is used and additionally the sensor range (rs) is extended by a factor of 5% when
number of glowworms inside a sphere of radius rs is less then nd. This modification
helps the agent to use information gained from other agents and weakens the effect
of random movements introduced by first modification.

2.2.3. GSO group

In the original algorithm agents spontaneously divide into disjoint groups, but some
of them are not able to join to any group or even to use information from other agents.

In accordance with presented in this chapter modification, agents always move
and collaborate in predefined groups.

In each group there is one chosen agent (called master), which determines the
movement of all agents from the group. The master is placed in the middle of its group
and is surrounded by several slave agents, which are almost uniformly distributed on
a hyper-sphere centred at master position. Distance between master and slave agents
is denoted by rd and initially equals to 10% of the sensor range. The master-slave
distance for a given group is controlled by the master agent and varies in the range
from 33% of the step size to 10% of the sensor range. Only for some special cases,
described later in this chapter, the master-slave distance equals to the sensor range.

In each iteration the master checks the luciferin value of own slave agents and
in most cases uses standard GSO algorithm to designate the direction of a common
group step. Agents from other groups are interrogated only in the case when all group
members have the same value of the luciferin.

The whole GSO group algorithm is shown in the form of flowchart in Figure 1. It
must be emphasised, that a core of the algorithm is relatively simple and consists of
boxes marked with thick lines. At the same time, most of the flowchart area represents
a code, which is seldom used in cases, where all agents manifest the same luciferin
level.

If all agents have the same value of the luciferin the standard algorithm does
not work at all, because all agents stay still. However, here, the master increases the
rd to the value of the sensor range and allows slaves to search for other agents and
copy the best found luciferin value. If this move does not help, the master allows
slaves to randomly increase the luciferin quantity. The last strategy allows the group
to explore the search space even if the objective function is locally constant.

7 października 2010 str. 4/14

10 Piotr Oramus



F
ig

.
1.

F
lo

w
ch

ar
t

of
si

ng
le

it
er

at
io

n
of

G
SO

gr
ou

p
al

go
ri

th
m

7 października 2010 str. 5/14

Improvements to Glowworm Swarm Optimization algorithm 11



Table 1
Summary of test functions

Test function Search space size Dimensions Number of maximums
Peaks J1(x, y) [-3,3]×[-3,3] 2 3+1

Rastrigin’s J2(x, y) [-5,5]×[-5,5] 2 100
Himmelblau’s J3(x, y) [-5,5]×[-5,5] 2 4

J4(x, y) [-5,5]×[-5,5] 2 5
Random peaks J5(x) [-5,5]× · · ·×[-5,5] 2-25 25

The last issue that must be explained is how positions of slaves are evaluated on
the basis of the master-slave distance and a position of the master agent: a simple
parabolic potential is used to bind slaves with their master – this potential has spheri-
cal symmetry and a minimum at rd. Additionally, several orders of magnitudes weaker
repulsive potential pushes the glowworms apart. Finally, master agent computes new
positions of the slaves by a potential energy minimization.

3. Test procedure

3.1. Multimodal test functions

Four different algorithms (standard GSO and three proposed modifications) were
tested on several test functions, which maxima were known. The search space size,
the number of dimensions and the number of optimum solutions (here all points where
function has a maximum, even a local one) for each test function are given in Table
1. The function equations are written down below:

Peaks function [9]:

J1(x, y) =3(1− x)2 exp
(
−x2 − (y + 1)2

)
− 10

(x
5
− x3 − y5

)
exp

(
−x2 − y2)−

1
3

exp
(
−(x+ 1)2 − y2)

) (1)

This function requires one comment: because search space is limited, the function at
a point (3,-3) takes the value greater than in the allowed surrounding so this point
was also treated as optimum.

Rastrigin’s function [10]:

J2(x, y) = 20 +
(
x2 − 10 cos(2πx) + y2 − 10 cos(2πy)

)

Himmelblau’s function [4]:

J3(x, y) = 200− (x2 + y − 11)2 − (x+ y2 − 7)2
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Test function introduced by the author:

J4(x, y) =H(
7
4
− d1(x, y)) cos(2πd1(x, y)) (exp(−d2(x, y)) + exp(−d3(x, y))) +

H(
7
6
− d4(x, y)) cos(3πd4(x, y)) +H(

7
8
− d5(x, y)) cos(4πd5(x, y))

(2)

where:

d1(x, y) =
√
x2 + (y − 2.5)2

d2(x, y) =
√
x2 + (y − 3.5)2

d3(x, y) =
√
x2 + (y − 1.5)2

d4(x, y) =
√

(x+ 2.5)2 + (y + 2.5)2

d5(x, y) =
√

(x− 2.5)2 + (y + 2.5)2

and H(x) is Heaviside unit step function.
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Fig. 2. Contour plot of the test function introduced by the author

The contour plot of this test function is given in Figure 2. It can be easily seen,
that for the most of the search area this function assumes constant value. Moreover,
each maximum is surrounded be a circle area, where the function is negative. Finally,
the optimal solutions are difficult to detect, because most of GSO agents reveal the
same or worse value of the luciferin and standard algorithm stops.
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Table 2
GSO model constants

ρ γ β nd s initial luciferin value
0.4 0.6 0.08 5 0.03 5.0

Random peaks multi-dimentional test function:

J5(x) =
25∑

i=1

ai exp(−bi||x− vi||)

where: || || denotes Euclidean distance, and ai, bi, vi are randomly generated con-
stants. The positions of vi points were chosen from 25-dimensional hyper space, but
program allows to decrease dimensionality of this function by simply omitting excess
information.

3.2. Performance measure

The single point maximum was considered to be found, when at least 3 glowworms
were localized in its vicinity [1] – the distance limit 0.05 was used for all experiments.
A normalized number of correctly found solutions was used as performance measure
of the algorithm.

3.3. Common parameters

The model constants (see Table 2) were taken from paper [1]. The sensor range was
set to 1.0 for all calculations and used an initial value for the neighbourhood range.

3.4. Test procedure, software and hardware used

All algorithms were tested by means of all presented test functions. Calculations for
one set of input parameters (version of optimization algorithm, test function, the
number of iterations and a swarm size) were repeated at least 100 times. The initial
positions of agents were always generated by random. The system pseudo-random
generator (rand() function from stdlib library) was applied for all experiments.

The group size used in the case of GSO group modification, was equal to 4 for
two-dimensional test functions (from J1 to J4) and 25 for the random peaks multi-
dimensional test function (J5).

For two-dimensional test functions one result was evaluated during several sec-
onds of CPU time of Intel(R) Pentium(R) D running at 3.4 GHz. Similar calcula-
tions made for multi-dimensional cases required up to 15 hours of CPU time per one
optimization and were performed on IBM BladeCenter HS21 (mars.cyfronet.pl)
cluster.

All input and output parameters of self-made software were stored in the re-
lational database (MySQL). The results were elaborated and plotted by means of
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R-language scripts, which were able to download the averaged data directly from the
database.

4. Results

In order to ease analysis of the results, the same symbol is used to represent one algo-
rithm in all Figures. The standard GSO is represented by a filled circle (•). For GSO
modifications version 1 and version 2, open triangles are used (GSOv1 - 4, GSOv2
- 5). Data points for GSO group algorithm are piloted by means of an open square
symbol (�). The error bars shown in Figures are equal to the standard deviation of
the mean.

4.1. Two dimensional test functions

The calculation were performed for two different swarm sizes: 25 and 100 glowworms.
For a single swarm size four different numbers of iterations were used: 250, 500, 750
and 1000. In all Figures normalized average number of peaks captured are plotted
versus number of iterations. Results for 25 glowworms are plotted in Figures a) on
the left and for 100 glowworms in Figures b) on the right.

4.1.1. Peaks function J1

The results of calculations are presented in Figures 3a and b. The optima of the peaks
function are relatively easy to locate. Even in the worst case (25 agents and only 250
iterations) more than 40% of them were correctly found. When 100 agents were used
all algorithms were able to locate more than 80% of peaks.

For a swarm composed of 25 members, all proposed by the author algorithms
were better than the original one. In the case of calculations with 100 glowworms,
only group algorithm was significantly better in comparison to the standard GSO.
The performance of GSO v2 was worse than the standard GSO.

Bad performance of GSO v2 can be explained by a following observation: this
modification adds an ability to increase value of the sensor range parameter, but by
using this feature agent increases its own area of an information exchange and is
attracted in direction of a global optimum. Finally, the number of agents, which can
explore the search space looking for local optimum decreases.

4.1.2. Rastrigin’s function J2

The calculation results are presented in Figures 4a and b. Because of the large number
of possible solutions (100) in comparison to the number of agents, the performance
measure did not take large values. The best behaviour was revealed by an algorithm,
where glowworms travelled in predefined groups (GSO group).

This phenomena can be easily understood, when one takes into account a defi-
nition of a success criteria used here as a performance measure: a peak is considered
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as captured when arbitrary chosen number of glowworms can be found in its neigh-
bourhood. In GSO group algorithm agents always have neighbours and moreover this
algorithm allows the master agent to decrease the master-slave distance. Finally, all
group members meet together at an optimum location.

a) b)
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Fig. 3. Peaks test function
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Fig. 4. Rastrigin’s test function

Nonetheless, presented results prove, that GSO group algorithm works correctly
and efficiently steers group towards the optimum.

In the case of the GSO v2 algorithm, the increase of the sensor range helped only
in the case of a small number of agents (25). When number of agents was relatively
large (100) the performance of GSO v2 and standard GSO was comparable.
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4.1.3. Himmelblau’s function J3

The experimental results are plotted in Figures 5a and b. In the case of small number
of agents (25) results reveal the superiority of the improved algorithms. When number
of iterations was large enough, the GSO v1 algorithm was able to locate all solutions.
For 100 agents all algorithms were almost equally good.
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Fig. 5. Himmelblau’s test function

4.1.4. Test function introduced by the author J4

The results of calculations performed for the test function introduced by the author
are shown in Figures 6a and b.
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Fig. 6. J4 test function
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As it was mentioned before, optima of this function are difficult to find, because
most of the agents broadcast the same luciferin level and the standard GSO algorithm
stops. Therefore, for the swarm composed of 25 glowworms, the performance of the
standard GSO was almost zero. The improved algorithms behaved better and reported
from around 5% (GSO v1 and GSO group) to even more than 15% (GSO v2) of peaks
as successfully located. One should note, that all proposed modifications allow search
space exploration even in lack of an information coming from the difference in the
luciferin level.

The performance of the bigger swarms (100 members) was much better and at
least 15% of peaks were localized. The best results were obtained in the case of GSO
v1 and GSO v2.

4.2. Multi-dimensional test function J5

The calculation were performed for a swarm consisting in 1000 glowworms and took
10000 iterations. Experiments were done for the following number of dimensions: 2,
5, 10, 15, 20 and 25. The results are shown in Figure 7.
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Fig. 7. Random peaks multi-dimensional test function. Normalized average number of peaks
captured plotted versus number of dimensions

It can be easily seen, that the standard GSO algorithm completely lost its ability
to locate optima for 5 dimensions and more. It took place, because the agents density
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rapidly dropped with the increasing number of dimensions and a lot of glowworms
could not find any neighbour, so they were unable to move, again!

All algorithms proposed by the author achieved better performance in comparison
to the standard GSO, when the number of dimensions was equal to 5 or larger.

5. Conclusions

Simple modifications of the standard GSO algorithm were able to substantially in-
crease the algorithm performance. The improvement was especially visible in the case
of swarms composed of relatively small number of agents, because more agents were
able to move and thus were involved in the search for solutions.

Probably it is possible to further improve the family of GSO algorithms. In the
case of GSO v2 it is possible to add an additional mechanism, which will decrement the
sensor range to its initial level. This modification aims to restore the local information
exchange.
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