
Jan Meizner∗, Maciej Malawski∗∗, Marian Bubak∗∗∗

FLEXIBLE AND SECURE ACCESS
TO COMPUTING CLUSTERS

The investigation presented in this paper was prompted by the need to provide a manageable
solution for secure access to computing clusters with a federated authentication framework.
This requirement is especially important for scientists who need direct access to computing
nodes in order to run their applications (e.g. chemical or medical simulations) with pro-
prietary, open-source or custom-developed software packages. Our existing software, which
enables non-Web clients to use Shibboleth-secured services, has been extended to provide
direct SSH access to cluster nodes using the Linux Pluggable Authentication Modules mech-
anism. This allows Shibboleth users to run the required software on clusters. Validation
and performance comparison with existing SSH authentication mechanisms confirm that the
presented tools satisfy the stated requirements.

Keywords: clusters, security, single sign-on, federations, PAM modules, SSH, Shibboleth,
SAML

WYGODNY I BEZPIECZNY DOSTĘP
DO KLASTRÓW OBLICZENIOWYCH
Badania opisane w tej publikacji zostały przeprowadzone w celu zapewnienia wygodnego
sposobu zabezpieczenia dostępu do klastrów obliczeniowych za pomocą federacyjnego mecha-
nizmu uwierzytelniającego. Wymóg ten jest szczególnie istotny w odniesieniu do naukowców
wykorzystujących zarówno otwarte oprogramowanie, jak i komercyjne oraz własne pakiety
(np. chemiczne lub medyczne), uruchamiane bezpośrednio na węzłach obliczeniowych. Nasze
poprzednie rozwiązanie, umożliwiające aplikacjom nie-webowym używanie usług zabezpie-
czonych mechanizmem Shibboleth zostało rozbudowane tak, aby zapewnić bezpośredni
dostęp poprzez protokół SSH do węzłów klastrów, za pomocą mechanizmu „Pluggable Au-
thentication Modules” Linuksa. Umożliwiło to użytkownikom shibbolethowym uruchamianie
niezbędnego oprogramowania zainstalowanego na klastrach. Proces walidacji oraz porów-
nanie wydajności z istniejącymi mechanizmami uwierzytelnienia dostępnymi dla protokołu
SSH wykazał, że opisywane narzędzia spełniają postawione przed nimi wymagania.

Słowa kluczowe: klastry, bezpieczeństwo, mechanizm jednokrotnego uwierzytelnienia,
federacje, moduły PAM, SSH, Shibboleth, SAML

∗ ACC CYFRONET AGH, ul. Nawojki 11, 30-950 Kraków, Poland, jan.meizner@cyfronet.pl
∗∗ ACC CYFRONET AGH, ul. Nawojki 11, 30-950 Kraków, Poland, and Department of Computer

Science AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland,
malawski@agh.edu.pl

∗∗∗ Department of Computer Science AGH University of Science and Technology, al. Mickiewicza
30, 30-059 Kraków, Poland, and Informatics Institute, Universiteit van Amsterdam, 1081 HV
Amsterdam, The Netherlands, bubak@agh.edu.pl

7 października 2010 str. 1/16

Computer Science • Vol. 11 • 2010

21



1. Introduction

One of the main challenges when dealing with distributed system security is the need
for a solution which would not only sufficiently protect such systems [21, 3], but remain
simple and flexible enough for all classes of scientific users. The most important issue
which we adress in this paper is to enable users from multiple organizations to obtain
direct access to computing resources to run their applications without the need to
use any Grid middleware and certificates, and without wrapping the applications in
specialized services. One example involves accessing a computing cluster at a remote
center in order to run applications such as Gaussian or Fluent. Another scenario
is acquiring direct shell access to a set of computing nodes of a cluster using some
form of cloud computing mechanism [12]. Given direct access to computing resources,
scientists would be able to use custom scripts to e.g. find HIV mutations or perform
protein analysis [4] almost as easily as on local resources. Such scenarios are of great
importance for computational e-infrastructures [24], including (among others) PL-
Grid [20].

The main goals of the presented research can be summarized as follows:

• analyze existing security solutions for managing access to computing clusters,
• propose a new method for providing scientists from multiple organizations with

manageable, direct access to computing clusters without the need to use any
Grid middleware, as many scientists rely on traditional shell tools to run their
software,
• elaborate a method which can be easily integrated with Web-based clients,
• implement and test the proposed tool, and measure its performance.

These objectives imply many lower-level technical goals, which can be expressed
in the form of functional and non-functional requirements for the system. The func-
tional requirements are:

• secure authentication mechanism for cluster nodes,
• direct shell access and execution of unmodified software on these nodes,
• secure credential delegation mechanism,
• flexible management of user credentials, including support for decentralized and

federated authentication systems.

The non-functional requirements are:

• easy access for users, without complex management of credentials (e.g. certifi-
cates) and authentication,
• efficiency of the solution,
• rapid deployment of the system on cluster nodes,
• ability to deploy most system components on the server side,
• minimizing OS modifications on the cluster nodes.

In this paper we present a new security tool based on the analysis of the above
requirements and existing solutions. The proposed authentication mechanism extends

7 października 2010 str. 2/16

22 Jan Meizner, Maciej Malawski, Marian Bubak



the one [14] created for the Virolab Virtual Laboratory [29, 4, 13], which is based on
the widely-used Shibboleth [11] framework. It applies the Linux Pluggable Authenti-
cation Module (PAM) [1] mechanism to enable interaction with various PAM-aware
software standards (including the OpenSSH [16] server). By combining Shibboleth
with PAM mechanisms we can also take advantage of Web-based federated authenti-
cation systems and the easy way in which they integrate with computing clusters.

Thus far, the only resources supported by the security framework [14] were those
specifically adapted to use Shibboleth. For example, it was necessary to wrap user ap-
plications as secure Web services or components [7] which could be remotely invoked.
In such a case the Web service or component container is responsible for handling
security issues. The novelty of our new approach is that generic applications installed
on cluster nodes do not require any modifications and can be accessed directly by
using the SSH protocol.

The paper is organized as follows. The following section describes related work.
In Section 3, an architecture of the system is presented, including both a general
overview and a detailed description of the authentication process. Section 4 describes
basic components used to create the system, allowing secure access to clusters. Im-
plementation details are covered in Section 5, with focus on programming languages
and software libraries used. Subsequently, in Sections 6 and 7, the methodology and
results of functionality and performance tests are shown. The final section presents
conclusions as well as an outline of future work.

2. Related work

In this section various security frameworks and tools are analyzed in order to deter-
mine the extent to which they meet our requirements stated in section 1. Starting from
standard authentication mechanisms for Linux, i.e. the pam unix module and other
general-purpose systems such as pam ldap or the key pair method used in OpenSSH,
we also analyzed more specific solutions designed for distributed environments or
computing grids, such as GSI, ShibGrid, GridShib or OpenID. XtreemOS [5] security
mechanisms are used as an example of a complete Grid-oriented Operating System.
Finally, more complex hardware-based methods are also presented. In order to check
if the existing solutions meet our requirements (see section 1), we evaluated these
systems with respect to the following criteria: the need to alter OS of computing nodes
(which is not allowed), levels of security (key factor), scalability, and manageability
for users and for service providers.

Flat-file authentication provided by the pam unix module from the PAM li-
brary [1] is a basic authentication method in many UNIX-like systems including Linux.
It uses user information and credentials stored in a single file /etc/passwd (for se-
curity reasons, hashed passwords are usually stored in a separate file /etc/shadow).
This module should always enable critical users to access the system if more complex
authentication methods fail. However, this authentication method is not scalable. In
our opinion, this tool provides a moderate level of security, as it requires long-term

7 października 2010 str. 3/16

Flexible and secure access to computing clusters 23



credentials (passwords) to be provided for each authentication attempt to any node.
This potentially allows eavesdropping (e.g. by malware) to gain illegal access. It al-
so provides moderate managability due to the lack of a Single Sign On mechanism,
which, however, is counterbalanced (to some degree) by a simple authentication and
credential management process. The manageability level for service providers is low,
as any operation on user accounts requires updating flat files on all nodes.

Plain LDAP based authentication (e.g. pam ldap [18]) is useful for distributed
systems as it provides a mechanism to store and update user-related information in
a central location, and, at the same time, use them for all nodes. This prompts high
manageability for providers. However, it is only well suited for organizations which
employ common user registration systems as there are no federation mechanisms, and,
consequently, its scalability level is moderate. Grid5000 is an example of a system
using LDAP for authentication purposes [28]. The central LDAP directory is also
the basis for the security solution used in PL-Grid [20]. As this method exploits the
same type of credentials as pam unix, its end-user security and manageability remain
moderate.

OpenSSH [16] offers the ability to authenticate users based on a pair of keys.
A private key is stored on a user machine and a public key has to be added to the
authorized keys on the server. The private key may be encrypted or unencrypted.
The unencrypted-key scenario is commonly used because it is highly convenient, al-
lowing users to obtain access without the need to provide a password (high level of
manageability). This feature allows fully automated authentication from one node to
another, but due to the lack of private key encryption, its security level remains low.
On the other hand, using encrypted keys is highly secure because a would-be attacker
needs to obtain both the key and its associated password. However, the use of en-
crypted keys prevents automated authentication (moderate level of manageability for
users). Both scenarios are highly manageable for system providers (no need to set up
any specialized infrastructure). The scalability level, in our opinion, is average, as the
method requires distribution of keys to machines.

Software tools using X.509 certificates and private keys are commonly employed
in grid systems (e.g. Grid Security Infrastructure [8]). This method might provide a
Single Sign On mechanism through the so-called proxy certificates (which are signed
by the user’s private key and then delegated). It is also quite straightforward for
users when they already have certificates/keys installed on their machines. However,
the certificate acquisition process, which includes generating a request, sending it to
the RA/CA and then installing the returned certificate, is too complicated for non-
technical users. As a result, we can rate its manageability level for users as moderate.
It is also very complex for service providers (poor manageability) as it requires keeping
PKI infrastructure elements (CAs, RAs), and following complex procedures to ensure
adequate (high) levels of security. This method is highly scalable as it doesn’t require
local user databases. GSI-OpenSSH [26] allows users to authenticate with a special
version of the OpenSSH server using GSI credentials.

7 października 2010 str. 4/16

24 Jan Meizner, Maciej Malawski, Marian Bubak



The ShibGrid project [25] aims at integration of the traditional GSI model based
on X.509 certificates with a Shibboleth infrastructure. Its goals are to support users
holding standard grid certificates (issued by a national CA and stored in a Shibboleth-
protected MyProxy [27]) as well as generating low-assurance certificates for users with
simple Shibboleth accounts. This method could be paired with the one described above
to provide interoperability between Shibboleth and GSI. Such integration would, in
turn, enable high levels of manageability for users and high levels of security (inherited
from both models). However, maintaining both PKI and Shibboleth infrastructures
would be even harder than operating PKI, so service provider manageability levels
could only be described as very poor. Both PKI (as shown above) and Shibboleth
(owing to its federation mechanisms) are highly scalable.

GridShib [23] is another method aiming at integration of GSI and Shibboleth,
maintained by the institutions responsible for development of both technologies. Grid-
Shib uses MyProxy online CA to issue short-lived certificates instead of standard
proxy certificates for users with Shibboleth accounts and without real grid certifi-
cates. As in the case of ShibGrid, this tool was considered for pairing with GSI.
However, much like ShibGrid, it would add an unnecessary layer complicating the
solution. As it is conceptually higly similar to ShibGrid, we rated all its aspects on
par with ShibGrid.

OpenID [17] is an identity management framework which allows users with
OpenID credentials from any of the providers to access various websites. However,
in contrast to Shibboleth, OpenID IdPs are not controlled by any kind of federation
that would ensure validity of user information. Thus, no user can be trusted to ac-
cess the production resources based on an OpenID credential. This prompts a very
low level of security. For this reason such a method is not appropriate for use in the
framework described in this paper. Nevertheless, a potential future enhancement of
our work might be to use OpenID to create a PAM module similar to pam shib to
allow even more simplified, limited access to some demonstration parts of the infras-
tructure with high levels of user manageability. Provider manageability is likewise
high, as there is no need to maintain custom Identity Providers. Scalability also re-
mains high, similarly to Shibboleth.

XtreemOS [5] is a Grid-oriented, Linux-based operating system, eliminating the
need to use any grid middleware. It uses various standard Linux security mechanisms
such as PAM and NSS to provide support for VO-based authentication, authorization
and session management (high levels of manageability for both users and providers,
high levels of scalability). The main goals of this system are highly compatible with
ours, as it enables users to run their unmodified application on the grid in a similar
way to executing it on local machines. However, we cannot use this system as one of
our requirements (see section 1) prohibits large-scale modifications (which, of course,
include replacement) of the nodes’ OS. The security of this method depends on the
applied mechanisms but in a default scenario remains quite high.

Hardware-based security systems rely on special cryptographic devices. The most
common are smartcards or security authenticators capable of periodically generating

7 października 2010 str. 5/16

Flexible and secure access to computing clusters 25



and displaying new passwords (like RSA SecurID [22]). Smartcards hold cryptographic
chips that are capable of signing and decrypting information. An advantage over
software solutions is that the private key is never moved out of the chip which ensures
a very high level of security. However, this type of system is more expensive then a
software-based one. Additionally, the process of issuing hardware-based certificates is
more complicated and cannot be performed electronically. In the case of SecurID-like
authenticators in addition to the cost and need for physical delivery of the device, its
nature limits single sign-on duration to the interval between password changes, which
is too short. As a result, the level of managability is low for users and very low for
providers. The scalability is high for smartcards (akin to software certificates) and
low for SecurID-like devices (very brief authorization).

The summary of the evaluation is presented in Table 1.

Table 1
Comparison of existing security solutions with respect to the criteria

relevant to the requirements

Technology name OS change security scalability manageability manageability
required level (user) (provider)

pam unix no medium v. low medium low
LDAP no medium medium medium high

OpenSSH
unenc. keys no low medium high high
enc. keys no high medium medium high
X.509 no high high medium low

ShibGrid no high high high v. low
GridShib no high high high v. low
OpenID no v. low high high high

XtreemOS yes high high high high
Hardware

smart cards no v. high high low v. low
SecurID no v. high low low v. low

Based on Table 1 we see that XtreemOS cannot be applied in our case, since
it requires exchanging the whole operating system. OpenID and OpenSSH using un-
encrypted keys provide, in our opinion, insufficient security for accessing computing
clusters. We also discarded options characterized by below-average manageability and
scaleability. This leaves LDAP and OpenSSH with encrypted keys. However, in addi-
tion to these factors, we require a tool which could be smoothly integrated with our
existing solution (which is Shibboleth-based). As additional layers of compatibility
might lower the already-lacking manageability levels of candidate solutions, we decid-
ed to create a new tool which would extend existing software and prove sufficient for
our new requirements.

7 października 2010 str. 6/16

26 Jan Meizner, Maciej Malawski, Marian Bubak



3. Architecture of secure access to clusters

The proposed system, providing secure access to clusters, is composed of elements
that could be classified as server- and client-side modules. Server-side modules are
related to the Shibboleth-based framework [11], as well as to the provided services.
All server-side modules need to be set up by the organization. Client-side modules
are used to enable access to the system. They might be provided by the organization
which could place them on some kind of user interface node, or they might be installed
by users themselves on their machines. The architecture is shown in Figure 1.

Fig. 1. General architecture of the described solution, showing its components: credential
source, Shibboleth Identity Provider, resources and client tools

Most of the modules are placed on the server side. This ensures that users do
not need to install complex software on their own computers. In Figure 1 the server-
side modules are: Credential source, Shibboleth Identity Provider and Resources. The
Shibboleth Identity Provider, which is a part of the Shibboleth framework, is composed
of the Single Sign On and the Attribute Authority.

The Single Sign-On module of the IdP is responsible for issuing security tokens
(called handles), based on provided credentials. Those tokens are used to authenticate
their respective holders. Based on each handle, the Attribute Authority releases at-
tributes that are used by the Service Providers for authorization. The credentials and
attributes used by the Shibboleth Identity Provider are stored in the LDAP directory
which acts as the Credential source. To ensure that compromising the infrastructure
does not alter the original credentials or attributes, the LDAP server might be a local
replica of a main server. The simplified interactions between components are shown in
Figure 2. For clarity, both web and non-web clients are labeled as “Client”, and both
types of resources (Shibbolized service and cluster node) are labeled as “Resource”.

Resources are divided into specifically Shibboleth-enabled (Shibbolized) services
(like those provided in the ViroLab virtual laboratory [4, 14]) and computing nodes.
Shibbolized services provide some application-specific functionality and their security
mechanism is built into each service by its creators.

7 października 2010 str. 7/16

Flexible and secure access to computing clusters 27



Fig. 2. Sequence diagram showing interactions between system components such as LDAPs,
Identity Provider Elements (SSO and AA), clients (portal-based or standalone) as well as

services (Shibbolized service or SSH accessible node protected by the pam shib module)

Computing nodes are able to run any arbitrary software and their protection
mechanism is based on the Linux PAM mechanism [1] (described in section 4). To
achieve this functionality, we developed a pam shib module, responsible for performing
user authorization. Its implementation details are described later in this paper. The
module allows system administrators to deploy standard OpenSSH [16] servers that
do not need to be modified.

The architecture features two types of client applications – web-based ones, which
follow the standard Shibboleth authentication protocol, and standalone ones (run on
users’ computers) which follow a specific authentication protocol [14]. These proto-
cols are used to request a handle required to connect to the services. Both types of
client applications can be used to access both types of resources (Shibbolized ones
and standard applications on pam shib protected nodes). The specific protocol of the
standalone tools is based on the ShibIdpClient [14] command-line tool and performs
automatic authentication to the IdP, followed by retrieval and extraction of the handle
from the returned response. This is different from the HTTP POST and redirection
schema used by the standard Shibboleth web clients. For our new mechanism, the IdP
client has been augmented with the functionality needed for accessing the pam shib
protected nodes. Standalone client tools are also supplemented by a modified version
of the OpenSSH client. The introduced modifications allow it to automatically use
the Shibboleth handle obtained by the IdP client.

The SSH connection details using pam shib are shown in Figure 3. Following
a connection from the SSH client, the OpenSSH server passes the credentials to its
module acting as the Policy Enforcement Point (PEP) (1). Subsequently, the PEP
moves them to the module using PAM API (2) to contact its counterpart located
at the pam shib module (3) to request an authentication decision from the Policy
Decision Point (PDP) (4). This part differs from the standard Shibboleth protocol
designed for web-based tools as the credential is passed as a password, not by using
HTTP redirection. The PDP uses the ShibAAClient library based on OpenSAML (5)
to create a SAML assertion used to request attributes from the Shibboleth Attribute

7 października 2010 str. 8/16

28 Jan Meizner, Maciej Malawski, Marian Bubak



Authority (AA) (6), which acts as the Policy Information Point. The AA also returns
attributes as a SAML assertion (7). This assertion is then decoded by the ShibAA-
Client and the extracted attributes are passed to the PDP (8). These steps (5-8) use
the same protocol as the standard Shibboleth use case. Based on the attributes and
its own configuration, the PDP reaches an authorization decision which is returned
via the PAM API (9, 10 and 11) to the PEP. The PEP grants or denies access based
on the authorization decision, returning proper data to the SSH Client (12). The fi-
nal steps are also specific for our tool. The configuration of all modules is stored in
a special configuration file (Config). The Shibboleth IdP configuration is stored by
the IdP.

Fig. 3. The SSH connection process with the pam shib module, together with the internal
steps necessary to perform user authorization based on the supplied Shibboleth handle

In our opinion, the usage of the Shibboleth infrastructure makes the system
highly manageable, as the federation feature allows administrators to keep credential
and attribute databases limited to their own users, while allowing them to access
resources provided by various partners. This architecture also provides the ability
to arbitrarily select access control granularity. With an atribute-based authorization,
the administrator can either provide fine-grained control (limiting access to specific
individuals based on personal atributes such as uid or e-mail address), or more coarse-
grained control (e.g. based on institution or role names). The configuration of the PAM
module is simple, so, in our opinion, configurability remains quite good even though
it has to be performed on all nodes. However, as part of future work, we plan to add
better configuration mechanisms.

4. Basic security components

This section describes software elements that were used to construct our system.
The Linux Pluggable Authentication Modules (PAM) [1] mechanism enables de-

velopment of authentication-related modules that can be used by various services. By

7 października 2010 str. 9/16

Flexible and secure access to computing clusters 29



providing a unified API, PAM enables any module that supports custom authenti-
cation (or related) schema to be used by various, unmodified applications. A PAM
module may support any combination of the following tasks: authentication, account,
session and password [1]. The basic authentication task is the most important one
from our perspective. The account task is responsible for restricting access to the
system but not on the basis of authentication. The session task is used to perform
some actions prior to granting access to the system, or immediately thereafter. The
password task is executed if PAM-aware software attempts to change user creden-
tials. The current version of our module uses the Shibboleth infrastructure only for
the purpose of authentication, therefore only the authentication task is implemented
by our pam shib module. PAM also allows manageable configuration by system ad-
ministrators. The administrator can decide (by editing the proper file) which services
are to use which PAM modules and what happens if one of the modules fails. The
administrator can also supply additional parameters for the module (e.g. the name of
the configuration file). The configuration of actions taken upon module execution is
very flexible. The administrator might apply predefined conditions or build custom
ones. The ability to provide such an elastic configuration is crucial for our module as
it allows administrators to apply standard authentication methods (like pam unix)
for local users, while also allowing Shibboleth access via the pam shib module. PAM-
based methods have been used to provide distributed authentication solutions in grid
projects including the Grid5000 [28].

The OpenSAML [10] library allows developers to create or process SAML [15]
assertions. These include authentication and attribute assertions used by the Shib-
boleth infrastructure for secure communication between its components. The library
version used for the project supports both SAML1.0/1.1 protocol used in Shibboleth
1.x and SAML2.0 used in Shibboleth 2. C++ and Java implementations are available.

The elements of the Shibboleth [11] infrastructure might be located at various fed-
erated institutions (Home Organizations) and each institution can set up components
called Identity Providers and Service Providers. The Shibboleth-based infrastructure
may span any number of HOs, each of which can include IdP, SP or both. SP au-
thenticates and authorizes users based on information (attributes) exchanged securely
via the SAML [15] protocol. Those attributes, as well as user credentials required to
protect the IdP, are stored in some kind of database or directory service.

5. Description of implementation

The most important elements of our software solution are the pam shib module and the
shibaaclient library. These components were implemented from scratch in the course of
the work described in this paper. Additionally, the ShibIdpCliClient tool developed for
the ViroLab project, had to be extended and the OpenSSH client slightly modified.
Other parts of the system were built using standard software and required proper
integration.

7 października 2010 str. 10/16

30 Jan Meizner, Maciej Malawski, Marian Bubak



The pam shib module is provided as a standard Linux shared library, implement-
ed in ANSI C. It implements PAM auth functionality. To conform with the Linux
PAM standard, it exposes the pam sm authenticate and pam sm setcred functions.
The required authentication functionality is implemented by the pam sm authenticate
function and other functions called from it. The shibaaclient library is used to request
attributes from the Shibboleth AA. In addition, the module implements a simple con-
figuration system by providing a specific C structure (PAMShibConf) and a couple
of functions used to access it. Logging functionality is supported through the syslog,
so all information can be logged to standard system logs with appropriate priorities.
Module configuration remains highly manageable – all that is needed is to set up
pam shib like any other PAM module, and to create a configuration file for it. This
file is then used to set the parameters related to the Shibboleth IdP configuration.

The Shibaaclient library provides easy access to Shibboleth attributes. It is im-
plemented in C++ and its API is reduced to a few functions including the shibGetAt-
tributes function used to retrieve the Shibboleth attributes for the provided handle.
The library uses OpenSAML [10] to process SAML assertions and extract attributes. It
retrieves assertions by connecting to the Shibboleth AA with the help of the cURL [6]
library. Additionally, the Xerces-C++ [2] library is used as the XML parser.

The ShibIdpCliClient [14] is implemented in Java. It uses standard libraries pro-
vided by the Sun JDK as well as a Java version of the OpenSAML library to request
and extract handles. The tool was extended to include the capability to save the
handle for future use, and to return it in an appropriate format for our new system.
Bash scripts responsible for further simplification of sign-in and sign-out procedures
are also provided.

The pam shib module requires passing system user names and Shibboleth handles
as credentials. As the module is our custom creation, this scenario is not supported by
the mainstream OpenSSH client. Such a client might be used without modification,
but this would require passing the handle as a password. As this is not convenient,
the client was altered so that it can read the handle from a file and then use it. The
modification was made in such a way that it doesn’t disable any standard authenti-
cation method. We also make sure that if handle-based authentication fails, the client
can fall back to standard functionality (asking for a password). The additional code
uses OpenSSH client logging functions so that users running the client in verbose
mode can be informed about Shibboleth-related progress, warnings or errors. As the
OpenSSH client is implemented in C, its modifications also need to use this language.

6. Validation

The most important task related to validation was to ensure that the system provides
access to valid users only and that it does not interfere with standard (password-
based) authentication mechanisms.

An overview of the validation environment is shown in Figure 4. It consists of
three computer nodes connected via Ethernet. One node (A) acted both as an SSH

7 października 2010 str. 11/16

Flexible and secure access to computing clusters 31



server and as a User Interface node. Server components (including the pam shib mod-
ule and the standard OpenSSH server), along with a patched OpenSSH client, were
deployed an all nodes. The Shibboleth IdP client was installed on the UI node. All
nodes accessed the Shibboleth infrastructure via the Internet.

Fig. 4. The validation environment is composed of three nodes. All of them act as server
nodes while one also performs the functions of a client node (A), with appropriate components

deployed

During validation the following actions were performed:

1. Shibboleth authentication attempt using incorrect credentials,
2. Shibboleth authentication attempt using proper credentials,
3. series of SSH connection attempts – from node A to B, B to C, C to A and again

from A to B,
4. a user was logged out (effectively, the Shibboleth handle was removed),
5. an SSH connection from A to B was attempted.

The actions listed above were chosen specifically to check the system’s reaction to
challenges specified at the beginning of this section, and the results were completely
satisfactory. Authentication attempts with invalid credentials failed, and those with
proper credentials succeeded. After being authenticated, the user was able to connect
smoothly to subsequent nodes, which means that the delegation mechanism works
properly. Finally, upon removing Shibboleth credentials (the handle), the user was
asked for a password, and was able to obtain access to the node only after providing
a proper password for the local account (checked against the /etc/shadow file stored
on the nodes). This ensures that after removal of the handle, the pam shib no longer
allows access to the node, which is the expected behavior, and also that the default
pam unix authentication isn’t affected by the described module.

7 października 2010 str. 12/16

32 Jan Meizner, Maciej Malawski, Marian Bubak



7. Performance evaluation

The performance of the pam shib was evaluated to ensure that it is feasable for use
in a production environment. This module was chosen for performance testing as the
most important part of the system. For the purpose of evaluation, a single node was
used, running both server and client software. Connections were effected using the
local loopback interface. This allowed simulating normal conditions and eliminated
network-related delays in SSH connections. The Shibboleth infrastructure was placed
in a remote location, so network delays had to be taken into account while interpreting
the results as the pam shib module needed to connect to it.

Performence evaluation of the module was conducted by running a sample ap-
plication with a very short execution time via the SSH connection, and timing it 10
times. For this purpose the hostname application was chosen and its local execution
time was recorded 10 times so it could be averaged and subtracted from previous mea-
surements in order to derive the SSH connection time. For reference, an additional
benchmark was performed using the RSA key-pair authentication method (without
key encryption).

The average connection and remote hostname execution time was equal to
0.794 s. For reference, the RSA key-pair solution had an average response time of
0.385 s. After subtracting average hostname execution time (0.003 s), the SSH con-
nection time for mod pam was 0.791 s and for key-pair – 0.382 s. In our opinion,
intervals below 1 s, being only 2 times higher than for the highly optimal key-pair
solution, are acceptable. It is important to notice that the pam shib module relies on
a much more complex architecture then the key-pair solution. Specifically, the module
must connect to the remote authentication service (the Shibboleth IdP) and process
the retrieved SAML assertion. This renders the described method much more secure
then the one based on unencrypted keys, but at the price of making the authentication
process a bit slower.

8. Conclusions and future work

The validation process has shown that all our research goals (see section 1) were
achieved. The system allows users to obtain Shibboleth-protected access to various
generic software packages installed on clusters. This can include commercial software
such as Gaussian or Fluent and custom programs or scripts developed by scientists.

We have also identified and successfully overcome certain obstacles related to the
presented components. The most important issue here is that the OpenSSH server
does not fully follow the Linux PAM standard. Despite the fact that the standard
allows the PAM module to update the user’s name and explicitly instruct application
developers to check if this value hasn’t changed, OpenSSH developers have decided
to ignore it. As a result, we weren’t able to use the Shibboleth user name for the SSH
connection and map it to the system user name. Instead, we need to perform the

7 października 2010 str. 13/16

Flexible and secure access to computing clusters 33



opposite mapping (from the system user name to the Shibboleth user name). Such
mapping is required as system user names may not always match Shibboleth names.

In the future we plan to extend our tool in many ways. First, we will extend the
module and client configuration options to allow more complex user name mappings as
well as using a single configuration for multiple identity providers. It would definitely
be helpful to introduce more dynamic authorization, e.g. by implementing or using
existing NSS modules, similarly to the authorization solutions used by Grid5000 [28]
or proposed recently in [19]. Another important challenge would be integration with
a Web-based SSH client. A combined system could then be fully integrated with the
GridSpace2 [9] platform. Another possible extension could make the described system
act as an authentication mechanism for virtual machines used in cloud systems. The
general concept of using such federated, secure and manageable methods for clouds
seems to be very promising.

Acknowledgements

This work was partialy supported by the PL-Grid [20] project: POIG.02.03.00-00-
007/08-00, www.plgrid.pl. Maciej Malawski acknowledges support from the UDA-
POKL.04.01.01-00-367/08-00 grant from AGH. The authors are grateful to Piotr
Nowakowski for his valuable suggestions.

References

[1] Morgan A.G.: Linux-PAM. http://www.kernel.org/pub/linux/libs/pam/,
2010.

[2] Apache Software Foundation.: Xerces-C++. http://xerces.apache.org/
xerces-c/, 2010.

[3] Bonnefoi P., Sauveron D., Park J.H.: MANETs: An exclusive choice between use
and security? Computing and Informatics, vol. 27, 2008, pp. 799–821.

[4] Bubak M., Malawski M., Gubala T., Kasztelnik M., Nowakowski P., Harezlak D.,
Bartynski T., Kocot J., Ciepiela E., Funika W., Krol D., Balis B., Assel M.,
Ramos A.: Virtual laboratory for collaborative applications. [in:] Handbook of
Research on Computational GridTechnologies for Life Sciences, Biomedicine and
Healthcare, IGI Global, 2009, pp. 531–551.

[5] Coppola M., Jegou Y., Matthews B., Morin C., Prieto L.P., Sanchez O.D.,
Yang E., Yu H.: Virtual organization support within a grid-wide operating system.
IEEE Internet Computing, vol. 12, 2008, pp. 20–28.

[6] Stenberg D. et al.: cURL. http://curl.haxx.se/, 2010.
[7] Dyrda M., Malawski M., Bubak M., Naqvi S.: Providing security for MOCCA

component environment. Proc. of 23rd IEEE International Symposium on Parallel
and Distributed Processing, Rome, Italy, 2009, pp. 1–7.

7 października 2010 str. 14/16

34 Jan Meizner, Maciej Malawski, Marian Bubak



[8] Foster I. T., Kesselman C., Tsudik G., Tuecke S.: A Security Architecture for
Computational Grids. ACM Conference on Computer and Communications Se-
curity, 1998, pp. 83–92.

[9] GridSpace2 Platform. https://gs2.cyfronet.pl/, 2010.
[10] Internet 2 Project OpenSAML. https://spaces.internet2.edu/display/

OpenSAML/Home/, 2010.
[11] Internet 2 Project Shibboleth. http://shibboleth.internet2.edu/, 2010.
[12] Keahey K., Tsugawa M., Matsunaga A., Fortes J.: Sky computing. Internet Com-

puting, IEEE, vol. 13, 2009, pp. 43–51.
[13] Malawski M., Bartynski T., Bubak M.: Invocation of operations from script-based

grid applications. Future Generation Computer Systems, vol. 26, 2010, pp. 138–
146.

[14] Meizner J., Malawski M., Ciepiela E., Kasztelnik M., Harezlak D., Nowakows-
ki P., Król D., Gubała T., Funika W., Bubak M., Mikołajczyk T., Płaszczak P.,
Wilk K., Assel M.: ViroLab Security and Virtual Organization Infrastructure.
Proc. of Advanced Parallel Processing Technologies 8th International Sympo-
sium, APPT 2009, Rapperswil, Switzerland, 2009.

[15] OASIS Security Assertion Markup Language. http://saml.xml.org/
saml-specifications, 2010.

[16] OpenBSD Project OpenSSH. http://www.openssh.com/, 2010.
[17] OpenID Foundation, OpenID Specifications. http://openid.net/specs/, 2010.
[18] PADL Software Pty Ltd. pam ldap module. http://www.padl.com/OSS/pam_

ldap.html, 2010.
[19] Maŕın Pérez J.M., Bernal Bernabé J., Alcaraz Calero J.M., Garcia Clemente F.J.,

Mart́ınez Pérez G., Gómez Skarmeta A.F.: Semantic-based authorization ar-
chitecture for grid. Future Generation Computer Systems, in press, Accepted
Manuscript, 2010.

[20] PL-Grid project. PL-Grid web site. http://www.plgrid.pl/en, 2010.
[21] Perez M., Xiao B.: Special section: Security on grids and distributed systems.

Future Generation Computer Systems, vol. 23, 2007, pp. 774–775.
[22] RSA Security. SecurID. http://www.rsa.com/node.aspx?id=1156, 2010.
[23] Scavo T., Welch V.: A Grid Authorization Model for Science Gateways., Proc. of

International Workshop on Grid Computing Environments, 2007.
[24] Schwiegelshohn U., Badia R.M., Bubak M., Danelutto M., Dustdar S., Gagliar-

di F., Geiger A., Hluchy L., Kranzlmuller D., Laure E., Priol T., Reinefeld A.,
Resch M., Reuter A., Rienhoff O., Ruter T., Sloot P., Talia D., Ullmann K.,
Yahyapour R., von Voigt G.: Perspectives on grid computing. Future Generation
Computer Systems, vol. 26, 2010, pp. 1104–1115.

[25] Spence D. et al. ShibGrid: Shibboleth Access for the UK National Grid Service.
Proc. of the Second IEEE International Conference on e-Science and Grid Com-
puting, Washington, DC, USA, 2006.

7 października 2010 str. 15/16

Flexible and secure access to computing clusters 35



[26] University of Illinois. GSI-Enabled OpenSSH.
http://grid.ncsa.illinois.edu/ssh/, 2010.

[27] University of Illinois. MyProxy, http://grid.ncsa.illinois.edu/myproxy/,
2010.

[28] Varrette1 S., Georget S., Montagnat J., Roch J.-L., Leprevost F.: Distributed
Authentication in GRID5000. Proc. of OTM Confederated Internationl Work-
shops and Posters, AWeSOMe, CAMS, GADA, MIOS+INTEROP, ORM, PhDS,
SeBGIS, SWWS, and WOSE, Agia Napa, Cyprus, 2005.

[29] ViroLab Project Consortium. ViroLab http://virolab.org, 2010.

7 października 2010 str. 16/16

36 Jan Meizner, Maciej Malawski, Marian Bubak


