
Dariusz Król∗, ∗∗, Włodzimierz Funika∗, ∗∗, Renata Słota∗, ∗∗,
Jacek Kitowski∗, ∗∗

SLA-ORIENTED SEMI-AUTOMATIC MANAGEMENT
OF DATA STORAGE AND APPLICATIONS
IN DISTRIBUTED ENVIRONMENTS

In this paper we describe a semi-automatic programming framework for supporting users
with managing the deployment of distributed applications along with storing large amounts
of data in order to maintain Quality of Service in highly dynamic and distributed environ-
ments, e.g., Grid. The Polish national PL-GRID project aims to provide Polish science with
both hardware and software infrastructures which will allow scientists to perform complex
simulations and in-silico experiments on a scale greater than ever before. We highlight the
issues and challenges related to data storage strategies that arise at the analysis stage of
user requirements coming from different areas of science. Next we present a solution to the
discussed issues along with a description of sample usage scenarios. At the end we provide
remarks on the current status of the implementation work and some results from the tests
performed.

Keywords: data storage, application management, distributed environment

SEMIAUTOMATYCZNE ZARZĄDZANIE APLIKACJAMI
ORAZ SKŁADOWANIEM DANYCH
W ŚRODOWISKACH ROZPROSZONYCH
Z UWZGLĘDNIENIEM PARAMETRÓW SLA

Artykuł opisuje semiautomatyczny szkielet aplikacyjny służący do wsparcia procesu wdraża-
nia aplikacji oraz składowania dużych ilości danych w środowiskach rozproszonych z uwzględ-
nieniem parametrów jakościowych. Projekt PL-Grid ma na celu wsparcie polskiej nauki
w celu umożliwienia naukowcom przeprowadzania złożonych eksperymentów typu in-silico
na skalę wiekszą niż dotychczas. W artykule zostały opisane wyzwania związane ze strate-
giami zarządzania wielkimi ilościami danych, zdefiniowane w fazie analizowania wymagań
użytkowników projektu PL-Grid. Zostały również opisane proponowane rozwiązania oma-
wianych problemów, opis przykładowych scenariuszy użycia oraz aktualny stan prac imple-
mentacyjnych i rezultaty przeprowadzonych testów.

Słowa kluczowe: składowanie danych, zarządzanie danymi, środowiska rozproszone

∗ Department of Computer Science, AGH University of Science and Technology, al. Mickie-
wicza 30, 30-059, Kraków, Poland, {dkrol,funika,rena,kito}@agh.edu.pl

∗∗ ACC CYFRONET AGH, ul. Nawojki 11, 30-950 Kraków, Poland,
{dkrol,funika,rena,kito}@agh.edu.pl

7 października 2010 str. 1/14

Computer Science • Vol. 11 • 2010

37

1. Introduction

The development of different areas of science such as chemistry, biology or physics
entails an increased complexity of problems which are being solved which is even
greater than the observed technological progress. Thus there is a necessity to explore
different possibilities to decrease the complexity. One of the possible ways to do this
is to apply a more sophisticated algorithm of a smaller computational complexity
than the previous one. Unfortunately, some problems (e.g. the travelling salesman
problem [1]) do not have fast algorithms which may solve them over a decent period
of time, e.g. a few days. In such situations we can try to distribute computation
to many nodes (e.g. hundreds) to speed it up. By doing so, however, we may end
up with an application of uncontrollable complexity. Another important aspect of
maintaining an application in a production environment is the Quality of Service
(QoS) which defines thresholds for the application parameters which are related to
the non-funtional requirements, e.g. availability or throughput. In most cases the
QoS of an application is defined by a contract between an application provider and
an application user which is often referred to as Service Level Agreement (SLA). The
more complicated the application or the more QoS elements are required, the greater
administrative effort has to be put to run the application. In many cases the effort
may be too large comparing to the achievable profit which puts into question the
profitability of the application. Both aspects, the issue of management and enforcing
SLA (and many other issues not mentioned here) are addressed by the Polish national
project PL-Grid [2]. It focuses on providing Polish scientists with an infrastructure in
terms of hardware and software, which will meet the requirements of modern in-silico
experiments. Along with appropriate hardware, dedicated software systems which will
fulfil user requirements are necessary. Hundreds of geographically distributed nodes
connected together in the PL-Grid production environment is nearly as perfect as
possible for the testing of application management algorithms. In the management
area, this paper presents a software framework for supporting enforcing SLAs by
adjusting the deployment of an application in a distributed environment.

A very challenging subject related to the application management is the storage
of large amounts of data in a heterogeneous, distributed environment according to the
provided non-functional requirements. The data is either generated by applications or
comes from some external sources, e.g. from a network of sensors which measure some
indicators of an experiment. Today middleware which run on top of heterogeneous
environments exploit mechanisms such as virtualization and abstraction to provide
users with a coherent interface to computational and storage elements. Unfortunate-
ly, this way, details about specific features of each element are lost, e.g. replication
support. Whereas this is not an issue in situations where basic operations on storage
are only required, data-intensive applications often need more sophisticated features
from storage devices, e.g. high availability which can only be achieved by exploiting
a replication mechanism in form of e.g. disk arrays. In such cases, the user has to
access this kind of storage by theirselves. This can be too difficult for users who are

7 października 2010 str. 2/14

38 Dariusz Król, Włodzimierz Funika, Renata Słota, Jacek Kitowski

not experts in data storage. The PL-GRID project aims to solve this issue by allowing
the user to specify non-functional requirements related to the storage in an easy way,
without special expertise. This paper includes a description of a framework which
implements this functionality.

The rest of the paper is organized as follows: in the section that follows, essential
reasons for the presented research are discussed. Section 3 briefly overviews related
work. In Section 4, sample usage scenarios which exploit the approach under discussion
are described. Next, we provide remarks about the realized implementation and data
on the tests performed based on the defined usage scenarios. Finally, we conclude the
paper and highlight directions for future work.

2. Towards autonomic-oriented management

As mentioned above, the traditional methods of application management are not suf-
ficient when considering highly distributed and dynamic environments such as the
Grid. The main reasons for this are: a high cost of human resources (mainly in form
of administrators) and detailed knowledge which is required to handle a complex ap-
plication properly, e.g. to recognize symptoms of an incoming disaster. Additional
problems arise when our application has to provide a concrete level of QoS, e.g. due
to an SLA contract agreed with users. In these cases the administrator needs to find
out what is wrong and perform necessary actions to regain a desired state of the appli-
cation QoS which may take hours or days. Therefore, more and more datacenters aim
at the automation of management procedures, e.g. migrating an application between
servers or configuring a data storage strategy.

The automation should decrease, on the one hand, the total time of the SLA
restoring procedure, and a needed amount of human interaction, on the other hand.
However, this automation has to be more intelligent to be able to take over adminis-
trator’s actions, even partially. By speaking intelligent we mean possessing additional
knowledge about the runtime environment, e.g. information on a current workload
on each node, which can be exploited to manage an application more precisely. One
of the current trends in building more intelligent and self-management applications
is the Autonomic computing initiative [3]. In brief, an autonomic application can be
considered as a set of features, including the environment awareness of its state and
self-management, which an application has to exploit in a runtime environment. This
basic feature fits into our problem quite well. Since distributed applications are in our
area of interest, we would like the autonomic manager system to run different parts
of the application on different nodes according to the current environment state and
required QoS. Whenever one of the exploited nodes gets too much workload and this
leads to an SLA violation, the manager must migrate this particular part of the ap-
plication to another node which is not so heavy loaded. The primary objective of the
whole procedure is maintaining the application’s QoS on a level defined by an SLA.

From the point of view of data management, so sophisticated functionality is not
crucial. Due to the differences between the approaches and goals of application and

7 października 2010 str. 3/14

SLA-oriented semi-automatic management of data storage (. . .) 39

data management, each scenario should exploit separated systems. While in the case
of application management the main roles are played by SLA/QoS, data management
deals with allowing the users to pose special storage requirements, to define them in
a declarative manner and thus to exploit specific features of different storage devices.
However, some of the above features, e.g. knowledge about the runtime environment,
are still highly desirable. An important feature which was not mentioned above is
the easiness of use. As the user may not have knowledge about different types of
storage devices, defining non-functional requirements should be as easy as possible.
These requirements, e.g. a high availability or minimum write/read speed, are used
as filters on the list of the currently available storage devices, which is retrieved from
a knowledge base of a Virtual Organisation the user belong to. Moreover, a monitoring
system is used to retrieve information about the current values of the required features.
As a result, the users’ data are stored on a device which is the most suitable one from
the point of view of the requirements imposed.

3. Related work

In this section we present the ongoing work related to the issues addressed by the
paper. First we concentrate on autonomic-oriented frameworks: ProActive Parallel
Suite and a SLA-management oriented, mobile-agent based system. Then, we overview
the tools which focus on data management, namely dCache and the XtreemFS. We
focus on the features which are related to adapting data storage strategies to user-
defined requirements.

The ProActive Parallel Suite [4] is one of the prominent frameworks for develop-
ing distributed, multi-core oriented applications with the Java programming language.
Its feature set contains: active object support which allows to build standard Java ob-
jects which are executed in a distributed environment (e.g. Grid) in a transparent way
from the user point of view, exploiting lazy evaluation which means that a result from
operation is evaluated when required and explicit support for High-level API which
allows to focus on a business logic of an application rather than implementing well
known patterns, e.g. Master-Worker, Calcium or Object-Oriented SPMD. When con-
sidering the active object concept in ProActive, it is worth of mentioning that each
object can be migrated between available nodes simply by calling a single method
(called migrateTo()) from the ProActive API. Based on this mechanism, ProActive
provides support for load balancing algorithms in form of a class hierarchy which can
be extended by the user and which can be integrated in an application. One of the
exploited paradigms is Peer-to-Peer, it allows to search nodes which can take over
active objects from another node. However, the ProActive approach is oriented to
different types of algorithms rather than maintaining SLA contracts which specify
the QoS level of the application. It does not provide any support for a third-party
monitoring systems which would be a precious source of a monitoring data.

An interesting approach to enforce an SLA in a distributed environment is pre-
sented in [5]. This approach is based on a mobile-agent concept that defines autonomic

7 października 2010 str. 4/14

40 Dariusz Król, Włodzimierz Funika, Renata Słota, Jacek Kitowski

components which can be migrated between available resources in a transparent man-
ner. To determine whether an SLA is fulfilled, each element of a workflow which is
realized by a distributed application has to provide information about different quality
indicators. By combining these information, the fulfilment of an SLA can be deter-
mined. In the presented approach, the global SLA is divided into different levels of
abstraction to map business level objectives into more technical ones which can be eas-
ily observed. The authors propose a business application level for describing indicators
which concern such fields as: availability, response time performance, security or help
desk quality, business services level which refers to the indicators related to services,
e.g. an audio service or a database access service, and a network service level which
involves such indicators as throughput, transmission error rate, or jitter. Whenever
an SLA is not fulfilled, appropriate actions have to be taken. Due to the presented
separation of a global SLA into different levels each part can be handled separately.
When one part of an application is overloaded then an agent who is responsible for it
can send messages to a nearby agent that could take over some work to balance the
overall workload in the application. Unfortunately, the approach tries to optimize the
global QoS by optimizing different parts of the application which can not suffice in
general. Although, it is referred to as an autonomic system, it lacks some important
features of such systems, e.g. shared knowledge sources or behaviour configuration
with policies. Its current version is based on distributed flows of requests/data with
QoS in mind rather than allowing the user to provide his/her own set of actions which
should be evaluated when an SLA is not fulfilled.

XtreemFS is a grid-oriented, distributed file system developed within the
XtreemOS european project [6]. The main goal of the project is to develop an easy to
use and to administrate, grid operating system which provides an abstraction layer
on top of available resources, both computational and storage ones. From the data
management point of view, the project provides a modern file system which is opti-
mized to run in a Grid environment. It focuses on features such as: scalability, parallel
IO, replication and extendibility. Like many other distributed file systems, XtreemFS
separates metadata information from the actual data in order to provide a coherent
logical namespace on the one hand and to distribute actual data among available
resources on the other hand. The replication mechanism is introduced to provide high
availability of the stored data. While this behaviour is appropriate for crucial data
which may not be lost in any case, in other cases the replication mechanism generates
only overhead in terms of longer time which is necessary to write a single file in many
locations. Moreover, the XtreemFS does not provide any means for declaring other
non-functional requirements which could be more viable from the user point of view.

DCache [7] is a data management system which implements all the requirements
for a Storage Element in a Grid. It was developed at CERN to fulfil the requirements
of the Large Hadron Collider as for data storage. One of its main features is the
separation of the logical namespace of its data repository from the actual physical
location of the data. DCache exposes a coherent namespace built from files stored on
different physical devices. Moreover, dCache autonomously distributes data among

7 października 2010 str. 5/14

SLA-oriented semi-automatic management of data storage (. . .) 41

available devices according to the currently available space on devices, workload and
Least Recently Used algorithms to free space for the incoming data. Although dCache
distributes data in an autonomic way, there are settings which can be configured to
tune the dCache installation to specific requirements of a concrete user. This param-
eter set contains rules which as an input can take a directory location within the
dCache file system and storage information of the connected Storage Systems as well
as the IP address of the client and as an output such a rule returns a destination where
the data should be sent. However, there is no possibility to provide non-functional re-
quirements, e.g. an availability level of the stored date or a throughput of the storage
element device.

4. Usage scenarios and architecture overview

In order to conclude Section 3 we can claim that the existing solutions are lacking
tools which would manage data and application with fulfilling the previously formu-
lated requirements related to the Grid environment. Although there are some common
requirements in both cases, e.g. knowledge-based support and automation of proce-
dures, each management process should be handled by a different tool.

Each of these tools has to provide important architectural features to be com-
pliant to the existing Grid environment. The application management tool (called
Autonomic Manager) has to retrieve data about the current state of the runtime en-
vironment from a monitoring system. As there are many solutions available, it is more
beneficial to adapt an existing system rather than to create a new one from scratch.
Another important, external element is a shared knowledge base which can be used
for storing information by other actors of the system, e.g. an SLA contract uploaded
by a user, or information for the Autonomic Manager itself, e.g. decisions, which can
be used in the future. The knowledge base can be used to store a configuration of
the behaviour of the Autonomic Manager in form of policy objects. Each policy ob-
ject contains information about the needed QoS level of an application capability in
form of a metric threshold which can be monitored with a monitoring system. When
the QoS level exceeds the threshold, the Autonomic Manager performs indispensable
operations to restore the required level. In the research under discussion, the only
considered action type is a migration of parts of the application between the avail-
able resources. This type of intervention is the least invasive one because it does not
affect the application business logic, instead it optimizes the application QoS level by
changing the deployment layout of the application which can be transparent to the
application code. Also, there is a high probability that an increase in workload on
the resources is the main reason for QoS dropping, thus making them inadequate for
maintaining the SLA agreed.

On the other hand, a data management tool is responsible for retrieving non-
functional requirements for the storage from the user, e.g. a type of device or required
values for different characteristics. We need to provide access to both a monitoring
system, which can measure required indicator values, and a knowledge base, which

7 października 2010 str. 6/14

42 Dariusz Król, Włodzimierz Funika, Renata Słota, Jacek Kitowski

stores information about the available resources. The last but not least element of
the tool design is integration with concrete types of storage elements where the us-
er’s data will be actually stored. Implementing this integration heavily depends on
the technological aspects of the architecture. Whereas many different storage devices
may be supported, this implies the necessity provide a coherent interface to all these
devices. Therefore, we assume that the level of a file system will be sufficient for our
needs. It allows the user to create files where data will be stored without a need to
know its physical location. Also, there is an already defined standard interface for
accessing different file systems so there is no need to develop a new one. The designed
architecture is depicted in Figure 1.

Fig. 1. Architecture overview of the application and data management system

As the figure suggests, the Autonomic Manager component resides between the
monitoring system and the resources on which a distributed application is running.
Thus, it creates a classical control loop known from the autonomic computing con-
cept. On each of the supervised nodes, an agent-like component has to be installed
to accept and perform migration requests from the Autonomic Manager. Once an
application on these nodes is started, each part has to be registered with the Auto-
nomic Manager along with a description of the QoS level which has to be kept, e.g.
by storing these information in the knowledge base. Then, the Autonomic Manager

7 października 2010 str. 7/14

SLA-oriented semi-automatic management of data storage (. . .) 43

starts its own algorithms whose main goal is to provide a load balancing procedure
with the migration mechanism, which ensures that the SLA is maintained.

On the side of data management, the architecture is even simpler. As with the
application management tool, there are necessary connections with the monitoring
system and the knowledge base. However, at this aspect similarities end. When con-
sidering application management, the Autonomic Manager operates on an application,
in case of data management it is the application that is responsible for connecting to
a component called Data Manager. The direction of a request flow is reversed. The
Data Manager can be also regarded as a proxy between a data-intensive application
and a set of storage services. There is no need for the application to choose a concrete
storage device explicitly, thus it only defines requirements and relies on the Data
Manager which compares and selects the most suitable storage device. This way the
application can focus on its primary goal rather than on taking care of data storage
details.

To present how these two tools work in practice, we will consider two scenarios.
The first one is oriented to the application management issue. Let’s suppose, a few
companies want to cooperate and share information and resources in order to achieve
a common goal. They decide to create a Virtual Organisation with a concrete SLA
which defines what resources on what terms will be exploited. One of the companies
decides to provide an application in the manner of Software as a Service (SaaS)
which allows to perform a distributed simulation of some physical problem. Based
on the company experience, an SLA contains an entry about the maximum time of
a single application run, e.g. 7 days. The company calculated this threshold with a few
assumptions:

• the exposed application is divided into three distinct parts which are distributed
onto three different machines;
• the first part is computation-intensive and thus requires 90% of CPU time on

a machine, let’s assume that all machines have an identical CPU;
• the second part is memory-intensive and thus requires 3 GB of RAM memory;
• the third part is so called master node and it is responsible for distributing work

and collecting results.

As the company wants to guarantee that the SLA will be maintained at any
moment, a few more machines are delegated to be ready in case any of the primary
machines is overloaded but they can also be used by another application at this time.
In a common situation, the company should hire (or delegate at least) an administra-
tor to check whether the SLA is not violated from time to time. However, with the
Autonomic Manager system there is no need for doing so. The only additional action
which has to be performed after deploying the application is to register the parts of
the application, each having the corresponding SLA to the Autonomic Manager along
with a configuration description of the available machines. The details of these actions
will be presented in the section that follows.

7 października 2010 str. 8/14

44 Dariusz Król, Włodzimierz Funika, Renata Słota, Jacek Kitowski

The second scenario presents a use case of the Data Manager tool. Let’s suppose,
a scientist, e.g. a physicist who is participating in a huge High Energy Physics oriented
experiment, has to develop an application which will be responsible for storing data
generated by the experiment which generates different types of data: one which is
very important and has to be stored at a high availability level, and a second type
which is not so crucial but there is a intensive stream of this data which has to
be temporarily stored to be next filtered and further processed. The scientist has
access to a set of storage devices of different kinds, characteristics and geographical
localizations. Unfortunately, an average scientist does not possess knowledge what
storage devices should be used to store particular types of data. In a normal situation,
he/she would have to spend a lot of time learning about the available devices and
its configuration instead of developing the application business logic. Fortunately, the
Data Manager can do this work for the scientist. What it needs is a list of available
storage devices with a list of characteristics required. Then, the scientist can explicitly
pass the requirements for storing different data on different types of storage devices.
We will come back to this scenario in Section 5 for more details.

5. Implementation and tests

In this section we study the implementation of both the previously presented tools in
more details. Then, we provide results from the tests aimed at simulating the usage
scenarios presented in the above section.

The Autonomic Manager tool is based on Java language-related libraries and
frameworks. Its core is based on the ProActive parallel suite, due to the provided
support for the migration mechanism. The Autonomic Manager assumes that the
supervised application is developed with the ProActive suite, thus different parts
of the application can be migrated between the available resources. Each of these
parts (called active object or component in the ProActive terms) has to be registered
with the Autonomic Manager like a listener subscribes for an event. In the presented
prototype, the user has to use a prepared library which contains Java class definitions
which are intended to be used as base classes for user objects. The prepared classes
provide a few methods for controlling the deployment of an application. The Java RMI
mechanism is exploited to enable remote procedure calls. We addressed the ProActive
suite in Section 3. The knowledge base component is implemented as an ontology
which is processed by the Autonomic Manager with the Jena Semantic framework. The
ontology defines a semantic model of data, which is divided into four main categories:
• Resources which describe objects from a supervised domain, e.g. cluster, CPU

or an Active Object. Everything that is important from the point of view of
Autonomic Manager and has some capabilities which can be monitored can be
an element of this set.
• ResourceCapabilites contain features which can be directly monitored with a mon-

itoring system, e.g. available memory or service response time. Each of these
features is associated with a concrete Resource instance.

7 października 2010 str. 9/14

SLA-oriented semi-automatic management of data storage (. . .) 45

• Metrics describe how a capability is monitored. Each metric can combine different
capabilities to provide a meaningful value for the user, e.g. “mean response time
of a service over last 5 minutes”. The monitoring system can be inquired of the
value of a particular metric.
• Conditions can be used to construct an SLA which defines a required QoS level,

in form of a threshold for a metric which has to be maintained. In addition to the
threshold, a relation which associates the threshold with the metric value has to
be provided as well. In the current prototype, only basic mathematical relations
are supported, e.g. “less than” or “greater than”.
An important element of the constructed control loop is a monitoring system. It

should be able to process a data model described previously. It would also be desirable
that the monitoring system could send notifications when a defined Condition is vio-
lated. The more sophisticated the monitoring system in terms of the provided features
is, the less complicated the Autonomic Manager has to be. If we would like to enable
support for any existing monitoring system, we would have to implement a trans-
formation between an ontology based data model to the monitoring system specific
model and a notification mechanism based on the values provided by a monitoring
system, which would be an unnecessary effort. The SemMon system [8] provides all
of the necessary features thus it is well suited for our case. It reads an ontology to get
information about the resources which are going to be monitored and thus can exploit
other, more appropriate monitoring systems, connected with dedicated adapters, to
collect all the necessary data.

On the other hand, we have the Data Manager tool which requires different
technologies to be implemented. The implementation is in progress, however we can
already provide information about various exploited technologies. The first difference
between the Data Manager and the Autonomic Manager is the separation within
the former tool of the client side and the server side. The former one is a classic
programming library, written with C/C++ programming languages, to be explicitly
used by the user applications. Its main goal is to collect information about storage
requirements posed by an application, pass them to the server side which finds the
most suitable storage device among the available resources, and, finally, returns this
information to the application in form of a file descriptor in a distributed file system
which is located on the found device. The on-going implementation uses the Lustre
file system [9] which is a widely adopted system, developed by the Sun microsystems.
It provides a logical coherent namespace with different physical localization of each
file with a support of the stripping mechanism. It also provides a pool mechanism
which allows to group a set of storage devices, e.g. according to its functionality,
behind a single name, thus a created file is automatically stripped onto a particular
set of devices. The server side is responsible for finding the most suitable storage
element that meet the passed requirements. To do this, it combines static informa-
tion, e.g. the availability of a device or its capacity, and dynamic information, e.g.
current read/write ratio, to find an optimal element. As a knowledge base, the Grid
Organizational Memory (GOM) [10] service has been used. It provides methods for

7 października 2010 str. 10/14

46 Dariusz Król, Włodzimierz Funika, Renata Słota, Jacek Kitowski

accessing an ontology-based model remotely. Once properly configured, it can contain
information about available resources, e.g. locations and characteristics of the storage
devices.

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30

A
p

p
lic

a
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 t
im

e

Counter

’data1.txt’
10

Fig. 2. The Application performance time metric plot – ‘no Autonomic Manager user‘
scenario

To conclude this Section, we provide some numbers and plots which depict how
the Autonomic Manager can influence a distributed application in a completely auto-
matic way. The tests were based on a usage scenario described in Section 4. However,
to speed up the tests, the time scale in the SLA has been changed. Instead of 7 days
as a threshold for the application performance time, a 10 minutes threshold has been
used. Other units have not been changed. To exclude possible unpredicted Grid phe-
nomena we decided to run tests on several, connected machines. We have run the
application 30 times in 2 series. In the first series (Figure 2), we did not used Auto-
nomic Manager to explore how the response time behaves when a workload on a single
node is increased suddenly. In the second series (Figure 3), Autonomic Manager has
been turned on. As we can see, there is a visible difference between these two series.
While, in the former one, when a workload is increased, the SLA is violated until the
workload is decreased in a natural way which virtually may not happen. In the second
series, the Autonomic Manager collects monitoring data from the SemMon system and

7 października 2010 str. 11/14

SLA-oriented semi-automatic management of data storage (. . .) 47

can respond to an increasing workload by migrating part of the application from this
node to a less loaded node.

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 5 10 15 20 25 30

A
p

p
lic

a
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 t
im

e

Counter

’data2.txt’
10

Fig. 3. The Application performance time metric plot – ‘Autonomic Manager employed‘
scenario

6. Conclusions and future work

In this paper, we focused on the on-going research related to the application and
data management within the PL-GRID project. The main goal of the research is to
automate as many activities as possible related to administration of a distributed
application according to a defined SLA. On the data management side, it allows users
to provide non-functional requirements for storage in an declarative way, which are
next mapped onto the available storage devices, to find the most suitable one. In
order to demonstrate possible usage of the developed approach, a few use cases were
prepared based on the real-live examples from the HEP area. By examining these
scenarios, it was possible to get a valuable feedback on the approach. Some important
changes were introduced based on the gathered feedback. The designed tools can be
exploited by the application developers within any distributed environment, e.g. Grid,
with hardly any extra effort needed. Results from the presented tests are promising

7 października 2010 str. 12/14

48 Dariusz Król, Włodzimierz Funika, Renata Słota, Jacek Kitowski

and show that the described approach can be applied to different scenarios and some
positive effects can be achieved, i.e. maintaining the QoS level.

However, the approach is still evolving and some new directions and enhance-
ments are considered. The most important further work includes:

• Dynamic reconfiguration of the Autonomic Manager by providing new SLA en-
tries or changing the existing ones. It is a highly desirable feature especially when
considering long-lasting applications.
• Support for different types of rescue operation when an SLA contract is violated.

Currently, only the migration mechanism is exploited but there are other worth
considering, e.g. process replication to many machines.
• Graphical User Interface is an enhancement of the administrative part of the

Autonomic Manager. The presented prototype is a pure, console-based tool which
can be rather discouraging from a non-export point of view, thus a GUI tool could
enlarge the number of users of the Autonomic Manager tool.
• Support for different storage device types is a future direction for Data Manager.

It is more difficult to achieve the integration of different types of storage, e.g. file
systems, disk arrays and hierarchical systems, is a must in a highly distributed
and heterogeneous environments.

Acknowledgements

The research presented has been partially supported by the European Union within the
European Regional Development Fund program no. POIG.02.02.00-00-007/08-00 as
part of the PL-Grid Project.

References

[1] Applegate D. L., Bixby R. E., Chvátal V., Cook W. J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, ISBN 978-0-691-
12993-8.

[2] The PL-GRID project website. http://www.plgrid.pl/.
[3] An architectural blueprint for autonomic computing. http://www-01.ibm.com/

software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf.
[4] Caromel D., Delbe Ch., Costanzo di A., Leyton M.: ProActive: an integrated

platform for programming and running applications on Grids and P2P systems.
Computational Methods in Science and Technology, vol. 12, 2006, pp. 69–77.

[5] Schmidt H., Kapitza R., Hauck F. J., Reiser H. P.: Adaptive Web Service Migra-
tion. Lecture Notes in Computer Science, vol. 5053, Springer Berlin/Heidelberg,
2008, pp. 182–195.

[6] The XtreemOS project website. http://www.xtreemos.eu/.
[7] Fuhrmann P.: dcache: the commodity cache. Proc. of 12th NASA Goddard and

21st IEEE Conference on Mass Storage Systems and Technologies, 2004.

7 października 2010 str. 13/14

SLA-oriented semi-automatic management of data storage (. . .) 49

[8] Funika W., Godowski P., Pegiel P.: A Semantic-Oriented Platform for Perfor-
mance Monitoring of Distributed Java Applications. Proc. of International Con-
ference on Computational Science, 2008.

[9] Lustre file system website. http://wiki.lustre.org/index.php/Main_Page.
[10] Kryza B., Pieczykolan J., Kitowski J.: Grid Organizational Memory: a versa-

tile solution for ontology management in the Grid. Proc. e-Science 2006 – 2nd
IEEE International Conference on e-Science and Grid Computing, Amsterdam,
Netherlands, 2006.

7 października 2010 str. 14/14

50 Dariusz Król, Włodzimierz Funika, Renata Słota, Jacek Kitowski

