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The identification of the proper parameters of material models plays a crucial
role in the design of production technologies, especially in the case of modern
materials with diversified properties under different boundary conditions. The
procedure of identification is usually based on an optimization algorithm that
uses sophisticated numerical simulations as a part of the goal function and
compares the obtained results with experimental tests. Despite its reliability,
such an approach is numerically inefficient. This paper presents the concept
of how to replace the most numerically-demanding part of the identification
procedure with metamodels, allowing us to maintain uniform result quality.
The computer system, which allows us to manage input data, metamodels,
and calculations, is proposed and described in detail in this paper. Finally, the
proposed approach is validated on the basis of tests performed in the laboratory.
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1. Introduction

When manufacturing metallic products, modern heavy industry requires fast nume-
rical simulations based on reliable data that supports the design of new production
technologies. However, the acquisition of proper input data for numerical simulations
is very time consuming. This process includes the following steps:

e performance of laboratory tests based on a standarized material sample under
different conditions (various temperatures and/or strain rates),

e parsing and analyzing the data gathered, which is usually available as a multi-
element set of text files,

e preparation of a numerical test (virtual experiment) representing a real laborato-
ry test with the same geometry of tools and samples as well as the same boundary
conditions,

e selection of a material model that will be identified during calculations,

e performance of inverse analysis based on a selected optimization procedure aimed
at determining the most-suitable parameters of the material model.

Nevertheless, multi-iterative optimization joined with numerical simulations of
experiments is very time consuming, which is unacceptable to the industry. Poor
efficiency of computational procedures can be improved by the parallelization of par-
ticular methods or by the application of High Performance Computing (HPC) ar-
chitectures to distribute calculations. These methods work efficiently only when cal-
culations without barriers can be applied to obtain optimal parallelization. Such an
approach improves the computational efficiency of inverse analysis; however, the time
required for calculations is still unsatisfactory. In this paper, we propose replacing
computationally-inefficient numerical simulations with less-sophisticated metamodels
based on Artificial Neural Network (ANN), Kriging, or Response Surface methods.
Then, the overall computing cost will be related to the configuration of metamodel
background methods; e.g., training of ANN, which is performed only once to create a
reliable metamodel. Such a solution allows us to maintain a high quality of obtained
results and significantly reduce computing time. A hybrid computer system suppor-
ting metamodel creation and its application in inverse analysis is the main subject
of this work. The first part of the paper is devoted to a definition and short review
of different hybrid computer systems [18], which is followed by a description of the
inverse analysis idea as well as a presentation of material models and metamodels.
These approaches are combined in the form of one computer system. Design and im-
plementation details of this system are described in the fourth section of the paper.
Finally, the results of our case studies are presented.

2. Hybrid systems

Hybrid computer systems are usually defined as software covering more than one dif-
ferent functionality; e.g., optimization, numerical simulation, or an embedded expert
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system. Such hybrid systems supporting Design of Experiments (DOE), data analy-
sis, or the design of production technologies are a part of bigger group of production
planning systems (PPS) that play an important role in the industry. These systems
manage supply chains, optimize the work of employees, maximize incomes, or plan
the use of space in warehouses. Commercial versions of such systems were developed
in the early 1990s and were based on task schedulers or management of Gantt charts
[11]. This simple functionality was being constantly developed by the implementation
of the following ideas [1]: mass production, flexible manufacturing, computer inte-
grated manufacturing, lean manufacturing, and material resource planning (MRP).
These steps were necessary to achieve the milestone in the lifecycle of planning sys-
tems; i.e., from MRP (mentioned earlier) to Enterprise Resource Planning (ERP)
conversion. Further evolution of the functionality of PPS systems focused on the im-
plementation of methods supporting concurrent engineering and, finally, to increase
the agility of manufacturing. The latter systems were created to manage production
processes held in unstable environments and to satisfy individual fast-changing custo-
mer needs. Following the development of PPS, systems were modified and extended
by including algorithms based on artificial intelligence and soft computing in an ef-
fort to create the so-called Intelligent Manufacturing Systems (IMS). One of the first
examples, proposed by Giachetti [4], was based on a formal multi-attribute decision
model and relational database. The created system was helpful in the selection of
materials and manufacturing processes. Nowadays, such approaches often use expert
systems [10] or knowledge bases [5]. The former proposed a framework to create a cu-
stomized rule-based system that utilize a semantic net and edges between its nodes.
The computation of semantic hulls allows us to obtain solutions and to determine
optimal decisions. Halevi and Wang suggest creating a knowledge-based ”road-map”,
which facilitates decision making in production planning by introducing flexibility
and dynamics to the manufacturing process.

Several hybrid systems were already designed and implemented by the authors
of this paper. Many of the systems were based on similar software architecture; ho-
wever, their final functionality differed slightly from each other. The first attempt to
create a hybrid system dedicated to support the design of production technologies
was proposed in [20]. The system was dedicated to specific processes of the manu-
facturing of fasteners; e.g., screws, bolts, or anchors. This concept of hybrid system
was further developed and adapted for the needs of flat rolling processes. A series of
papers have been published in this area. The first system was proposed for the Arce-
lorMittal company [19] for a new hot-rolling mill in Krakow. This system was further
extended with functionality that allowed for the design of production processes in a
collaborative environment [16]. Another hybrid system for flat rolling was dedicated
to the pilot-rolling mill that LPS described in [3]. Since the prediction of the proper-
ties of products is essential to the effectiveness of such systems, advanced modelling
methods based on either internal variables or discrete techniques were applied. The
selection of the relevant method and presentation of the details of modelling were
particular objectives of the previous research. The functionality of system modules
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and the results of the calculations were presented in [17]. Both systems were equipped
with knowledge bases and a reasoning module, which allowed for the application of
case-based reasoning on real industrial data. Additionally, the hybrid systems were
extended with functional modules dedicated to modern steels and alloys. The case of
DP steel was analyzed in [9], while multiphase steels were the main subject in [15].
Finally, the generic hybrid system ManuOpti was proposed in [21], which covers the
flexible design of various industrial processes by using external software for numerical
simulations and internal modules for optimization and sensitivity analysis. The Ma-
nuOpti system also works with e-infrastructures such as HPC architectures, realized
by communication with the Scalarm system [6].

3. Inverse analysis

3.1. Basic idea

Inverse analysis is applied in numerical simulations to determine the most accurate
parameters of material models. Details of the inverse algorithm developed by Szeliga et
al. were presented in [24]. It is based on an optimization loop, where experimental data
gathered from laboratory tests is compared to the results obtained in the numerical
approach. The optimal coefficients in the model are determined by searching for a
minimum objective function, which is defined as the Euclid norm between measured
and predicted loads in the experiment:
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where: Fi,;i, Frji — measured and calculated loads, Nps — number of stands, Npt —
number of tests, p — vector of process parameters (strain rates, temperatures), X =
{A,n,q,m, B} — vector of coefficients in the flow stress model.

To maintain a high reliability in the identification process, the numerical appro-
ach has to reflect laboratory test in detail. In the inverse-analysis simulation of the
laboratory test is often called the formulation of a direct problem. The direct-problem
model is usually based on the thermal-mechanical finite element method [17,18], which
is computationally costly and very time-consuming. The approach presented in this
paper assumes replacing the finite element method with a metamodel based on one
of the artificial intelligence methods. The material models analyzed by the system as
well as the concept of metamodels are presented in the next sections.

3.2. Material models

The approach developed in this work can be applied to various materials and vario-
us material models. However, this paper is focused on models that are used in the
simulation of processing metallic materials. These models and the experimental tests
performed for their identification are listed in Table 1.
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Table 1
Processes, models and laboratory tests.

Process Model Tests

Hot/cold forming Rheological Compression/tension
Microstructure evolution Recrystallization/grain growth | Stress relaxation
Cooling after hot forming | Phase transformations Dilatometric
Damage Fracture criterion SICO

The models, which can be identified using the developed system, are described
briefly below, and a reference is made to the relevant publications where detailed
descriptions of these models can be found. The models were identified for DP600 steel
containing 0.071%C, 1.45%Mn, 0.25%$Si, 0.55%Cr, 0.03%Mo, 0.005%V, 0.002%Ti,
0.01%P, and 0.006%S.

3.2.1. Rheological models

Material rheological models of various complexities of formulation were considered.
Models with external variables (temperature, strain, and strain rate) used as indepen-
dent variables were the simplest ones (4 coefficients — top curve in Figure 1). Models
accounting additionally for softening due to recrystallization (5 coefficients — central
curve in Figure 1) and for softening and saturation (7 coefficients — bottom curve in
Figure 1) were also investigated. Reviews of these models can be found in [14]. Typical
responses of these models are shown in Figure 1.
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Figure 1. Rheological models as dependency between flow stress and strain.
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A model with internal variable (dislocation density) and time used as indepen-
dent variables [12] was considered as well. In this model, the evolution of dislocation
populations is described by the differential equation:

dp(t) ¢ 3ubks

G —w el - —p

p()** Rlp(t) — per] (2)

where: € — strain rate, b — length of the Burgers vector, p — dislocation density, [ —
average free path for dislocations, u — shear modulus, ko, k3 — recovery coeflicient and
grain boundary mobility, respectively, p.. — critical dislocation density for dynamic
recrystallization (DRX), calculated as a function of the Zener-Hollomon parameter
Z, D — grain size, t — time. Function R in equation (5) is:

Rlp(t) — per] =0 for p < per
Rlp(t) — per] = p(t —ter) for p > per

where: t.,. — time to the beginning of DRX.
The Zener-Hollomon parameter is defines as:

7 = éexp ( QE;F ) (3)

where: Q pgr — activation energy for deformation, R — gas constant, T — temperature
in K.
Flow stress in the internal variable model is calculated in the following equation:

o =09 + abur/pasv (4)

where: p — coefficient, p,, — average dislocation density, oy — initial stress accounting
for the elastic deformation.

3.2.2. Microstructure evolution models

Microstructure evolution models describe the kinetics of recrystallization, grain size
after recrystallization, and grain growth during interpass between subsequent defor-
mation. The kinetics of recrystallization is described by the model known as JMAK
(from the names Johnson, Mehl, Avrami, and Kolmogorov). In this model, the volume
fraction of a new phase is:

X =1—exp(—kt") (5)

where: X — volume fraction of a new phase, k, n — coefficient.

Adaptation of this model to the case of recrystallization was made by Sellars [23],
who proposed the following equation:

X =1 exp [ln(0.5) (tﬂ 6)

to.5
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where: tg.5 — time for 50% of recrystallization.

A full description of the microstructure-evolution model used in the present work
can be found in [8]. Results of the identification of that model for steel DP600 inve-
stigated in this work are given in that paper as well.

3.2.3. Phase transformation models

Phase transformation models describing kinetics of ferritic, pearlitic, bainitic, and
martensitic transformations in steels (up to 23 coefficients) were considered in the
system as well. These models are also based on the JMAK equation (8); however,
coefficient % is introduced as a function of temperature. A detailed description of this
model for all transformations is given in [13]. Results of the identification of the phase
transformation model for steel DP600 investigated in this work are given in [8].

3.2.4. Fracture criteria

In the modeling of material processing or calculation of material-related parameters,
the finite element method [28] or alternative methods are used. The continuum of
the material is the main assumption in this approach. The modeling of fracture in
material processing is generally based on the fracture criteria [2], which predict the
moment of fracture by integration with respect to strain of a term dependent on the
ratio between the first invariant of the stress tensor and flow stress. These criteria
are implemented in finite element (FE) codes and currently use local values of strains
and stresses as independent variables. More-advanced models of fracture based on
CAFE (Cellular Automata — Finite Elements) or xXFEM are not discussed in this
paper. These methods have extensive predictive capabilities, but they require long
computing times. This limits their application in practical industrial simulation.

The fracture criteria are easy in application; however, on the other hand, their
accuracy depends strongly on the accuracy of the evaluation of the critical value of
parameter C, which determines the moment of fracture. Evaluation of this parameter
is difficult, and this is the reason why obtaining realistic results that quantitatively
agree with experimental data is a challenge. In the present paper, the relation of the
fracture criterion on process parameters (temperature, strain rate), proposed in [27],
was introduced. The fundamental fracture criterion was upgraded to the following
form:

Ef
/ Fos, 0y 011,6,T)de > C (7)
0

where: 0;, 0, — effective and average stress, respectively, 017 — maximum principal
stress.

The identification of the fracture criterion (7) was performed in two steps. In the
first step, function F was selected. Special software that evaluates the sensitivity of
various functions from a certain class of functions with respect to the variables was
developed, as described in [27]. The function with the highest sensitivity with respect
to the variables was selected, and coefficients in this function were determined by
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the computer system using SICO (Strain Induced Crack Opening) test results as an
input. A description of the SICO test is given in [7].

3.3. Metamodels

The general idea of metamodelling relates to the postulate that a metamodel approxi-
mates the model of a considered process. A metamodel must correctly correspond to
the model, and the metamodel output value has to be evaluated with a radically-lower
computing time than when using the original model. Thus, metamodelling is the pro-
cess of constructing an approximation of the analyzed model on the bases of different
techniques. In other words, a metamodel is a model of the model. The accuracy of
a metamodel is usually verified by the use of statistical methods. This accuracy of
a metamodel depends on the metamodelling technique used as well as the number
of samples generated by the model. Usually, the higher number of samples provides
better metamodel accuracy. Among many artificial intelligence methods, the artificial
neural network (ANN) is the most-commonly-used metamodelling technique. Exam-
ples of successful applications of artificial neural networks in metamodelling can be
found in [28, 29]. The approach of applying a metamodel to solve an optimization
task in the inverse analysis of plastometric tests was proposed in [26].

The most important issue in using metamodels is the possibility to achieve high
efficiency. As mentioned in the introduction of this paper, computational cost is incur-
red only once during metamodel calibration, which is usually related to multi-iterative
training or calibration of the procedure. The metamodels based on ANN are prepa-
red by using data obtained from parameterized numerical simulations. This process
can be performed inside the proposed system or with the use of external software.
Finally, configured networks have to be described by using Predictive Model Markup
Language (PMML)!. The system allows for the development of the metamodel for
any of the models described in section 3.2 and for any of the tests listed in Table 1.

An example of this technique is presented in Listing 1. This metamodel was
trained by using Multi-Layer Perceptron (MLP) with 8-16-5-1 architecture for the
Handsel-Spittel model [equation (3) in Figure 1] with five parameters and for the ring
compression test (see the case study in Chapter 5). Eight input parameters include
five model parameters, temperature, strain, and strain rate. The output parameter
is stress. The whole listing also contains other important description fields; e.g., he-
ader information, dictionary, transformation, biases, and weights. Due to the applied
standard, the exchange of data describing metamodels is facilitated.

Listing 1. The example of neural network described in PMML.

<?xml version="1.0" encoding="UTF-8"7>
<PMML version="4.1" xmlns="http://www.dmg.org/PMML-4_1">

Thttp://www.dmg.org/v4-1/GeneralStructure.html
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<NeuralNetwork functionName="classification" algorithmName="RProp"
— activationFunction="logSigmoid" normalizationMethod="none"
<— width="0.0" numberOfLayers="2">

<NeuralInputs numberOfInputs="8">
<NeuralInput id="0,0">
<DerivedField optype="continuous" dataType="double">
<FieldRef field="Ax"/>
</DerivedField>
</NeurallInput>
</NeurallInputs>

<NeuralLayer>
<Neuron id="1,0" bias="5.19490148547779820e+000">
<Con from="0,0" weight="-4.59948678619852710e-003"/>

<Con from="0,7" weight="3.45208352483214130e-001"/>
</Neuron>
</Neurallayer>

<NeuralOutputs numberOfOutputs="1">
<NeuralOutput outputNeuron="3,0">
<DerivedField optype="categorical" dataType="double">
<NormDiscrete field="class" value="Stress"/>
</DerivedField>
</NeuralOutput>
</NeuralOutputs>
</NeuralNetwork>
</PMML>

4. Computer system

The system was designed as stand-alone application dedicated to the MS Windows
OS with the possibility of local or remote database connection. A list of the most
important modules in the system is presented in Figure 2, containing the following
elements:

e Ul.LMain — the main project responsible for integration of all other modules to-
gether. It contains the startup manager, which allows us to execute the system
and initialize crucial components.

e Common.Core — is the basic module in the whole hierarchy. It includes definitions
of unified data types and classes, which are imported in other modules.

e Common.MVC — defines the abstract logic of all views inside the graphical user
interface and manages the Model-View-Controller (MVC) pattern. The pattern
is based on adapted idea of Model View ViewModel (MVVM) supported by
MS. It is adapted to the specific needs of the system and implemented from the
beginning.

e Common.MVC.WPF — implements universal logic of the View layer integrated
with Windows Presentation Foundation technology.
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e Common.NHibernate.Mapping — supports the creation of mapping between ta-
bles in the database and classes in the Model layer of the system.

e MIS.Core — contains basic classes, interfaces used by the Controller layer as well
as defined interfaces for plugins, which allows us to maintain increased flexibility
of the system and openness for new functionality.

e MIS.Database — defines the Model layer of the system.

e
Y |\
call b
Rt S
Y4/
=]

Figure 2. Internal dependencies between the most important modules of the system.

The crucial components of the system (i.e., plugin managers) are hidden from
the user inside the MIS.Core module. They allow us to add new functionality flexibly,
while it is assumed that all of the functionalities in the system related to data pro-
cessing, metamodeling, and optimization are treated as separated plugins. However,
such a plugin can be imported into the system only when it implements one of the
interfaces presented in Figure 3.

The system can be extended by using plugin interfaces in one of the following
four directions:

e Data import — each of the machines used in laboratory testing generates output
data, which describes material behavior under loading or temperature conditions.
The data obtained from such tests are gathered in various formats, including
text and binary files (e.g., results of plastometric tests generated by Gleeble3800
are exported to text in columns, while the data obtained from dilatometers is
written in the MS Excel format). To assure the possibility of definition of the
new machines and laboratory tests, IDataParserPlugin was implemented as a
fundamental interface for these purposes.
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Figure 3. Hierarchy of plugin interfaces.

e Data filtering — data obtained directly from laboratory test is usually very noisy
and contains a lot of useless records that have to be omitted. The IDataFil-
terPlugin allows us to implement new filters dedicated to specific measurements.
The most-commonly-used filters are: moving weighted average (data smoothing),
screening (data selection), and inter-/extrapolation (data completing).

e Metamodelling — as mentioned previously, ANN metamodels have to be described
in PMML; however, the system is open for other metamodelling approaches,
such as Kriging or Response Surface Method. Metamodels based on such new
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functionality can be imported to the system in the form of plugins implementing

the IMetamodelPlugin interface. The methods of this interface allow us to receive

input/output parameters and execute metamodelling.

e Optimization — the system is equipped with an internal software library with
optimization methods. It includes conventional approaches as well as nature-
inspired methods. However, similar to metamodelling functionality, the system
stays open for new functionality. Therefore, new optimization procedures can be
imported to the system in form of plugins implementing IOptimizationPlugin.
The methods of this interface allow us to define optimization variables, objective
function, and breaking conditions.

The plugins imported to the system are managed with PluginController, which
is responsible for maintaining proper plugin configuration and data workflow. Due to
such functionality, users are able to design a specific route of plugins, starting from
data parsing and filtering up to the optimization loop with the selected metamodel.
All of the data required by system modules is gathered in the database (Figure 4).
After authorization, a user starts his work with the system by creating a new project
(table Projects), where the type of laboratory experiment is selected (table Experi-
ments). This choice determines the list of possible machines to be used in laboratory
tests. The selected machine and type of experiment determine a list of possible ma-
terial models (table Models) for which parameters can be further identified (e.g., the
selection of a plastometric test on Gleeble 3800 would suggest a list of rheological
models, including Hansel-Spittel, CEMEF, or Sellars models). Finally, the model se-
lected by the user determines a list of possible metamodels (table Metamodels) that
were virtually trained to reflect real experiments.

The configuration of the project is followed by import and analysis of the measu-
rements. This functionality is realized by plugins that are composed into tree groups
by the user (table PluginTree). Each node of that tree is described by a set of speci-
fic parameters (table ParamsTree). Such an approach starts optimization as the last
major plugin, which uses a metamodel as a part of the objective function. Moreover,
the plugin tree assures a fluent workflow of data between particular plugins and takes
responsibility for data integrity. Results of the performed identification are presented
on the main form of the graphical user interface (Figure 5). The system was implemen-
ted by using Microsoft .NET 4.5 framework with Windows Presentation Foundation
(WPF).

5. Case study

The system was validated for all material models described in this paper. The majori-
ty of results obtained from the system are published in other papers. Identification of
the microstructure evolution model is described in [8], phase transformation models
in [13], and identification of fracture criteria is described in [27]. Extensive applica-
tion of the system to the identification of flow-stress models on the basis of uniaxial
compression tests is presented in [26].
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Figure 4. The main tables of the database.
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Result

Validation confirmed good efficiency of the system as far as the identification of
material models is considered. In the present paper, the capabilities of the system
are demonstrated for the compression of rings (Figure 6). Various disturbances make
interpreting the results of ring compression (RC) tests very difficult. These tests are
characterized by a large inhomogeneity of deformation (Figure 7), which is caused by
the complex shape of the deformation zone and by the effect of friction. Beyond this,
heat generated due to plastic work, friction and heat transfer to the tools and their
surroundings causes strong inhomogeneity of temperature in the sample. Due to the
fact that ring dimensions are very sensitive to friction after compression, this test is
frequently used for the identification of the friction coefficient [22]. Since the above-
mentioned inhomogeneities of strains, stresses, and temperatures make determining
the flow stress from this test very difficult, researchers usually perform additional
uniaxial compression tests to identify the flow stress model. This procedure is very
costly; therefore, researchers searched for a possibility of applying numerical simula-
tions to aid the interpretation of the RC test. Results of this research are described
in [25]. It was shown in that paper that, when inverse analysis was applied, identical
flow-stress models were obtained from RC and UC tests. Therefore, the ring compres-
sion test was selected as the case study in the present work. The ring samples used
in laboratory tests are standardized; i.e., R = 6 mm, R = 7 mm or R = 9 mm and
the ratio between R, r, and H is 6:3:4 (Figure 6).
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Figure 6. The sample used in ring compression laboratory test.
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Figure 7. Distribution of strains at the cross section of the ring after compression. Due to
two axes of symmetry, only the top-right quarter of the cross section is presented.

Numerical simulations reflecting the compression of rings with various radii were
implemented. Besides the radius, the set of input parameters contained the following
eight elements: p;-ps (parameters of equation (3) in Figure 1), £ (strain), ¢ (strain
rate), T (temperature). Five forces related to equal die displacement were the output
parameters of the model (Figure 8). Finally, ten thousand virtual tests featuring
randomized input parameters were performed to obtain a direct relationship between
input and output values.

The set of results obtained was used to build ANN-based metamodels. Various
architectures of MLP were verified, including variants with one and two hidden layers.
The former networks (i.e., 8-6-1, 8-10-1, 8-14-1) were unable to obtain satisfactory
accuracy. However, the architecture 8-18-13-1 with two hidden layers reached the
lowest error value after training and validation. Fifteen networks were trained (i.e.,
for each of the three radiuses and for each of the five forces separately).

Particle Swarm Optimization (PSO) was used in searching for a minimum of the
objective function (1). Optimization was performed for 10,000 particles, with inertia
equal to 0.729 and for the same local and global accelerations equal to 1.49. During
optimization, the effective number of required iterations was 100. The best thirty
results from different cases of network learning were used to verify the effectiveness
of the trained networks and optimization.
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Figure 8. The forces related to die displacement.

The obtained coefficients from the mentioned system were used in verification
tests. The results obtained were verified by a comparison with inverse analysis with
FEM. Results of this comparison are presented below. Figure 9a shows plots of flow
stress obtained from conventional inverse analysis with the FE model and from inverse
analysis with the metamodel. Figure 9b shows the comparison of forces measured in
the tests and calculated by the FE code with flow stress equation (7) in the constitutive
law with coefficients p;-ps determined using the two inverse methods. The presented
results confirm very good predictive capability of the system, and some discrepancies
in Figure 9b are due to the lack of capability of equation (6) to properly describe the
behavior of the material in a wide range of strain rates and temperatures.

a) b) (0—0—@ measurement
4——¢ FE+(inverse+FE)
160 14— FE+(inverse+ANN)
140 od ]
D? 120 25
2, 100 E 20 -
wv
17,] - 4
o 80
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3 A—A—A inversetANN 0
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Figure 9. The comparison of experimental data to the results obtained by using Finite
Element Method with material model identified with ANN.
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6. Conclusions

The hybrid computer system for the identification of metallic material models on the
basis of laboratory experiments was described in this paper. The system was designed
as a stand-alone application dedicated to the MS Windows OS with the possibility
of local or remote database connection. Numerical tests of the system allowed us to
draw the following conclusions:

e The presented system allows us to perform many simulations in a short time
using a user-friendly interface with different plugins.

e Plugin-based applications allowed us to extend the existing system without wri-
ting new, often complicated and previously-developed core parts for new features.
It is only needed to write a new plugin that implements the required interfaces.

e Plugins allow us to add new types of features such as subsystems for existing
solutions, scatter computing plugins, etc.

e Stored informations with automated operations protect against often-made mi-
stakes by human during manual reconfiguring before each simulation.

e The system allows us to decrease the time required to organize the work environ-
ment, like writing one’s own source codes and protecting against errors. Simula-
tions can always be repeated to ensure correctness, and the obtained results can
be saved for future analysis.

e The numerical tests performed for ring compression tests confirmed a very good
predictive capability of the system.
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