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A CRISIS MANAGEMENT
APPROACH TO MISSION SURVIVABILITY
IN COMPUTATIONAL MULTI-AGENT SYSTEMS

In this paper we present a biologically-inspired approach for mission survivability (considered
as the capability of fulfilling a task such as computation) that allows the system to be aware of
the possible threats or crises that may arise. This approach uses the notion of resources used
by living organisms to control their populations. We present the concept of energetic selection
in agent-based evolutionary systems as well as the means to manipulate the configuration of
the computation according to the crises or user’s specific demands.
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UTRZYMANIE KRYTYCZNYCH ZADAŃ
OPARTE NA ZARZĄDZANIU KRYZYSOWYM
W OBLICZENIOWYCH SYSTEMACH WIELOAGENTOWYCH
W artykule prezentujemy biologicznie inspirowany mechanizm wspomagający utrzymanie
krytycznych zadań (tzw. mission survivability) który umożliwia wykrywanie oraz przeci-
wdziałanie wybranym zagrożeniom. Przedstawione podejście wzorowane jest na wykorzysty-
waniu przez żywe organizmy zasobów do kontroli populacji. Prezentujemy koncepcje selekcji
energetycznej mającej zastosowanie w ewolucyjnych systemach wieloagentowych (EMAS)
oraz sposoby konfiguracji obliczenia w celu przeciwdziałania sytuacjom kryzysowym, według
preferencji użytkownika.

Słowa kluczowe: systemy agentowe, zarządzanie kryzysowe, soft computing

1. Introduction

The distributed and ad hoc nature of tactical environments (military or not) often
requires the application of unconventional monitoring and control strategies, capable
to adapt to runtime changes in system resources and requirements [12, 13]. In such

∗ Department of Computer Science, AGH University of Science and Technology, al. Mickiewi-
cza 30, 30-059 Kraków, Poland, {olekb,doroh}@agh.edu.pl

∗∗ Institute for Human & Machine Cognition, 40 South Alcaniz Street Pensacola, FL 32502, USA,
mcarvalho@ihmc.us

7 października 2010 str. 1/15

Computer Science • Vol. 11 • 2010

99



environments, the occurrence of specific hardware or software oriented crises should
be envisaged and appropriately handled in order to ensure the survivability of the
mission (e.g. completing the computation, simulation, etc.).

To better support the challenging requirements of distributed computations, such
as evolutionary or memetic optimization (e.g. EA-based multi-deme algorithms [7]),
distributed algorithm implementations can be merged with a multi-agent based ap-
proach, where randomized search strategies happen at the agent level, and information
sharing occurs through the local interaction between agents. Most often, agents are
associated with platforms and services, using explicit message exchange (or environ-
mental and system-level monitoring) to infer the state of peer agents (i.e. nodes and
services) [15, 16].

From a Multi-Agent System (MAS) perspective, the challenges for distributed
coordination generally include the stability of the system (with respect to an appro-
priate size of the population of agents), the capability of responding to the emergence
situations occurring in the hardware (breakdown of the computing nodes) as well as
in the user requirements (e.g. change of the computation parameters). In the context
of this work, these situations are treated as crisis conditions that must be effectively
mitigated for mission continuity.

In this paper we propose a mechanism to maintain and control distributed MAS-
based (or equivalent) coordination algorithms for mission critical system management
and optimization. Leveraging a concept of non-renewable resources-driven selection
mechanism [8], our crises management framework regulates the energy (computational
resource) and time spent for distributed computational tasks to properly accommo-
date the requirements of the mission, so as to fulfill the needs for globally optimal,
accurate, or acceptable solutions for different tasks and operation tempos.

First, we provide a basic review on crisis management for MAS, which is a key
reference concept for system stability measure. Then, we introduce an illustrative
biologically-inspired analogy based on evolutionary algorithms applied to computa-
tional multi-agent systems. Finally, we conclude our work with a brief discussion on
some preliminary experimental results.

2. Crises management in MAS

General problems of crises management in MAS are discussed here following the
approach presented by Nawarecki, Kisiel-Dorohinicki, and Dobrowolski in [21]. In their
work, the authors analytically studied the problem and proposed a formal model of
MAS where the monitoring of such a system was considered [18, 10].

A critical situation in MAS is recognized as a particular state or sequence of states
that violate or lead to the violation of local (or global) system goals. Local critical
situations generally concern a single agent, while global situations involve a group of
agents. The emergence of a local crisis may entail the transition to a global crisis,
however, the functional characteristics of distributed multi-agent systems tend to
mitigate such effects. This phenomenon results directly from the distributed nature of
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multi-agent systems. Based on these characteristics, an argument could be made that
anti-crisis mechanisms are already incorporated into MAS, however, as we describe
in this work, the threat of a global crisis is possible, although it does require specific
conditions and mechanisms mechanisms [18].

A crisis among a group of agents is treated in this work as a global crisis due to
the similarities of the state description, and the fact that such a crisis must emerge
with respect to a partial or side-goal of a system. Hence, two types of critical situations
can be distinguished: direct and indirect.

A direct critical situation refers to the threat of loosing operability of the system
as a consequence of the unavailability of some of the agents actions. On the other hand,
an indirect critical situation is primarily caused by the lack of resources (violation of
the appropriate balance) that, in turn, gives a deficit of functionality. The detection of
both types of critical situations can be realized by a monitoring sub-system based on
individual evaluations that determine the loss of functionality. It can also be achieved
by observations of the distribution of some of the resources that are crucial to the
agents or system activity.

The above characteristics allow to define general conditions of critical situations
management:

1. Possibility of observation (monitoring) of the system state based on individual
observations of the agents’ states;

2. Adoption of adequate methods to perform a state evaluation in order to achieve
the operational criteria for the recognition of critical situations;

3. Availability of appropriate anti-crisis mechanisms.
The degree of realization of the above postulates can be regarded as a determinant

of the system immunity against a crisis. As it has been indicated, a flexible MAS may
have, by nature, some elements of the anti-crisis mechanisms already implemented,
either as part of the agents’ algorithms or derived from how the communication or
organization of the system (or sub-system) is achieved.

In this paper we focus on multi-agent computational systems. This type of sys-
tems brings new possibilities into the world of computation by hybridizing differ-
ent approaches such as distributed computing, and biological and social inspirations.
Moreover, we rely on specific mechanisms designed to deal with certain crises, instead
of introducing complex monitoring solutions for MAS.

3. Biological and ecological system survivability

Homeostasis is the property of an open system, especially living organisms, to regu-
late its internal environment, so as to maintain a stable condition through multiple
dynamic equilibrium adjustments controlled by interrelated regulation mechanisms.
Complex systems, such as the human body or the biocenosis of living organisms in-
teracting within a specific biotope, must be homeostatic in order to maintain stability
and survive. Moreover, these systems must adapt themselves to the changes occurring
in the environment [22].
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In ecology, the Gaia hypothesis, proposed by James Lovelock, states that the
entire mass of living matter on Earth (or any planet with life) functions as a vast
organism that actively modifies its environment to produce another one that suits
its needs. In this view, the entire planet maintains homeostasis. Whether this sort of
system is present on Earth is still open to debate. However, some relatively simple
homeostatic mechanisms are generally accepted. For example, when atmospheric car-
bon dioxide levels rise, plants are able to grow better and thus remove more carbon
dioxide from the atmosphere [19].

In biology, human body exhibits homeostatic functions affecting the suitability
of our body fluids to sustain life; these include properties like temperature, salinity,
acidity (carbon dioxide), and the concentrations of nutrients and wastes (urea, glucose,
various ion, oxygen). Since these properties affect the chemical reactions that keep
bodies alive, there are built-in physiological mechanisms to maintain them at desirable
levels. This control is achieved through functions performed by the various organs in
the body (e.g. thermal regulation: the skeletal muscles can shiver to produce heat if the
body temperature is too low, chemical regulation: the pancreas produces insulin and
glucagon to control blood-sugar concentration). Most of these organs are controlled
by hormones secreted from the pituitary gland, which in turn is controlled by the
hypothalamus [20].

From the plethora of parameters and interactions, we choose one as inspiration
of our regulatory mechanism that helps in dealing with crises in a particular class of
multi-agent computational system. That is the introduction of a limited resource in
the system called “life energy” [8]. Life energy cannot be directly translated to the
resources found in real systems. However, it can be perceived as food and exchanged
among the elements of a system where such as resource exists. In biological systems,
homeostasis of living creatures can be maintained thanks to the existence of food
chains [22].

4. Evolutionary multi-agent system survivability

We consider mission survivability as an ability to continue computation in an Evolu-
tionary Multi-Agent System. The idea of EMAS came from Cetnarowicz [8] and was
further enhanced by Byrski and Kisiel-Dorohinicki (see e.g. [1, 2]), and proved to be
effective in many difficult single and multi-objective (see e.g. [11, 24]) problems. The
system is complex and has many degrees of freedom what poses a serious challenge
for optimal configuring according to the specific task.

Encouraged by the promising experimental results Byrski and Schaefer conducted
research aimed at proving variant asymptotic features of EMAS in order to legitimize
the significant effort that must be put into configuring and running these systems.
First results allowed to construct Markovian model of EMAS [6, 23], subsequent
research proved the asymptotic guarantee of success for these systems (publication
pending).
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In Evolutionary Multi-Agent Systems (EMAS), besides interaction mechanisms
typical for agent-based systems (such as communication), agents are able to reproduce
(generate new agents) and may die (be eliminated from the system) (Fig. 1). Agent
inheritance may be accomplished by an appropriate model of reproduction (with
mutation and recombination), which is similar to classical evolutionary algorithms.

MAS                                localization

agent

localization

reproduction

death

evaluation

Fig. 1. Structure and behavior of Evolutionary Multi-Agent System (EMAS)

Unfortunately, selection mechanisms from classical evolutionary computation al-
gorithms cannot be used in EMAS because of the assumed lack of global knowl-
edge (which makes it impossible to evaluate all individuals at the same time), and
the autonomy of agents (which causes reproduction to be achieved asynchronously).
The resource-based (energetic) selection scheme assumes that agents are rewarded
for “good” behavior, and penalized for “bad” behavior (which behavior is considered
“good” or “bad” depends on the particular problem to be solved) [17].

In the simplest case, the evaluation of an agent (its phenotype) is based on the
idea of agent rendezvous. Assuming some neighborhood structure (the simplest case
would be population decomposition along with allopatric speciation model [7], see
1) in the environment, agents evaluate their neighbors, and exchange energy. Worse
agents (considering their fitness) are forced to transfer a fixed amount of energy to
their better neighbors. As the population evolves, this flow of energy allows to obtain
agents that represent better approximations of the solution [9].

The limited amount of this energetic resource and the capability of constant
exchange allows for achieving homeostasis of the population of agents. Throughout
the course of the selection (which is decentralized, not as in classical evolutionary
algorithms[14]) the agents exchange their energy during meetings (a better agent – in
the means of certain fitness function – takes a portion of the energy of a worse agent).
In this way, the energy flows gradually from worse to better agents allowing them to
reproduce (while worse agents are compelled to die).
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We identify the following crises that may affect the EMAS computation and may
be caused by the computation itself:
• overcrowding – there is not a predefined maximum number of agents for the sys-

tem, and so the system might become overcrowded and affect the performance of
the hardware (slowdown, e.g. when solving optimization problems with complex,
time consuming fitness functions);
• extinction – the population of agents may become extinct as a result of the death

of multiple agents.
Fortunately, these crises can be addressed effectively thanks to the existence of the
limited energetic resource:
• when the number of agents rises, their average energy level falls down. Many of

the agents in the population end up with lower energy levels, which increases
the probability of death. Hence, the energy limit causes the number of agents to
decrease in a situation where overcrowding is expected;
• when the number of agents decreases, their average energy level increases. Small

populations of agents end up with a higher probability of reproduction (regard-
less of the quality of the solution acquired by the agents). Hence, the energy
limit causes the number of agents to increase in a situation where extinction is
expected.
Other critical situations may be caused by a user:
• the need of the user to obtain a sub-optimal result as soon as possible – the

mission of the system is to find the solution quickly;
• the need of the user to obtain the most accurate result as possible – the mission

of the system is to find the most precise solution.
These critical situations may be handled by modifying the energetic parameters of
the selection mechanism:
• when the user needs a solution quickly, the energy transfer rate should be in-

creased to reduce the total number of agents in the population, so the computa-
tion can run faster, even though the accuracy may fall;
• when the user needs a precise solution, the energy transfer rate should be de-

creased, so the accuracy can rise as the problem space will be searched by more
agents, even though the computation may take longer.

5. Experimental results

An EMAS was implemented using the AgE platform1 and applied to the problem of
global optimization.

The system consisted of three fully connected subpopulations. In the beginning,
20 agents were placed on each of the subpopulations.

1 AgE platform http://age.iisg.agh.edu.pl is an open-source component-oriented agent-based
distributed computation environment developed at AGH University of Science and Technology.
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The energetic selection mechanism had the following parameters:

e0 – the starting energy of every agent is e0 = 30, so the total sum of energy present
in the system (regardless of the number of agents) is eT = 1800;

eget – during each rendezvous, agents exchange a predefined amount of energy eget =
1;

edie – an agent dies when its energy falls below the level edie = 0;
erepr – an agent may reproduce when its energy level exceeds erepr = βrepr ·

avgen+besten
2 (where avgen is the average energy of agents in the subpopula-

tion, besten is the energy of the best agent in the population, βrepr is certain
parameter. In the experiments presented below βrepr ∈ [0.5, 1.5]);

emigr – an agent may migrate (move to another subpopulation) when its energy ex-
ceeds emigr = 1.2 · erepr.
Each agent contained the real-value vector (solution of the global optimization

problem). The fitness function was computed according to well-known benchmark
problems (such as Rastrigin, Schwefel, Griewank e.a.). The results presented below
were obtained for the 10-dimensional Rastrigin problem. Variation operators of dis-
crete crossover and uniform mutation with small probability of macro-mutation were
used.

Figures 2–5 show the characteristics of best fitness and agent count for different
values of energetic parameters, population dynamics and average energy depending on
the step of system’s work. The results described next were obtained from 10 repetitions
of the experiments (in the graphs standard deviation is shown).

Graphs 2(a) and 2(b) present the best fitness in the population and the number
of agents for different values of the energy exchanged during rendezvous. It may be
clearly seen that low values of the eget cause better capabilities of localizing the
optimum (high values cause the opposite). For all values of eget the population is
stable. This parameter seems to be one of the most important parameters of the
selection, because it affects the efficiency of the system in a clearly visible way.

The best fitness in the population and the number of agents for different values of
the starting energy is shown in Graphs 3(a) and 3(b). This parameter does not affect
the search capabilities and the number of agents in the population, yet the population
seems stable for any examined value of e0.

Another important parameter, βrepr, is examined in Graphs 4(a) and 4(b). This
parameter affects greatly the search capabilities of the system, because when wrongly
chosen (too high) the agents cannot reproduce, so after several rendezvous only one
agent remains in the population, carrying all possible energy. Moreover, it seems that
there is a certain value of βrepr = 1.0 that turned out to be optimal in our experiments.
This value of the parameter allows the system to find the best suboptimal solution.

Graphs 5(a) and 5(b) present the population dynamics – current number of agents
in the population, newly created, and removed agents in each of the steps of system’s
work; and the average energy level in the system, respectively.
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Fig. 2. Best fitness and agent count for different values of energy transfer quantum
(eget = 1, . . . , 7)
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(b) Agent count

Fig. 4. Best fitness and agent count for different values of reproduction energy
(βrepr = 0.5, . . . , 1.5)
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(b) Average energy

Fig. 5. Population dynamics and average energy depending on the step of system’s work
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Fig. 6. Monitoring of distributed computational system (EMAS)

It is important to note that the average birth-rate is balanced by the mortality
of the agents, which causes the population to be stable. The stable dynamics of the
population is caused by the balance in energy levels when energy is distributed among
agents.

These preliminary results let to draw some conclusions on the survivability of the
computation regardless of the occurrence of the crises mentioned in 4:

• There is a possibility of causing overcrowding and extinction by using the wrong
values of the system parameters. For example, in Figure 4(b) the extinction occurs
when βrepr ≥ 1.25. Such situations should be predicted and prevented, either by
the analysis of experimental runs of the system or a formal model of such systems
(models that will become capable of such analysis are under construction [4, 5]).
• The need for obtaining sub-optimal results as soon as possible – increasing the

value of eget (see Figure 2(b)) reduces the number of agents in the population
(the system works faster), but it also degrades the quality of the solutions found
(see Figure 2(a)). However, when eget is appropriately chosen, the decrease in the
quality of the solutions may be considered acceptable by the user.
• The need for obtaining the most accurate results as possible – decreasing the

value of eget (see Figure 2(b)) increases the number of agents in the population
(the system works slower), but it also improves the quality of the solutions found
(see Figure 2(a)). Again, however, when eget is appropriately chosen, the decrease
in the speed of the computation may be considered acceptable by the user.
• Hardware fault and decrease of computing power – the reaction to these crises

depends on the configuration of the local and global monitors. A global moni-
tor may help to recover from hardware faults by modifying eget (decreasing its
value so the number of agents rises), and a local monitor may dynamically ma-
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nipulate eget in a similar way (e.g. increasing it so the number of agents in the
subpopulation falls down and the hardware is more efficiently used).

6. Distributed computational systems survivability

The systems under consideration are usually implemented as distributed systems and
run on computing clusters (see the structure of EMAS in Figure 6). The subpop-
ulations are distributed among the nodes of the cluster (there may be more than
one subpopulation in one node). Every node has a local monitor and these monitors
communicate with global monitors in order to gather the results of computation and
to react when crises occur. Users may affect the whole computation by changing its
parameters (e.g. when mission critical situations occur) using the monitoring system
[3]. The global monitor depicted in the Fig. 6 is used solely for technical issues such as
observing of performance of particular nodes or logging the information regarding the
solutions of the given problem found out by the system, that though being distributed
in nature, should deliver its outcome to a particular receiver.

The following crises may be caused by the computation environment:

• hardware fault – one of more cluster nodes are turned off, which has an effect in
the decreasing of the subpopulations count – this crisis often cannot be avoided
because of its strictly external nature;
• hardware computing power decrease – caused by system features, lack of memory

etc., it affects the speed of the computation in one or more subpopulations – this
crisis may be caused by overcrowding mentioned in the Section 4.

These types of faults are easily handled because of the autonomy of the system:

• when a portion of the system becomes inoperative, a global monitor may order
the recreation of this section in another node (if necessary and when new nodes
are available), or it may modify again the energetic parameters of the system
to increase the number of agents in the subpopulations. It is important to note
that, regardless of the occurrence of this fault, the computation in EMAS will be
unaffected because the total energy, though decreased, still remains constant;
• when a portion of the system decreases its computing power, a local monitor

may modify the computation only on this node (again, the modification of the
energetic parameters seems to be an obvious solution to this problem).

7. Conclusions

In this paper we presented a biologically-inspired, non-renewable resource based selec-
tion algorithm that can be used for distributed evolutionary computation in an agent
environment. Besides its capabilities that allow for using it in an agent-based envi-
ronment (with lack of global control), its parameters may be easily used to prevent
several threats that may occur in such systems. For example, a system may continue
the computation after a hardware failure is detected in a section of the cluster, and
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the whole computation will be unaffected (at most some of its parameters may be
adapted, e.g. the rate of energy exchange to automatically prevent extinction and
overcrowding in this new situation).

Other crises that may occur involves the sudden changes of user’s requirements
such as the need for obtaining quick sub-optimal results, or the most accurate results
as possible. These needs may be addressed by modifying (during system operation)
the parameters of the selection algorithm.

The system has also self-sustaining capabilities, e.g. the restricted total energy
that is present in the system prevents the population of agents from overcrowding,
as well as from extinction (regardless of energetic parameters, in a reasonable range,
the population of agents is stable).

In the future we plan to broaden the scope of the tests in a bigger distributed
environment (larger clusters or several clusters may be considered). We also plan to
generate all identified crisis situations, as well as to look for possible system configu-
rations that can deal with them.
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