COMPUTER SCIENCE e 14 (1) 2013 http://dx.doi.org/10.7494/csci.2013.14.1.153

Abstract

Keywords

ALEKSANDER BYRSKI
MicHAL FELUS

JAKUB GAWLIK

RAFAL JASICA

PAawEr KOBAK
GRZEGORZ JANKOWSKI
EDWARD NAWARECKI
MicHAL. WROCZYNSKI
PRZEMYSEAW MAJEWSKI
TomMmasz KRUPA
JACEK STRYCHALSKI

VOLUNTEER COMPUTING SIMULATION
USING REPAST AND MASON

Volunteer environments usually consist of a large number of computing nodes,
with highly dynamic characteristics, therefore reliable models for a planning of
the whole computing are highly desired. An easy to implement approach to mo-
delling and simulation of such environments may employ agent-based universal
simulation frameworks, such as RePast or MASON. In the course of the paper
the above-mentioned simulation frameworks are adapted to support simulation
of volunteer computing. After giving implementation details, selected results
concerning computing time and speedup are given and are compared with the
ones obtained from an actual volunteer environment.

volunteer computing, agent-based simulation, RePast, MASON

153

154 Aleksander Byrski, Michat Felus, Jakub Gawlik, et al.

1. Introduction

Volunteer computing prove to be an interesting and reliable approach to many diffi-
cult problems (cf. SETIQHOME [10] or Great Internet Mersenne Prime Search). As
volunteer environments usually consist of a large number of computing nodes, with
highly dynamic characteristics (the node may become up or down in random moments
of time, the computing power highly depends on the volunteer configurations etc.),
reliable models for planning of the whole computing (including e.g., load balancing
algorithms or fault recovery strategies) are highly desired.

Utilizing the notion of agent [18] brings many improvements into the world of
simulation, following the idea of decentralization of control. Each agent may be auto-
nomous, differently configured, utilization different means of discovering the features
of the environment and its neighbors, utilizing different algorithms and performing
different actions in the system.

An easy to implement approach to modelling and simulation of dynamic, volun-
teer environments, has been proposed using popular, agent-based universal simulation
frameworks, such as RePast or MASON [2]. In this contribution, the authors focused
on network-related simulation aspects, taking insight into features such as throughput
or node load.

In the course of paper the above-mentioned simulation frameworks are adapted
to support simulation of volunteer computing. After giving implementation details,
selected results concerning computing time and speedup are given and are compa-
red with the ones obtained from an actual volunteer environment, consisting of web
browsers serving as Java Script based computing nodes.

2. Agent-based simulation

There exists a plethora of multi-agent frameworks which may be used to support the
construction of agent-based simulation systems. Some of them are oriented to specific
kinds of simulation (see [12, 14]): e.g., simulating of movement of entities with 3D
visualisation (see e.g., breve, [9]), networking (see e.g, ns2/ns3, [4]), possibility of
visual programming (see e.g. SeSam, [17]).

When looking for mature, open-source, agent-based simulation project with uni-
versal applicability, supported by the wide society of programmers, two environments
seem to especially attract attention, these are MASON and Repast.

MASON is an agent-oriented simulation framework developed at George Mason
University. It is advertised as fast, portable, 100% Java based. Multi-layer architecture
brings complete independence of the simulation logic from visualisation tools which
may be altered anytime. The models are self-contained and may be included in other
Java-based programs. Various means for 2D and 3D visualisation, and different means
of output are avaiable (PNG snapshots, Quicktime movies, charts and graphs, data
streams).

Volunteer computing simulation using RePast and MASON 155

Programming model of MASON follows basic principles of object-oriented de-
sign. An agent is instantiated as an object of a class, added to a scheduler and its
step method is called during the simulation. There are no predefined communication
nor organisation mechanism, these may be realized using simple method calls. The-
re are neither ready-to-use distributed computing facilities nor component-oriented
solutions.

First released in 2003, the environment is still maintained as an open-source
project, distributed under Academic Free license (ver. 3.0). The current version (16.0)
was released at the end of 2011.

Repast—Recursive Porous Agent Simulation Toolkit—is a widely used agent-
based modeling and simulation tool. Repast has multiple implementations in several
languages and built-in adaptive features such as genetic algorithms and regression [13].
The framework utilizes fully concurrent discrete event scheduling, HPC version also
exists [5]. In Repast 3, there are many programming languages interfaces (e.g., Java,
Logo dialect, .NET languages, Lisp dialect, Prolog, Python). Logging and graphing
tools are built-in. Dynamic access to the models in the runtime (introspection) is
possible using graphical user interface. There are predefined libraries for different
methods of modelling and analysis available, e.g., neural networks, genetic algorithms,
social-network modelling, GIS support.

Repast 3 consists of different implementations of the platform (Repast J—Java-
based, Repast. NET—MS .NET and Repast Py—Python). It has been renowned for
a long time, however, recently Repast 3 has been superseded by its next stage de-
velopment called Repast Simphony (Repast S) bringing newly developed GUI, with
some significant changes into the programming paradigm.

The latest (Simphony 2.0 beta) version of this open-source project, licensed ac-
cording to ‘new BSD’ license, has been released in the late 2010.

The implementation of a simulation system in Repast 3 and MASON is quite
similar, and both projects are alive, thus attention was paid to both of the systems.
In order to implement simulation, a class containing simulation model should be
constructed, extending an appropriate superclass and implementing a method cal-
led during each step of the simulation. In this way constructed model is bound to
a scheduler, that calls the above-mentioned stepping function.

3. Volunteer computing

Volunteer Computing is a type of distributed computing in which all (or at least
some of) the computational resources come from the number of nodes dynamically
connecting to a network, with the intent to share their computation power, either
altruistically or using some service instead (e.g. gaining access to some resources)
[15]. A very similar approach to Volunteer Computing is called Sideband Computing,
though it requires a predefined client application installed in a desktop PC and the
appropriately prepared server (usually a local gateway) to distribute the tasks [19].

156 Aleksander Byrski, Michat Felus, Jakub Gawlik, et al.

The first Volunteer Computing project was Great Internet Mersenne Prime Se-
arch (http://mersenne.org/) and was started in 1996. The most famous project,
called SETI@Home (http://setiathome.berkeley.edu/) (launched in 1999) is de-
dicated to analysing radio signals, gathered by the radio-telescope located in Arecibo
(Puerto Rico), searching for signs of extra-terrestrial intelligence.

Volunteer Computing projects may be implemented using several middlewa-
res, such as Berkeley Open Infrastructure for Network Computing (http://boinc.
berkeley.edu/) (BOINC) (open source, base of SETIQHome), Xgrid (http://www.
apple.com/pl/server/macosx/technology/xgrid.html) (a proprietary software
prepared by and for Apple) or Grid MP (http://www.univa.com/) (a commercial
product).

Besides computation (see e.g., [3]), other tasks may be performed in Volunteer
environment. To name a few: web crawling (already attempted by [11]), MapReduce
(volunteer implementation of MapReduce [7] is feasible in the opinion of authors),
all such approaches may be implemented in volunteer environment, based on flexible
delegation of the part of tasks to volunteers.

4. Agent-based network simulation

There exist many network simulation environments, such as e.g., NS3 [4] that may be
used to extensive simulation of many complex networks (ethernet, WiFi, MANET and
others). However, implementation of more sophisticated scenarios, such as emergent
features of volunteer environment, may require more high-level approach, omitting
features present in lower layers of ISO/OSI model [1] for the sake of abstraction.

The most important notion utilized in RePast and MASON that is taken advan-
tage here of is the one of an agent. Computer networks consist of active (e.g., nodes,
routers) and passive (switches, cables) elements in MASON. Therefore, utilizing of
the notion of agent in the computer network simulation seems quite straightforward:
agents are given capabilities of interacting inside the network environment (by sending
and routing packets) while additional technical features supported by the simulation
environments will be utilized to link the agents. Two proposed simulator prototypes
presented here are implemented using MASON and Repast frameworks.

4.1. Network architecture and behaviour

The computer network is usually modelled as a connected undirected graph. The
nodes of the graph represent devices and the edges represent network connections.
All devices should have at least one connection to another node. The active devices
utilize the passive ones to communicate by passing the information encapsulated into
chunks (packets) [6]. Each endpoint has a unique network address. Addresses on the
two ends of a link must belong the same subnet. The nodes send the packets to each
other. The packets are marshaled by routers according to popular classful routing
protocol [8].

Volunteer computing simulation using RePast and MASON 157

4.2. Network simulation in RePast and MASON

The simulation frameworks implemented in RePast and MASON leverage appropria-
te components supported by these platforms by implementing discrete event-driven
entities (agents) and providing means for communication among them. Active enti-
ties (routers and nodes) are implemented as agents in both platforms (in MASON
as objects implementing the Steppable interface and derived from class Node, in Re-
Past @ScheduledMethod annotation is used), while the communication among them
is supported in the following way:

e connections are used in RePast, single instance of class Connection has referen-
ces to many adjacent nodes, which allows direct communication between many
participants,

e [inks are used in MASON, each link is an object of class Link and has exactly
two ends, so only two nodes may communicate with each other.

Network nodes can communicate with each other by sending messages (packets).
In MASON these are objects of a type derived from a base class Packet, delivered
by calling the target node’s DeliverPacket method. In RePast, Connection class
provides methods for sending objects of type Packet. Each node is of type that
extends DTEDevice class, which offers functionality for receiving packets and routing.
Messages meant for a distant node are forwarded by routers using the implemented
routing protocol. Each packet has a source and a destination address and may also
contain additional data.

Packet processing is implemented using leaky bucket model [16]. The receiving
device stores incoming packets in a buffer of limited size. This size is predefined in
the network definition and is measured in packets—each packet is assumed to be of
the same size. If there is no free space in the buffer overflowing packets are dropped.
Sending a packet from a node to its neighbor takes 1 simulation step.

In each step the nodes process a set number of packets from their buffer. This
number is called the devices processing power. The action taken depends on the type
of node and type of received packet.

Routing is based on static routing tables created before the start of the simula-
tion. Each table entry contains a network subnet address, the interface which should
be used for sending packets to that subnet and the value of the metric (number of
nodes to destination).

When processing a packet the router checks a routing table for a subnet address
matching the packet’s target address and passes the packet to an appropriate next
node. If the target address cannot be matched to any entry in the routing table the
packet is dropped.

The routing tables are created in the following manner: At the beginning a di-
stance of 1 is assumed to the routers adjacent nodes. The router sends its routing
table to all neighboring routers. Upon receiving a table a router adds all unknown
addresses to its own table incrementing metric values by 1. If a path shorter then the
existing entry is received the old entry is replaced by the new one.

158 Aleksander Byrski, Michat Felus, Jakub Gawlik, et al.

Multiple routes with the same distance are stored and used for load distribution.
The routers continue to transmit their tables until changes no longer occur.

The exact structure of the network is defined using a text file.

4.3. Repast implementation description

Devices. Figure 1 presents hierarchy of classes responsible for modeling network devi-
ces. DTEDevice is a base class. It provides basic communication mechanism (methods
to send and receive messages: receivePacket (Packet), send(Packet)), configura-
tion (maximum buffer size, device processing power etc.) and defines method called by
Repast environment for every step. Router, Master and Slave extend it and add addi-
tional behaviours. Slave represents a computing node. Whether it is active or not, it
is defined by the implementation of ActivityProvider interface. When active, Slave
requests Master for a new job.

v

-routingTable

DTEDevice Slave v C
-maxBufferSize -masterAddress Host Router
-pps -state
-deviceld -activityProvider #processPackage() #processPackage()
-buffer +processStep() +processStep()
-networkConnections #processPackage() Z;

-active

+receivePacket()
+step()

#send() ComputeMaster Master
#processStep()

#processPackage() -knownSlaveAddresses -slaves

+getMyMainAddress() #processMasterRequestPacket() #processMasterRequestPacket()
+setActive() #processPackage() #processPackage()

Figure 1. Repast class diagram.

Communication Devices communicate with each other by sending messages, referred
to as Packets (Figure 2). A packet has two addresses: source and destination. Base
class Packet is extended to add custom types of messages:

e Packet — an empty Packet.
o MasterRequestPacket send by Slave to the Master.

— JobDonePacket — contains job results.
— JobRequestPacket — request for a job.

o MasterResponsePacket send to Slave by the Master.

— JobPacket — contains description of an assigned job.

Volunteer computing simulation using RePast and MASON 159

Packet

-source
-destination
-creationTime

’—D +setSource() 4—\
+setDestination()

MasterRequestPacket +setCreationTime() MasterResponsePacket
+getSource()

+getDestination()
+getCreationTime()

— T

JobPacket
JobDonePacket| [JobRequestPacket -id .
-duration
-id -maxDuration +getld()
+getld() +getMaxDuration() +getDuration()

Figure 2. Repast packets diagram.

Communication is initiated by a slave. It sends JobRequestPacket to the master,
which contains request for a job that can take maximum X computation ticks. The
master responds with JobPacket. Slave computes results and returns JobDonePacket.
The master periodically checks whether it has unfinished jobs that should have already
been finished. If a job times out, it returns this job to unfinished jobs pool. It can
then be assigned to different slave.

Configuration The Simulation can be configured by an XML configuration file. In
this chapter we will show how to create basic configuration.

An example XML configuration file:

<?xml version="1.0"7>

<config>
<defaultSlave buffer="40" pps="20">
<activityProvider>
ddos. activityproviders.SegmentActivityProvider
</activityProvider>

<master>666.666</master>

</defaultSlave>

<defaultRouter buffer="2000" pps="200"/>

<device deviceType="master” deviceld="666" x="70.0" y="50.0" buffer="20
<impl>ddos.model.compute. ComputeMaster</impl>

</device>

<!— SUBJOBS —>

<subjob times="48" duration="90000" />

<l— 15 minutes —>

<!— SLAVES—>

<device deviceType="slave” deviceld="2001" x="60.0” y="67.0"/>

160 Aleksander Byrski, Michat Felus, Jakub Gawlik, et al.

<device deviceType="slave” deviceld="2020" x="40.0” y="67.0"/>
<l— ... —
<!— ROUTERS—>
<device deviceType="router” deviceld="1" x="40.0" y="60.0"/>
<device deviceType="router” deviceld="10" x="63.0" y="40.0"/>
<l— ... —
<!— NETWORKS —>
<network networkId="1">
<int>1</int>
<int>4001</int>
<l— ... —
<int>2020</int>
</network>
<network networkId="4">
<int>9</int>
<int>2015</int>
</network>
<l— ... —
</config>

The XML is self-descripting. Every single device should have its own address and
default values defined. One major job is defined as set of sub-jobs.

4.4. MASON implementation description

Devices Network devices are implemented as classes extending the Node class, which
interfaces with the simulator using MASON’s Steppable interface. This class manages
the packet buffers, handles incoming traffic and provides functions for sending new
packets. Each specific device type class implements the processPacket function which
is used to process incoming packets, and the sendActivity function which is called
each simulation step and contains behaviour unrelated to incoming traffic. The node
class hierarchy is presented in Figure 3

Communication The devices can communicate by sending packets to other devices.
Packets are objects of classes derived from the Packet class, which contains source
and destination IP addresses. If required the packet classes may define additional data
fields. The packet class hierarchy is presented in Figure 4.
The following types of packets are used:
e Packet — an empty Packet.
e AskPacket — request for a job sent by a volunteer to the master.
o ComputingInfoPacket — a job description sent by the master in reply to AskPac-
ket. Contains the job length.
e EndPacket — Noficication of a job completion sent by a volunteer to the master.

On becoming active volunteers initiate communication with the master by
sending an AskPacket to a predefined IP address. The master replies with
a ComputingInfoPacket which contains the time required to compute the assigned
task. If the volunteer is able to complete the task before the end of it’s activity period

Volunteer computing simulation using RePast and MASON 161

DDos

]l> SimState

+addLink(in nodel : Node, in node2 : Node, in adress1 : IpAddress, in adress2 : IpAddress, in speed : int)
+addNode(in node : Node)

+getNetworkFile() : string

+getPingInterval() : int

+loadNetwork(in sfile : string) : bool

+setNetworkFile(in file : string)

+setMaxActive(in n : int)

+getMaxActive() : int

1
Node PacketBuffer

+actionReceive(in ddos : DDos) +getCount() : int
+actionSend(in ddos : DDos) 1 +getLoad() : int
+addConnection(in link : Link) getSite() : int
#sendPacket(in sim : DDos, in target : IpAddress) +getMultiRacket(in i : int) : Packet
+deliverPacket(in packet : Packet) +getPacket() : Packet
+getBufferedPackets() : int +insert(in packet : Packet)

+getSentPackets() : int
+getBufferLoad() : int
+getBufferSize() : int

+getCurrentDroppedPackets() : int IpAddress
+getCurrentProcessedPackets() : int

+getCurrentReceivedPackets() : int

+getCurrentSentPackets() : int +getClassAddress() : IpAddress
+getDroppedPackets() : int +getClassID() : string
+getLoad() : int +gethirst() : int
+getProcessedPackets() : int +getSecond() : int
+getProcessingPower() : int +getThird() : int
+getReceivedPackets() : int +getFourth() : int

+getSentPackets() : int
+logReset()

+logStep()
+processPacket(in sim : DDos, in p : Packet) Link
#pingActivity(in sim : DDos, in n : int) “speed : int

#sendActivity(in sim : DDos)

#sendAskPacket(in sim : DDos, in target : IpAddress, in payLoad : IpAddress)
#sendComputingInfoPacket(in sim : DDos, in target : IpAddress, in size : int)
#sendEndPacket(in sim : DDos, in target : IpAddress, in paylLoad : IpAddress)
#sendMultiPacket(in sim : DDos, in target : IpAddress, in n : int)
#sendPacket(in sim : DDos, in node : Node, in packet : Packet)

+step(in state : SimState)

+getMyAddress(in node : Node) : IpAddress
+getOtherAddress(in node : Node) : IpAddress
+getOther(in node : Node) : Node

NormalNode RouterNode MasterNode
1 I-subProblems : int
+sendActivity(in sim : DDos) +processPacket(in sim : DDos, in packet : Packet) -subProblemSize : int
) [+addTarget(in target : IpAddress)
[7 1 +getKnownVolunteer() : int
. * +processPacket(in sim : DDos, in packet : Packet)

VolunteerNode +sendActivity(in sim : DDos)

+MasterAdress : IpAddress
Y

+askForWork(in sim : DDos) Tk Lk -ip : IpAddress
+sendActivity(in sim : DDos) [link : Lin Hastseen : int
+getProblemSize() : int fwage :int speed : int
+processPacket(in sim : DDos, in packet : Packet)

Figure 3. Mason node class diagram.

it informs the master that the job has been completed by sending an EndPacket and
requests another job with an AskPacket.

Configuration The simulation can be configured using a text file. The file contains
definitions of parameters, devices and network links. Each definition consists of 1 line
beginning with a keyword specifying the type of element being defined, and is followed
by a list of parameters.

162 Aleksander Byrski, Michat Felus, Jakub Gawlik, et al.

Packet
IpAddress

+counter : int
+source : IpAddress
+targe : IpAddress

+getClassAddress() : IpAddress
+getClassID() : string
+getFirst() : int

+getSecond() : int

+getThird() : int

+getFourth() : int

+getNumber() : int
+split(in n : int) : Packet

AN

EndPacket AskPacket ComputinginfoPacket AddressPacket

+speed : int -problemsSize : int -payload : IpAddress

Figure 4. Mason packet class diagram.

An example configuration text file:

#PARAMETERS

NumTasks 720

TaskSize 6000
RouterBuffer 20000
RouterPower 200
VolunteerBuffer 20000
VolunteerPower 20
NormalBuffer 20000
NormalPower 20

const
const
const
const
const
const
const
const

#DEVICES

type
master
router
router

ml
rl
r2
volunteer al
volunteer a2
volunteer a3

#NETWORK

namel
link ml
link rl
link r2
link r2
link r2

name X

450
400
400
200
200
200

addressl
192.
192.
192.
192.
192.

y

350
350
350
100
200
300

buffer size
VolunteerBuffer
RouterBuffer
RouterBuffer
VolunteerBuffer
VolunteerBuffer
VolunteerBuffer

name2 address2
rl
r2
al
a2

a3

computing power

VolunteerPower
RouterPower
RouterPower
VolunteerPower
VolunteerPower
VolunteerPower

192.168.1.2
192.168.2.2
192.168.3.101
192.168.3.102
192.168.3.103

NumTasks

5. Agent-based simulation of volunteer computing

TaskSize

As a continuation of the research presented in [2], devoted to the simulation of the
distributed security testing, this contribution focuses on the simulation of volunteer
computing using the already constructed frameworks, based on RePast and MASON.

Volunteer computing simulation using RePast and MASON 163

As in the above-mentioned publication, in this case also the computing nodes are
simulated (and tested) as web browsers running Java Script. Although it might not
be the best choice, from the computing speed point of view, the portability of such
approach allows to recruit easily the volunteers from different communities of users in
the Internet (Mozilla Firefox, Opera, Safari, Internet Explorer, Google Chrome and
others).

The considered volunteer environment is presented in Figure 5.

volunteer

Figure 5. Volunteer network structure.

The network presented there, consists of the following types of nodes, implemen-
ted as agents in RePast and MASON:

e Router: joins two or more subnets and provides packet routing according to RIP
protocol.

e Master: The computation coordinator. Distributes tasks to nodes, may implement
sophisticated planning of distribution including load balancing (e.g., assigning
targets to the testers), in order to utilize available computational power of the
volunteer environment, at the same time trying to decrease the congestion in the
network.

e Computing node (slave): A web-browser volunteer participating in the test. The
computing node may be in one of two possible states: active or inactive. Depen-
ding on the simulation parameters it may change its state during the simulation.
During its active status it retrieves the computing tasks from the master and
after finishing the computation, it uploads the outcome to the master.

164 Aleksander Byrski, Michat Felus, Jakub Gawlik, et al.

6. Experimental results

In the presented case of volunteer computing simulation, the following setting has
been configured for MASON- and Repast-based experiments:

e Computation nodes activity: slaves change their state (active/passive) every ran-
dom number of steps by normal distribution: next_state_change_after = next-
Gaussian()*18 min + 6 min.

e Slaves, Masters: buffer size = 20000, packets processed per step = 20.

e Routers: buffer size = 20000, packets processed per step = 200.

e Computation — 12 hours, divided into sub-jobs according to seven different sce-
narios:

— 43200 * 1 second,
— 720 * 1 minute,
— 144 * 5 minutes,
— 48 * 15 minutes,
— 36 * 20 minutes,
— 30 * 24 minutes.

e Number of participating volunteers: 1..20

Figures 6a and 6b present the relation between the computation time and the
maximum number of volunteers. The computation time of course gets shorter, when
more volunteers are present, however it is difficult to find an active volunteer for
longer sub-jobs, especially when their maximum number is low. It explains generally
higher computation time for the cases of longer sub-jobs.

Figures 7a and 7b present the complementary information to the one given pre-
viously, regarding the speedup of the computation. It is to note, that this dependencies
are described with almost linear functions visualised in the graphs.

Final information is given in Figures 8a and 8b, presenting the number of vo-
lunteers sleeping (inactive), active but not working (idle), and working. The longer
the sub-job duration is, the more volunteers are in the idle state that confirms the
above-mentioned observations.

It is to note, that all the above mentioned experiments yielded quite similar
results, both for MASON and RePast based simulations. Some difference is inevitable,
but none of the tested systems was too far from another.

The presented simulation results seem to show reasonable behaviour of the sys-
tem, however an ultimate test is to compare them to the results obtained from the
real world experiment. Therefore, the following testbed configured according to the
structure depicted in Figure 5 was constructed.

e The actual nodes and routers were configured using Ubuntu Linux ver. 10.10 and
run as virtual machines using VMWare®Player 4.0.4. build-744019

e The actual computing was done by web browsers (Google Chrome ver.
20.0.1132.57).

Volunteer computing simulation using RePast and MASON 165

e The hardware used to run the above-mentioned virtual machines were:

— 2xIntel®Core™i7 CPU 920, 2.67 GHz, 3.5GB RAM, running Microsoft
Windows XP Home Edition SP 3.

— 2xIntel®Core™2 Duo CPU E7400, 2.80 GHz, 3.25 GB RAM, running Mi-
crosoft Windows XP Home Edition SP 3.

— 3xIntel®Core™i7 CPU 950, 3.07 GHz, 8 GB RAM, running Ubuntu Linux
10.04.4 LTS (64bit).

— 3xIntel®Core™i3 CPU 540, 3.07 GHz, 4GB RAM, running Microsoft
Windows 7 Home Premium SP1 (64bit).

The experiments were repeated in real world environment for two configurations:
1 min and 20 min sub-jobs, for the whole spectrum of maximum volunteers.

The results of comparing simulated and real world environments, regarding the
computing time, are shown in Figure 9. It is easy to see, that the computing times are
nearly identical in the case of 1 min. subjob. More significant difference is observed in
the case of 20 min. subjobs. As it was observed before, fluent processing larger tasks
is more difficult, as finding active volunteer causes more problems (as they are either
asleep, or processing large tasks). At the same time, reliable throughput attained
in the system processing 1 min. subjobs is easier to maintain, as many volunteer do
their jobs quick and are ready to process next tasks. These observations are confirmed
when looking at the results presented in Figure 9. In order to additionally confirm
the reliability of the constructed simulators, comparison of the involved volunteers
percentage yields very similar results for three tested platforms (see Figure 10).

7. Conclusion

In this paper the already presented network simulation environments, built with use
of RePast and MASON, previously applied to the problem of simulation of volunteer
security testing system [2], are adapted to simulate volunteer computing environment
consisting of web browsers running Java Script.

The construction of simulation environments for such cases seems to be indi-
spensable, as such highly dynamic environments would require preparing and testing
different complex strategies (such as load balancing or fault recovery).

It was shown that the constructed environments yielded reliable results, by com-
paring them one with another. However, the accuracy confirmation of the constructed
simulators was obtained after preparing the real world testing scenario which imple-
mented the structure well-known from the simulated test case in the virtual environ-
ment. The obtained results for 1 min. and 20 min. subjobs show, that both simulators
constructed with RePast and MASON are reliable and may be further developed.

In the future it is planned to extend the structure of simulators, by introducing
hierarchical structure of components (e.g., middle servers, for better distribution of
the tasks in complex networks) and preparing the experiments involving different
strategies of task distribution, load balancing etc.

166 Aleksander Byrski, Michat Felus, Jakub Gawlik, et al.

10000 Y "
second —
1 minute -------
5 minutes --------
10 minutes
15 minutes -—--
20 minutes -:---:-
24 minutes -+ -+ - -

1000

Time (min)

100

10

2 4 6 8 10 12 14 16 18 20
Max. number of volunteers

(a) Job executing time (RePast)

10000

T T
1second ——
1 minute --

5 minutes --------

10 minutes

15 minutes ——--

20 minutes ----o-
24 minutes -+ -+ - -

1000

Time (min)

100

10

2 4 6 8 10 12 14 16 18 20
Max. number of volunteers

(b) Job executing time (MASON)

Figure 6. Job executing time in RePast and MASON.

Volunteer computing simulation using RePast and MASON 167

T T
1second ——
14 1 minute --- 7
5 minutes --------

10 minutes
15 minutes -—--
12 20 minutes ------ |
24 minutes -+ -+ - -

Speedup

4 6 8 10 12 14 16 18 20
Max. number of volunteers

(a) Computing speedup (RePast)

T T
1second ——
14 1 minute -- .
5 minutes --------

10 minutes
15 minutes -——~
12 20 minutes ----- |
24 minutes -+ -+ - -

Speedup

16 18 20

2 4 6 8 10 12 14
Max. number of volunteers

(b) Computing speedup (MASON)

Figure 7. Computing speedup in RePast and MASON.

168 Aleksander Byrski, Michat Felus, Jakub Gawlik, et al.

120 T T T T T T T
Sleep —
Idle sosssss
Work e
100 -
80 - -
[%]
Qo
2
2]
° 60 - B
5
S
<
40
20
0
1sec 1min 5min 10min 15min 20min 24min
Avg. subjob time
(a) Percentage of involved volunteers (Repast)
120 T
Sleep —
Idle messsm
Work e
100 - o
80 - =
[%]
o
i)
2]
S 60 i
N
=)
>
<
40
20
0
1s 1min 5min 10min 15min 20min 24min

Avg. subjob time

(b) Percentage of involved volunteers (MASON)

Figure 8. Percentage of involved volunteers in RePast and Mason.

Volunteer computing simulation using RePast and MASON 169

10000 T —
mason 1 minute ——
repast 1 minute --

real world 1 minute --------
mason 20 minutes
repast 20 minutes —-——-
real world 20 minutes -------
1000
5
E
i
£
Z
100
10
2 4 6 8 10 12 14 16 18 20
Max. number of volunteers
(a) Job executing time
T - T
mason 1 minute ——
14 repast 1 minute - -
real world 1 minute --------
mason 20 minutes
repast 20 minutes —-—-
12 real world 20 minutes -------- |
10
£
3 8
Q
17
Q.
n
6
4
2
0

2 4 6 8 10 12 14 16 18 20
Max. number of volunteers

(b) Computing speedup

Figure 9. Job executing time and computing speedup comparison among RePast, MASON
and real world experiment.

170 Aleksander Byrski, Michat Felus, Jakub Gawlik, et al.

120

Sieep —
Idle sossees
Work nesssss

100

80

60

Avg. % of steps

40

20

mason 1min repast 1min real Imin mason 20min repast 20min real 20min

Figure 10. Percentage of involved volunteers comparison among RePast, MASON and real
world experiment.

Acknowledgements

The research leading to these results has received funding from Polish National Centre
for Research and Development with grant agreement number 0108/R/T00/2010/11.

References

[1] Bush R., Meyer D.: Some internet architectural guidelines and philosophy. RFC
1058, 2002.

[2] Byrski A., Felus M., Gawlik J., Jasica R., Kobak P., Nawarecki E., Wroczyfiski
M., Majewski P., Krupa T., Skorupka P.: Agent-based simulation of volunteer
environment. In Troitzsch K., Mohring M., Lotzmann U., eds, Proc. of 26th
European Conference on Modelling and Simulation ECMS, 2012.

[3] Byrski A., Debski R., Kisiel-Dorohinickki M.: Agent-based computing in augmen-
ted cloud environment. Computer Systems Science & Engineering (In Press),
2012.

[4] Carneiro G., Fontes H., Ricardo M.: Fast prototyping of network protocols thro-
ugh ns-3 simulation model reuse. Simulation Modelling Practice and Theory,
19(9):2063 — 2075, 2011.

[5] Collier N., North M.: Repast SC++: A Platform for Large-scale Agent-based
Modeling. Wiley, 2011.

Volunteer computing simulation using RePast and MASON 171

[6] Comer D.E.: Internetworking with TCP/IP — Principles, Protocols and Archi-
tecture. Prentice Hall, 2006.

[7] Dean J., Ghemawat S.: Mapreduce: Simplified data processing on large clusters.
In 6th Symposium on Operating Systems Design & Implementation, 2004.

[8] Hendrik C.: Routing information protocol. RFC 1058, 1988.

[9] Klein J.: Breve: A 3d environment for the simulation of decentralized systems
and articial life. In Proc. of Artificial Life VIII, the 8th International Conference
on the Simulation and Synthesis of Living Systems, 2002.

[10] Korpela E. J.: Seti@home, BOINC and volunteer distributed computing. Annual
Review of Earth and Planetary Science, 40(1), April 2012.

[11] Krupa T., Majewski P., Kowalczyk B., Turek W.: On-demand web search using
browser-based volunteer computing. In Proc. of 6th Int. Conf. on Complex, In-
telligent and Software Intensive Systems, 2012.

[12] Nikolai C., Madey G.: Tools of the trade: A survey of various agent based mo-
deling platforms. Journal of Artificial Societies and Social Simulation, 12(2),
2008.

[13] North M., Howe T., Collier N., Vos J.: A declarative model assembly infrastruc-
ture for verification and validation. In Takahashi S., Sallach D., Rouchier J., eds,
Advancing Social Simulation: The First World Congress, Springer, Heidelberg,
FRG (2007), 2007.

[14] Railsback S., Lytinen L.: Agent-based simulation platforms: review and develop-
ment recommendations. Simulations, 82:609-623, 2006.

[15] Sarmenta L.: Bayanihan: Web-based volunteer computing using java. In Proc. of
the 2nd International Conference on World- Wide Computing and its Applications
(WWCA’98), Tsukuba, Japan, March 3-4, LNCS 1368, 1998.

[16] Tanenbaum A.S.: Computer Networks, 4th ed. Prentice Hall, 2003.

[17] Ventroux N., Guerre A., Sassolas T., Moutaoukil L., Blanc G., Bechara C., Da~
vid R.: Sesam: An mpsoc simulation environment for dynamic application pro-
cessing. In CIT, pp. 1880-1886. IEEE Computer Society, 2010.

[18] Wooldridge M., Jennings N.: Intelligent agents: Theory and practice. Knowledge
Engineering Review, 10(2), 1995.

[19] Xu Y.: Global sideband service distributed computing method. In Proc. of the
International Conference on Communication Networks and Distributed System
Modeling and Simulation (CNDS’98), 1998.

Affiliations

Aleksander Byrski
AGH University of Science and Technology, Krakow, Poland, olekb@agh.edu.pl

Michatl Felu$
AGH University of Science and Technology, Krakow, Poland, felus@student.agh.edu.pl

Jakub Gawlik
AGH University of Science and Technology, Krakow, Poland, jgawlik@student.agh.edu.pl

172 Aleksander Byrski, Michat Felus, Jakub Gawlik, et al.

Rafal Jasica
AGH University of Science and Technology, Krakow, Poland, jasica@student.agh.edu.pl

Pawel Kobak
AGH University of Science and Technology, Krakow, Poland, kobak@student.agh.edu.pl

Grzegorz Jankowski
AGH University of Science and Technology, Krakow, Poland, jankow@student.agh.edu.pl

Edward Nawarecki
AGH University of Science and Technology, Krakow, Poland, nawar@agh.edu.pl

Michal Wroczynski
Fido Intelligence, Gdansk, Poland, mwroczynski@fidointelligence.pl

Przemystaw Majewski
Fido Intelligence, Gdansk, Poland, pmajewski@fidointelligence.pl

Tomasz Krupa
Fido Intelligence, Gdansk, Poland, tkrupa@fidointelligence.pl

Jacek Strychalski
Fido Intelligence, Gdansk, Poland, jstrychalski@fidointelligence.pl

Received: 24.07.2012
Revised: 14.10.2012
Accepted: 3.12.2012

