COMPUTER SCIENCE e 14 (1) 2013 http://dx.doi.org/10.7494/csci.2013.14.1.129

Abstract

Keywords

MALGORZATA WIELGUS
PRZEMYSEAW DABEK
ROMAN JANUSZ
ToMASZ KOWAL
WoJCIECH TUREK

ERLANG-BASED SOFTWARE UPDATE
PLATFORM FOR MOBILE DEVICES

Growing computational power of mobile devices modifies existing approaches
to data processing in large-scale sensor networks. Since sensors are no lon-
ger limited to simple data acquisition tasks, such networks can be considered
complex geo-distributed data processing systems. Features and requirements of
such systems justify use of Erlang language and technology for programming
mobile devices. The technology provides several crucial features, including fault-
tolerance, message-passing concurrency or hot-code loading. In this paper the
problem of software management in Erlang-based distributed systems is di-
scussed. A mechanism for installing and upgrading Erlang applications using
operating system package manager is described. A platform for updating so-
ftware in large scale systems is presented.

Erlang, software updates, distributed system

129

130 Malgorzata Wielgus, Przemyslaw Dabek, Roman Janusz, et al.

1. Introduction

Fast development of mobile computers creates new domain of applications for large
systems composed of many geo-distributed, interconnected devices. Mobile sensors are
no longer limited to simple tasks related to data acquisition. Relatively high compu-
tational power of embedded systems makes it possible to execute complex algorithms.
A sensor can process collected data, analyze image, sound or other signal, detect im-
portant information and notify when particular situation occurs. This type of sensor
can be called active or intelligent. It provides information, not data.

System composed of active sensors provides high computational power in loca-
tions, where data appears. This removes limitations created by throughput of network,
and makes it possible to create large scale systems, which can perform complex pro-
cessing of all collected data. There are many areas of applications for such systems,
for example:

Finding particular people or cars. A mobile devices equipped with cameras can
execute image recognition algorithms. Configuration can define which plate num-
bers or faces are searched for. The device can report only, when suspected object
is found.

Management of geographically spread devices. Devices can be installed in
company cars for monitoring location and speed. A device can alarm when a car
moves too fast or leaves specified area. Another example is monitoring of proper
functioning of other devices, like GSM network base transceiver stations or oil
pumpjacks.

Active security systems. Monitoring of large areas or buildings could be much
more efficient if advanced processing of signals was performed continuously. Such
system could allow particular people to enter specified zones or report unusual
behaviors in particular areas.

Robotics. Embedded devices controlling robots are probably most advanced example
of distributed computer systems.

This new possibilities require use of new architectures of large scale distributed
systems composed of mobile devices. With computation moved to remote devices,
amount and type of exchanged information significantly changes. Less data is passed
from a device which reduces requirements concerning network throughput. However,
flexibility of such solutions require creating methods for changing software parameters
and updating algorithms on remote devices.

The problem of updating software in geo-distributed systems has been investiga-
ted by researchers working on sensor networks. Problems of efficient code propagation
in sensor network has been discussed in [1] and [2]. Problems concerning security of
updating software of sensors have been discussed in [3]. A survey of architectures for
updating software in enterprise-scale networks can be found in [4].

Several proprietary system dedicated for management of particular brands of mo-
bile devices have been created [5, 6]. These solutions are designed to manage software

Erlang-based software update platform for mobile devices 131

on mobile phones or tablets used by employees of a particular company. This kind
of devices and systems could be used for performing some of aforementioned tasks,
however flexibility of such solution is limited.

Execution of complex applications can always result in high level of unexpected
errors. In considered class of distributed systems, where large number of devices runs
without manual supervision, high availability and error-recovery mechanisms should
be supported. This requirement can be easily met using the Erlang technology [7],
which is dedicated for creation high availability distributed systems. Other features
of Erlang also seem suitable for creation of such systems, therefore the attempt of
utilizing the technology seems justified.

Erlang-based large scale geo-distributed systems require tools and methods for
efficient management, which is the main goal of the work described in this paper.
In the next section main features of the Erlang technology will be described. Follo-
wing sections will present assumptions, architecture and tests of the software update
platform for Erlang-based distributed systems.

2. Erlang technology overview

Erlang is a technology and a programming language that mixes functional program-
ming with an approach to easily build heavily parallel and distributed, highly available
systems. It achieves these goals using a set of unique features, including:

e Virtual machine implementing message-passing concurrency model with lightwe-
ight Erlang processes.

e Built-in, language-integrated engine for communication in a distributed environ-
ment.

e Hot code swapping with a fine control over the software upgrade process. The aim
of these is to allow an upgrade to be performed automatically without stopping
any services.

e Fault-tolerance features. The most important one is supervisor behaviour for
writing special control processes responsible for monitoring other processes and
reacting accordingly when they crash. This allows programmers to take an happy
case programming approach which means that they can ignore any exceptions as
long as they don’t have to be handled explicitly in some special way.

e Takeover and failover mechanisms for cluster systems.

2.1. Erlang OTP

Erlang OTP (Open Telecom Platform [8]) is an Erlang distribution released by Erics-
son in 1998 when the language became open source. OTP is a set of standard Erlang
libraries and corresponding, well-defined design principles for Erlang developers. OTP
defines patterns for basic elements that make up the software as well as the general
layout of completed, deployed environment.

132 Malgorzata Wielgus, Przemyslaw Dabek, Roman Janusz, et al.

Erlang is a technology that from the very beginning incorporates patterns, con-
ceptions and approaches that are crucial for heavily parallel and distributed systems.
Since such systems are becoming ubiquitous these days, Erlang definitely has the
chance to become a technology of the future for large, distributed computer systems.

In this article, brief description of basic OTP principles will be presented with
more attention on the ones important for the Software Update Platform.

OTP principles include:

e Supervisors and supervision trees

Erlang software can be thought of as a set of lightweight Erlang processes com-

municating with each other. In supervision tree principle, these processes form

a tree where the leaves are called workers and are doing the actual job, while

other nodes are called supervisors. Each supervisor is responsible for monitoring

its children and reacting accordingly when any of them crashes. Supervisors allow
to design well-structured and fault-tolerant software.
e Behaviours
Behaviours are a set of basic design patterns used to build common types of
software pieces. Fundamental behaviours are:
— gen_server for implementing simple servers and client-server relation betwe-
en Erlang processes,
— gen_fsm for implementing generic finite state machines,
— gen_event for implementing event handling subsystems.
e Applications and releases

These patterns define general layout of a self-contained, deployable piece of Erlang

software. Applications and releases will be described in the next section as the

Software Update Platform deals heavily with them.

2.2. Applications and Releases in Erlang

A deployable package of software written in Erlang is called an embedded node. An
embedded node is a self-contained, configured Erlang environment along with actual
software written in Erlang that can be deployed and run using a simple command.
An embedded node contains:

e Erlang Runtime System (ERTS),

e a set of Erlang applications, the actual code,

e configuration for ERTS and applications,

e an Erlang release.

2.2.1. Erlang applications

An Erlang application is an independent piece of software that serves some particular
functionality. An application is defined by its name, version, code (set of modules),
dependencies (other applications) and other more finegrained settings and attributes.
These are all configured in an .app file. Every application defines a way of starting

Erlang-based software update platform for mobile devices 133

it, stopping it and possibly upgrading or downgrading it to another version (optional
appup file). It also has its own piece of configuration. A running application is often
made up of a single supervision tree.

2.2.2. Erlang release

An Erlang release is a configuration of what an embedded node contains and how it
is started, stopped and upgraded. Thus, an Erlang release, defined by an .rel file,
states which version of ERTS should be used in the node, lists a set of applications
in particular versions that should be part of the release, and defines one or more way
the Erlang node is started and stopped. Separate, optional relup file defines how the
release is upgraded or downgraded (without stopping the node). Erlang release has
its own version number.

2.3. Upgrading Erlang software

As a part of focus for high available systems, Erlang supports hot code swapping and
very finegrained control over the upgrade process without stopping running node.
Every application may define how its version should be changed to higher or lower in
the appup file. Based on a set of appup files, a relup file may be generated which merges
all operations listed in appup files into one big script that upgrades or downgrades the
whole release. This script may be executed using standard Erlang API for release
handling (the release_handler module).

Because each application is responsible for defining how its version should be
changed, the upgrade process is very straightforward and requires only a few calls
to the release handling functions. Thus, it can be easily performed without human
interaction, by automatic tools.

Still, there are some problems with that method. Mainly, it is low-level as it
requires calling the Erlang API on the target node. What is needed and what our
platform aims to provide is a way of easy installation and deinstallation of the Erlang
node on the target system using simple tools like package managers and also a way
of easy management of a large number of devices.

3. Packaging of Erlang software

‘Packaging of Erlang software’ means a way of putting the contents of Erlang node
into packages like .deb. These packages are easy to install, upgrade and remove with
standard package manager commands, available on most operating systems.

The Software Update Platform described in this paper uses packages and a pac-
kage manager as a primary mechanism for modifying software on particular devices.
Creation and installation of such packages is not trivial, especially when it is very
important to preserve ability to perform upgrades without stopping the Erlang node,
using hot code swapping mechanism.

134 Malgorzata Wielgus, Przemyslaw Dabek, Roman Janusz, et al.

There are a few reasons why adopting existing packaging mechanism is justified:

e casy installation and deinstallation of Erlang node on the target system using
a single command,

e reduction of amount of data downloaded during the upgrade (only the actually
changed packages are fetched by the package manager),

e overall better integration with the target system,

e knowledge of Erlang technology is not required to perform installation or update.

3.1. Implementation details

The implementation aimed at creating tools to build Debian packages .deb that wo-
uld span the contents of the Erlang node and create a set of packages ready to be
pushed to a repository and easily installed on the target device. This also required
general implementation of Debian maintainer scripts included into these packages.
These scripts are responsible for management of the node during installation. Most
importantly, they contain the code that performs the upgrade process.

3.1.1. Decomposition of the Erlang node into Debian package set

The Erlang node is decomposed into a set of Debian packages in the following way:

e Base package contains ERTS and its version is equal to the ERTS version. This
package is architecture-dependent. It has no dependencies.

e FEach Erlang application gets its own package. Its version is equal to the appli-
cation version. Package dependencies reflect the list of dependent applications in
the .app file.

e Erlang release files are packaged into the final, main package. This package is
dependent on the base package and packages for all applications contained in the
release. These dependencies are strict in terms of version of dependent packages
— the release requires a concrete version of every application as well as the ERTS.
The only package that should be explicitly maintained by system administrator is

the main package containing the release files. This package, thanks to its well-defined
dependencies, represents the whole Erlang node and its installation will cause the
whole node to be deployed on the device.

The point of splitting up the node into several packages related through depen-
dencies was to reduce the amount of data downloaded during the upgrade process. It
is a very common situation when only one Erlang application is to be upgraded. Stan-
dard Erlang features do not allow upgrading particular applications independently —
a new version of the whole release must be created and upgraded. Without proper de-
composition of the contents of the release, this would force downloading a big package
containing every application, even though most of them did not change.

Usage of package manager solves this problem. When the node is decomposed
into several packages, upgrade of the main package forces the package manager to
download only these application packages whose version changed. This is all thanks
to automatic dependency resolution provided by the package manager.

Erlang-based software update platform for mobile devices 135

3.1.2. Upgrade of the release

There are a few maintainer scripts (see [9]) in all the packages spanning the Erlang
node. They are responsible for starting the node when it gets installed, stopping it
when it gets removed and, most importantly, performing the release upgrade process
when the main package is being upgraded by the package manager.

The script performing the release upgrade checks whether the node is running,
using tools available in the node bin directory. When the node is running, the script
remotely calls appropriate Erlang code on the running node, causing it to switch
to the higher version of the release (standard Erlang release upgrade using the
release_handler, without stopping the node). Hot upgrade may fail or the node may
have been down from the beginning. If so, a manual replacement of the old version of
the release with the new version is performed (manual replacement of some files) and
the node is started.

3.2. Results and effects

All crucial features regarding integration of package manager with Software Update
Platform have been successfully implemented.

From the point of view of an Erlang developer maintaining the software being
upgraded, the main feature implemented are several helpful scripts. They allow easy
generation of Debian packages from an Erlang release generated with rebar (more
information about development model can be found in 4.2). There is also a script for
easy generation of the relup file.

From the point of view of a target system administrator, the main advantages of
package manager are mentioned earlier. The most important is the easy way to install,
upgrade and remove Erlang nodes. The only configuration needed at the target system
is addition of Debian repository in the apt configuration file.

From the point of view of an user of the Software Update Platform, main feature
implemented is a built-in Debian packages repository along with an Ul to manage its
contents.

We were also successful in obtaining desired non-functional features of the system
regarding its use of package manager. This includes smaller downloads from the server
to the target devices and ability to use hot-code swapping by the package manager
during upgrade process.

3.3. Problems and limitations

Although the integration of package was successful, due to a significant mismatch
between how package manager works and how standard Erlang upgrade tools work,
some workarounds were required.

The main problem encountered regarded ability to perform hot-upgrade without
stopping the system. Erlang upgrade tools require that at the point of a release
upgrade, the whole old version of the release and the whole new version of the release

136 Malgorzata Wielgus, Przemyslaw Dabek, Roman Janusz, et al.

are present in the filesystem. When the release is split into several packages, it is
impossible to find a moment where this requirement is met. It is also impossible to
influence the way package manager works to force it to behave as we wanted.

Because of that, a workaround had to be introduced. Erlang application and
Erlang release packages do not contain their contents directly. Instead, an intermediate
tar.gz archive is created that contains actual contents of the package. This archive
is then put into the .deb file directly. This allows full control over the process when
the files from the intermediate package are unpacked and removed. The intermediate
archive is unpacked from the .deb file by the package manager directly, while the
actual files are unpacked by the maintainer scripts.

One downside of this approach is that application and release files had to be
manually removed using maintainer scripts. Another one is that when an application
is removed from a release, the package containing that application has to be manually
removed. This should not be done from the maintainer scripts as it is probably a bad
idea to invoke package manager from scripts invoked by the package manager.

4. Software update platform

Software Update Platform is responsible for performing updates on multiple devices
and monitoring installed applications. Developers prepare .deb packages with appli-
cations and add them to a repository. When connection with device is established
and information about planned update is written in database, platform will perform
software update on that device.

During system design the following assumptions were made:

e Slow and unreliable connections — while developing we thought mainly about
devices that are connected via GSM. This connection can be slow and may be
interrupted easily.

e Possibility of NAT — geo-distributed mobile devices are typically not in a local
network and can be located behind a NAT. Therefore the devices should connect
to central server with public IP.

e Need for scalability — a distributed systems of considered class can consist of
large number of devices. Our software management platform should be able to
manage thousands of devices.

e Managing groups of devices, batch updates — user can create groups of devices
so that our system can be used to manage more than one distributed system at
once. User can send requests to the defined groups or to particular device.

e Simple, intuitive interface — the graphical management interface should be easy
to use.

4.1. Architecture

General architecture of the Software Update Platform is presented in Figure 1.

Erlang-based software update platform for mobile devices 137

The platform consists of two main parts:

e Client application installed on mobile device. It is assumed that client
application is running on Erlang VM installed on some Linux distribution and
apt is available. Client application connects with server and performs particular
operations.

e Management server. The server consists of 3 components:

— HTTP server

— database
— backend
web browser
mobile
device
Erlang e b--| HTTP server
applications oo
y i :0“{\6—&’\ f\’ ‘
client -1 database
application ‘\\
| ™
Linux server

Figure 1. General architecture of the Software Update Platform.

HTTP server and user interface

Mochiweb, an Erlang-based lightweight Web server, is the server of choice. It is respon-
sible for two main tasks. It manages user interaction through Web interface (serves
content, performs user requests) and it is also a repository for .deb packages.

Web interface provides simple way to manage connected devices. A user can
check last known state of device: IP, version of release, installed applications. There
is also a convenient mechanism of managing groups of devices. Each device can be
assigned to one or more category. Each scheduled job can concern single device or one
of defined categories. Figure 2 shows exemplary view of device state.

The interface also provides easy mechanism of managing packages present in the
repository. Previously prepared packages can be uploaded directly through the Web
site.

Database

Mnesia, an Erlang native database stores information about:
e device and applications installed on it,
e jobs (e.g. update) for devices.

138 Malgorzata Wielgus, Przemyslaw Dabek, Roman Janusz, et al.

SOFTWARE
UPDATE
PLATFORM

Device info

00:22:15:70:84:B6-beagle Applications
- [Dewrptn]
—— T
sup_beagle | Software Update Platform client 1.0
beagle, 2 =
sasl SASL CXC 138 11 2.1.94
inets INETS CXC 138 49 5.0
Categories sampleapp | Sample application for Software Update Platform || 2.0
¥ My Devices stdlib ERTS CXC 138 10 74
kemel ERTS CXC 138 10 2.14.4
Update
Pending jobs
| | | | I [submit
Upgrade to release Finished jobs

H Messige Module Function Extra Status
[| submit |

Capyright © by Przemyslaw Dabek, Roman Janusz, Tomasz Kowal, Malgorzata Wielgus 2011-2012

Figure 2. Device view from the user interface of the Platform.

Database is a connector between the Web interface and the backend.

Backend

The backend is the core of platform. It is Erlang application responsible for whole
automatic device management. Every new device in platform has to connect with
the backend. Information about all managed devices is stored in the database. The
backend can monitor state of devices and perform operations on it.

Erlang-based software update platform for mobile devices 139

| 1: Initialize connection |

@ device identity: nodename and
MAC address,

@ session start reason,

@ device state (release_handler:
which_releases/0)

F————————

1.1: Check device state

1.2: Last known state

< _____________________

loop/

While database returns jobs to perform]

1.3: Get first job from list

1.4: Job to perform

< _____________________

1.5: Perform job

1.6: Result

——————————

1.7: Set job status

y

1.8: End session

Figure 3. The diagram of communication between components of the system.

4.1.1. Device-server session

Sequence of operations performed during cooperation between a device and the server
is presented in Figure 3. Firstly device initializes connection which carries following
data:

e device identity: nodename and MAC address,

e session start reason,

e device states.
These pieces of information are used to unambiguously identify connected device.
After connection is established, the server checks device state in the database. If
there are any enqueued jobs, they are sent to device. The device returns result of
performed jobs. This status is written to the database.

4.1.2. On-device upgrade logic

Updating software consists of two jobs:
e upgrade,
e check release.

Upgrade immediately returns with status ok. It stops periodic connection requ-
ests, closes session and uses apt to perform upgrade. It waits for apt to finish and
checks its result. Then it restores periodic connection requests.

Check release reads value returned from apt and notifies server about changes in
next session.

140 Malgorzata Wielgus, Przemyslaw Dabek, Roman Janusz, et al.

4.2. Development MModel for application

Software Update Platform proposes a model and provides some tools for development
of Erlang software installed on the target systems. The main assumption is that
the developer uses a tool called rebar for managing Erlang software (see [10] for more
information). rebar is a script providing functionality for Erlang similar to what maven
provides for Java development. This includes automatic generation of stubs for Erlang
applications, build, .appup file generation, creation of complete, self-contained Erlang
nodes (with a runtime), documentation etc. Generated Erlang nodes are used as
a basis for .deb packages generation. This is implemented by a set of scripts provided
by the Software Update Platform itself.

5. Conclusions and further work

Created system for dynamic updates of Erlang software on mobile devices provides
unique functionality, which can simplify management of Erlang-based distributed sys-
tems. Software on remote devices can be upgraded without stopping updated applica-
tions. Amount of downloaded data is optimized, due to splitting a release into several
packages related through dependencies. The system uses operating system package
manager to install and upgrade Erlang applications, which is easier for people who
had never used Erlang before.

There are several directions of further development of the platform. The most
interesting are:

Support for other package managers. One obvious improvement for the plat-
form would be support for more package managers, as Debian package format
.deb was chosen arbitrarily for experimental development. Since its integration
was successful, support for rpm-based package managers (like yum), pacman or port
is planned in the future.

Communication security. Right now, communication between devices and the se-
rver is not encrypted. Wrapping device-server sessions in TLS and adding some
authentication is another important potential feature for the platform.

Development towards more general management platform. The protocol
used in communication between devices and the server is very general and
extensible. New types of jobs can be easily added. Thus, the platform can be
turned into more general management platform, providing a lot more of different
functionality, like for example monitoring device status, configuring applications
or viewing logs.

Acknowledgements

The research leading to this results has received founding from the Polish National
Science Centre under the grant no. UMO-2011/01/D/ST6/06146.

Erlang-based software update platform for mobile devices 141

References

[1] Reijers N., Langendoen K.: Efficient code distribution in wireless sensor networks.
Proc. of the 2nd ACM international conference on Wireless sensor networks and
applications, San Diego, CA, USA, pp. 60-67, 2003.

[2] Levis P., Patel N., Culler D., Shenker S.: Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks. Proc. of the 1st
conference on Symposium on Networked Systems Design and Implementation,
vol. 1. San Francisco, California, 2004.

[3] Deng J., Richard H., Mishra S.: Secure code distribution in dynamically pro-
grammable wireless sensor networks. Proc. of the 5th international conference
on Information processing in sensor networks, Nashville, Tennessee, USA, pp.
292-300, 2006.

[4] Han C., Kumar R., Shea R., Srivastava M.: Sensor network software update
management: a survey. International Journal of Network Management, vol. 15(8),
pp- 283-294, 2005.

[5] Nokia Device management. http://europe.nokia.com/find-products/
nokia-for-business/device-management, 02.2012

[6] Motorola Mobility Services Platform. http://wuw.symbol.com/category.php?
category=159, 02.2012

[7] Armstrong J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

[8] Logan M., Merritt E., Merritt R.: Erlang and OTP in Action. Manning Publica-
tions, 2010

[9] Debian Policy Manual — Package maintainer scripts and installation proce-
dure http://www.debian.org/doc/debian-policy/ch-maintainerscripts.
html, 02.2012

[10] Rebar: Erlang Build Tool https://github.com/basho/rebar/wiki, 02.2012

Affiliations

Malgorzata Wielgus

AGH University of Science and Technology, Krakow, Poland, malgorza@student.agh.edu.pl
Przemystaw Dabek

AGH University of Science and Technology, Krakow, Poland, przemyslaw.dabek@gmail.com
Roman Janusz

AGH University of Science and Technology, Krakow, Poland, roman@student.agh.edu.pl
Tomasz Kowal

Erlang Solutions, Krakow, Poland, tomekowal@gmail.com

‘Wojciech Turek
AGH University of Science and Technology, Krakow, Poland, wojciech.turek@agh.edu.pl

Received: 21.02.2012
Revised: 6.07.2012
Accepted: 3.12.2012

