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CONFRONTING THEORETICAL
PREDICTIONS WITH EXPERIMENTAL DATA;
A FITTING STRATEGY

FOR MULTI-DIMENSIONAL DISTRIBUTIONS

After developing a Resonance Chiral Lagrangian (RxL) model to describe ha-
dronic T lepton decays, the model was confronted with experimental data. This
was accomplished by using a fitting framework that was developed to take into
account the complexity of the model and to ensure numerical stability for the
algorithms used in the fitting. Since the model used in the fit contained 15
parameters and there were only three one-dimensional distributions available,
we could expect multiple local minima or even whole regions of equal potential
to appear. Our methods had to thoroughly explore the whole parameter spa-
ce and ensure (as well as possible) that the result is a global minimum. This
paper is focused on the technical aspects of the fitting strategy used. The first
approach was based on a re-weighting algorithm published in article Shekhov-
tsova et al. and produced results in about two weeks. A later approach, with
an improved theoretical model and a simple parallelization algorithm based on
Inter-Process Communication (IPC) methods of UNIX system, reduced com-
putation time down to 2-3 days. Additional approximations were introduced
to the model, decreasing the necessary time to obtain the preliminary results
down to 8 hours. This allowed us to better validate the results, leading to a more
robust analysis published in article Nugent et al.
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1. Introduction

Comparison of the theoretical predictions with experimental data for 7 lepton decays
requires sophisticated development strategies that are able to deal with unique pro-
blems uncovered during the development process. On the one hand, due to the nature
of 7 lepton decays, different decay modes can be analyzed separately to limit the
complexity of the project. On the other hand, due to significant cross-contamination
between these decay modes, more than one channel needs to be analyzed simulta-
neously, starting from a certain precision level. A change of parameterization of one
can significantly influence the results of the fits of another, as it contributes to its
background. New algorithms and new fitting strategies must be designed in a flexible,
modular way to account for a variety of changes and extensions that can be intro-
duced throughout the evolution of the project. This is, however, a daunting task, as
the nature of the new extensions to the theoretical models as well as the format or
applicability of future data are hard to predict. It is often necessary to design more
than one approach to the same problem to cover a wide variety of potential use cases.

The new tools developed for such projects must be validated and constantly tested
with every change. This requires an extensive test environment developed along with
the new tools. When put together with the development of the distributed computing
framework necessary for efficient calculations, such a project proves to be a challenging
task.

In this paper, we will focus on the computing side of a project aimed at comparing
the theoretical predictions for 7 lepton decays with the data. Design and development
of refined data analysis is an essential element of an effort necessary for breakthrough
discoveries, such as the recent discovery of the Higgs boson. A well-validated and
widely-applicable fitting strategy can serve as a basis for future projects of a similar
nature, as it often took place in the past (see e.g., [18]).

Let us stress that the development of the model and discussion of the experimen-
tal data including systematic errors used in our work is by far beyond the scope of
the present publication, where we concentrate on the computing aspects of the work
only. For the other aspects and physics details, we address the reader to references
[16, 10] as well as the references herein, for presentation of this rich and complicated
activity.

1.1. The modeled process

The data used in this work was collected at a high-energy physics experiment, the
BaBar Experiment [4] located at the Stanford Linear Accelerator Center (SLAC). At
this experiment, electrons and anti-electrons (positrons) are collided to create new
particles of higher energy, which subsequently decay. A long series of such collision
events are collected. The decay products resulting from these collisions can be analy-
zed from the measurement of the sub-atomic particles produced in the decay as they
traverse the detectors that measure the energy, momentum, and velocity of the par-
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ticles. The target of our analysis is to compare the data measured by the experiment
to predictions provided by theoretical models.

Our analysis focuses on the decay of the 7 lepton. The 7 lepton is the heaviest
of the three known charged leptons and is the only one that decays into pions and
kaons. An example of lepton production and decay is presented in Figure 1.

The 7 lepton can decay into multiple channels; thus, we narrow down our focus by
analyzing only one possible decay channel. We have chosen the most significant non-
trivial decay channel, which is the decay to three charged pions (7% — &7t 7Tu,)
mediated mainly by the axial vector ali (1260) resonance [12]. The experimental data
describing the result of such a process consist of a set of distributions of the invariant
masses of the decay products.

+

+ +

Figure 1. An example of a ete™ — Z/y* — 7777, 77 — p* — 7 7%, decay chain. One
of the 7 leptons decays to a pair of m through the resonance p. The 7 neutrino (v,) escapes

detection. The decay of the second 7 is omitted for simplicity.

In the case of a 7= decay, these distributions are: 7~ 7~ , 7~ 71, 7~7t and
7~ n~nT invariant masses'. The charge is inverted for the 7+ decays. Because the
7w~ particles are identical and indistinguishable, the experimental analysis combined
the two 7~ 7" pairs into one distribution. The use of one-dimensional distributions by
construction neglects correlations between the invariant mass distributions and is not
optimal. However, it was decided to use the data currently available from the BaBar
experiment [11] to develop the techniques and methods required to address the pro-
blems of this fit and to start the collaboration between theorists and experimentalists
on this topic.

LA numerical integration over two dimensions is needed to obtain one-dimensional distribution
of the three-(two-)pion system invariant mass.
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In this paper, we will concentrate on the computing aspects of the work for
phenomenology of 7 — wwmy, decays already documented in Refs. [16, 15, 10], where
results of the measurements presented in [11] were used.

1.2. Motivation

After decades of research by many theorists, the construction of a quantum effective
field theory driven by QCD in the energy region populated by resonances (1 to 2 GeV)
is still an unsolved problem. However, its low- and high-energy limits are known, which
turns out to be extremely useful information to constrain resonance Lagrangians. Tau
decays provide us with an opportunity to study low energy QCD interactions and the
hadronic currents near and below the perturbative threshold. Unlike the eTe™ —
hadrons decays, the 7’s decay weakly and, thus, provide access to both the vector
and axial vector currents. With the large statistics from the BaBar collaboration, there
is the potential to improve the knowledge gained from previous experiments like CLEO
[9]. For this purpose, a framework for validating new models must be introduced
and a collaboration between theoreticians and experimentalists must be established.
Comparing predictions of several different models with the data will help us determine
which assumptions are most important in the studies of hadronic currents.

1.3. Description of the problem

On the theoretical side, we have a Monte Carlo (MC) simulation aimed at modeling
the whole decay chain structure. The purpose of this simulation is to describe the
data using a model built on the best knowledge about the decay process.

The first problem that immediately becomes obvious is the fact that the data
consist of three one-dimensional distributions while the model has 7-15 parameters,
depending on the effects taken into account, and describes an eight-dimensional space.
For such a functional form, the fit (in this case a x?) can be expected to have multiple
minima or even whole regions of equal potential. Therefore, we must be able to verify
that our methodology is correct and the result is, in fact, a global minimum.

Lastly, we have to keep in mind the time of computation. MC simulations re-
quire lengthy calculations for a single generated sample. This makes it impossible to
thoroughly scan the whole parameter space to make sure that the result of our fits
is a global minimum. While testing and working on improving the theoretical model,
we also have to work on the computing strategy.

In following two sections, we will present two approaches to this task: a gradient
method for a template morphing fit and a method based on semi-analytical computa-
tions. The template morphing technique, where the MC events are re-weighted based
on the changes of theoretical parameterization, has several distinct advantages. Fir-
stly, it allows one to correctly incorporate the efficiency and resolution of the detector
into a higher-order dimensional fit independently of the observables used in the fit
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and the functional form of the efficiency and resolution. In contrast, standard tech-
niques such as parameterization of the efficiency and resolution (typically by using
projections onto a small number of dimensions) have problems when the efficiency or
resolution depends strongly on the location in the multi-dimensional space. Moreover,
in the case of parameterizations using projections, correlations between the efficiency
and resolution are neglected, and regions with extremely high statistics for the model
used for the parameterization can bias the parameterization of the efficiency and reso-
lution. The template-morphing technique developed here solves all of these problems.
Secondly, it allows for multiple channels that may have different functional dependen-
cies on the fit parameters and/or efficiency and resolution to be easily included in the
same fit. The second method, which is based on semi-analytical computations, is only
possible due to the experimentalists providing unfolding detector effects. However,
this is not always possible.

1.4. State of art

For multi-dimensional fits, we decided to use the MINUIT algorithm [8], the primary
fitting package used in experimental particle physics, which is available through the
ROOT framework [2]. The MINUIT package was developed in 1970s to provide several
different approaches to function minimization, including several tools for error esti-
mation and parameter-correlation calculation. During more than four decades of its
existence, this package has been extensively used in particle physics. Use of MINUIT
is not straightforward and requires understanding of its functionality and proper in-
terpretation of its results. However, it does provide a wide range of control over the
fitting procedure.

In terms of a physics simulation, in the case of 7 lepton decays, the leading MC
generator TAUOLA [7] was created in 1990 and was based on the model refined later
by CLEO collaboration (see e.g. [3]). Since then, it was updated with a new paramete-
rization and was augmented further to take into account new effects discovered over
the years. However, even with these improvements, the model is far from perfect,
prompting a search for a better solution. The experimental community has made ma-
ny refinements to the current set of models in TAUOLA for efficiency studies, based
mainly on empirical observation without theoretical input; however, most of them
remain private.

Non-perturbative QCD is a rather complicated subject. However, its low- and
high-energy limits are known. In our context, the latter amounts to use form factors
that vanish at infinity. For the former, the CLEO model uses the lowest-order appro-
ximation. An alternative theoretical model, Resonance Chiral Lagrangian (RxL) [6],
is based on Chiral Perturbation Theory and reproduces its results, at least up to
next-to-leading order corrections. The interpolation between the two known extreme
limits should be more reliable for the RxL model, which is why we decided to use
it in our analysis. It should be noted here that one of the observations by CLEQ was
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that including all of the observed resonances was essential for agreement between
data and MC?2.

1.5. Scope

The goal of this analysis is to develop and test strategies for fitting models to the
experimental data and to identify potential problems. These strategies will then be
used to test x to describe hadronic 7 lepton decays. This means fitting a set of
parameters, within their ranges given by the theoretical model, to the experimental
data. The result of these fits will show the potential of the new model to represent
the data. At the same time, the performance of the fitting strategy can be evaluated,
which will be beneficial for future applications.

As it will be shown later, our goal is not only to obtain numerical results from
the model as precisely as possible, but also to ensure that our estimation of the first-
and second-order derivatives are numerically stable in respect to changes of model
parameters. This is a non-trivial issue and provides constraints on our numerical
methods. It also affects computing time, sometimes in a critical way, both when
searching for the minimum and in the estimation of systematic errors for the fit
parameters. Having two different methods helps to ensure the validity of the results
and creates a more-robust fitting framework.

In the next section, we describe our first approach to the problem based on the
re-weighting algorithm used to compare different parameterizations of a model or
different models of 7 decays by applying weights to a data sample generated using
the Monte-Carlo simulation [1]. Section 3 describes the second approach based on
semi-analytic distributions along with improvements introduced to the physics model
and fitting framework. It also introduces the new parallelization algorithm based on
Inter-Process Communication (IPC) methods from UNIX systems. The results of the
fits, as well as the results of the additional tests performed to validate them, are
gathered in Section 4. Summary, Section 5, closes this paper.

2. Monte-Carlo supported gradient method

2.1. Re-weighting algorithm

When constructing a fit that uses a template constructed from the MC simulation, an
important problem is the statistical fluctuations of the sample produced. To be more
explicit, MC samples are generated using random numbers; therefore, the accuracy of
the predictions is limited by the statistical fluctuations, and therefore, two MC distri-
butions generated with the same parameters will differ due to statistical fluctuations.

2In the description of hadronic currents predicted by RxL, the low energy large Nc expansion
of QCD [17, 19] results are represented by amplitudes featuring, in principle, an infinite number of
resonances. In practice, their number and parameters are obtained from the fits to the results of the
measurements. In our case, the following resonances were necessary: p, p’, a1, o, listed in [12], which
lead to the enhancement of two-scalar and/or three-scalar propagators.



Confronting theoretical predictions with experimental data (...) 23

This is an obstacle for the fitting procedure, which is sensitive to small fluctuations
in the predictions. To solve this, a re-weighting algorithm [1], outlined in Figure 2,
has been prepared (see [5] for the recent example of its use).
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Figure 2. Main concept of the re-weighting algorithm.

For the single generated MC sample, one can calculate weights signifying the
change of the matrix element between two theoretical models. The matrix element
squared is obtained for both models and then the weight is calculated as their ratio
(for example, the x model and the CLEQ parameterization or two different paramete-
rizations of the RxL model). For a given sample, one weight per event is calculated,
creating a vector of weights that can be used in the fits. This approach eliminates
the need for a lengthy MC simulation; instead, attributing weights to a previously-
generated data sample?.

It is worth noting that this approach can be used on a data sample even after
all detector and experimental acceptance effects are taken into account. This is a si-
gnificant factor, considering the computing power needed to perform the detector
simulation. Moreover, re-weighting a sample takes significantly less time than genera-
ting a new sample with the same number of events, increasing the computation time
benefit of this approach.

31t is essential that we re-use the same sample of events. Thanks to this, statistical fluctuation
of the samples does not affect the functional derivatives of the distributions, but affect the shape of
the differences only.
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2.2. Approximating the model

Despite all of its benefits, the re-weighting technique is still time-consuming, as it
requires reading and processing a large data sample. On a 2.8 GHz CPU, it takes
more than an hour to re-weigh a 10-million-event sample. It is not practical to use
this for every iteration of the fitting procedure. To solve this problem, we simplify the
model used in fits to experimental data for the template morphing that we want to
use in the fitting. We construct our function by calculating, through the re-weighting
process, a histogram Hg for the value of RxL model parameters zi_ ,. We then
generate histograms H;_, corresponding to the case when one fit parameter x1_ , is
changed by AP, to obtain an approximation of the first-order partial-derivative of
this parameter. Leaving only the linear terms from the Taylor expansion of our fit
function, the simplified fit function can be expressed as:

H;, — H
Fyit(Pr, Py, Py, ooy Pa) = Ho 4 ) (P = 0) =5 (1)
. 3

where P; ., are the fit parameters. We then use algorithms from the MINUIT
package [8], available through the ROOT framework [2], to fit this linear approximation
at point 1., of our model to the data. The second derivative (quadratic dependence)
can be introduced as well:
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Here, H;; means that both i-th and j-th parameter were shifted respectively
by AP; and AP;. If i = j, shift by 2AP; is used. In practice, we were limiting our
calculation to these diagonal terms only. Our function would then read:
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This stage requires a negligible amount of CPU time and results in the best
possible values of the parameters for a linearized model created at point P ,. These
values are used to calculate a new point in parameter space for which we repeat the
above procedure. We iterate until the difference P, , — x1.., is sufficiently close to
0, indicating convergence to a minimum.

With the further improvements described in Section 2.4, this approach yields
relatively good preliminary results in just a few steps (10 to 20). However, this method
is very slow. In order to reduce the statistical error form, the MC sample we need to use
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a big MC generated sample (relative to the measured data). If we require uncertainties
of the MC-generated data to be 3 times smaller than those of the experimental data,
then we need to use an MC sample 10 times larger than the experimental one. This
means 20 million events (taking roughly 3.5 hours) for one iteration of the re-weighting

process?.

2.3. Calculating the energy-dependent width of the a; resonance

The following mechanisms of 3-pion production are described by the RxL model®:
I. double resonance production: 7= — aj vy — (p;0)7 Vs,
II. single resonance production: 7= — (p;0)7 " vy,
III. a chiral contribution (direct decay, without production of any intermediate reso-
nances)

The main contribution to the width comes from the first mechanism®. This brings
an additional complication for the fit because one needs to compute additionally the
width function of the a; resonance that mediates the decay process. This function is
a two-dimensional integral that needs to be calculated for every point in decay phase-
space in each event in the MC sample. If it were, in fact, calculated every single time,
it would degrade the performance of the MC generator by a factor of a thousand
(taking into account all decays rejected in the MC process) To avoid this, TAUOLA
uses a 1000-point pre-calculated table of the width of the a; resonance, which is later
interpolated to obtain a precise value for each point in phase-space.

In the RxL model, this table depends on several of the RxL parameters as, for
example, the mass of the a; and p resonances’. Whenever one of these parameters
changes, this table has to be recalculated; however, it can be kept for the whole-
event sample. Nonetheless, it requires these lengthy calculations to be performed for
each set of parameters. During our first trials, we attempted to approximate the
ay contribution by ignoring the calculation of a; width and using just the results
computed for the starting point. However, as a; is a part of the model itself, it
quickly became obvious that without these calculations, our fitting algorithm is not
stable and may not be able to converge to the minimum [14]. Therefore, we had to
include the a; width recalculation in each step of the process.

In our first approach, we used a 16-point Gaussian quadrature with an adaptable
number of divisions fulfilling the precision requirement to calculate the integral. This
integration routine was nested three times, increasing the precision requirement for
each inner integral. A non-parallelized version of this code could take between one and
two hours to calculate the 1000-point table (depending on cpu speed), making it one

4In the case of formula 1, one iteration requires n + 1 re-weighting procedures (n denoting the
number of parameters in the fit) that can be performed simultaneously. Using formula 2 increases
this number to n? 4+ 1, whereas using formula 3 requires only 2n + 1.

5This list includes the o resonance added later as an improvement to the model (see Section 3.1).

6The exact forms of the hadronic currents for all three mechanisms are written in [16].

"For a list of parameters, see Table 4 of [16].
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third of the whole time needed for one iteration. Later in this paper, we will address
other methods of improving the speed of calculating a; propagator needed for fits
using semi-analytical calculation of one-dimensional distributions (see Section 3.3).

2.4. Problems with linearization

In our study, from the fit sample defined in Section 2.2, we have constructed one-
dimensional histograms of the variables where the experimental data is available as
unfolded histograms as well. Our predictions from the model, thanks to formula 1,
feature linear dependence on the model parameters. Alternatively, bilinear dependence
can be introduced with the help of formula 2 or, to save time, with the simplification
presented in formula 3.

While using this method helped us quickly set up the fitting framework, the
limitations soon became obvious. First, the linear approximation tends to be unstable
close to the minimum. That is because near the minimum, the linearized model can
cause larger changes of x? than the actual changes from the model (see Figure 3).
Depending on the shape of the function, this may cause the method to indefinitely
jump around the minimum, resulting in a lack of convergence.

X odel X odel
dependance dependance
linearized model linearized model

minimum from
linearization
after second
iteration

\\‘7’

T T T y
’ Xo xo+Ax parameter / Xo xo +Ax parameter

real minimum from real [minimum from
minimum linearization minimum linearization

Figure 3. One-dimensional example of how linearization of parameter dependence of model

affects fitting parameters to the data. Minimum of x? test between experimental data and

model predictions is shifted from real minimum to minimum from linearization. In the se-

cond iteration (right-hand plot), the result will drastically change the first derivative for the
third iteration.

This can be alleviated by calculating the result in one additional point for each
parameter to calculate the estimation of the second derivative. Then, by requiring that
the part dependent on the second derivative in the Taylor expansion is much smaller

than linear terms®, we can estimate a region in which the linear approximation of

8The work on evaluating the stopping condition has not been completed. It will be a useful step
in future work on this method. For the present study, a constant step size was used in this method
to obtain general cross-check if the results and method described in Section 3 are not suffering from
major technical or any other flaws.
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this parameter is valid®. Narrowing the range of the next step to this region helps
stabilize the model, making it easy to get very good results with less iterations.
On the other hand narrowing strongly the steps in parameter space close to the
minimum, makes it extremely slow to converge. The second derivative can also be
used to estimate the distance to the minimum and to define a stopping condition.
Also, if additional samples are computed on separate cores, these calculations do not
affect the computation time of a single iteration.

2.5. Results and applications

Development of this method was postponed to complete work on the semi-analytic
method, which is described in the following sections. This decision was made to take
advantage of the unfolded data from BaBar, which does not benefit from the increased
versatility of the C template method. Because of this, further improvements were not
added to this method.

Comparison of the best results obtained using this method (without the o reso-
nance in the decay mechanisms, see the beginning of Section 2.3 and Section 3.1) to
the data, can be seen in Figure 4. The current version of this method takes about two
weeks to converge.
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Figure 4. The results of the fits compared to the data. The differential decay width of the

Ty, versus the invariant mass distributions is shown. BaBar expe-

channel 7= — 7 7™ 7w
riment measurements (black points), results from the RxL (blue line) and the CLEO tune
(red dashed line) are overlaid. Ratio of new RyL prediction to the data is at the bottom.

The goodness-of-fit for these results is x?/ndf = 55264,/401.

This approach has proven to be invaluable in understanding the behavior of the
fitted model and helped us estimate the potential of the model to represent the data.
We have chosen to develop this method because of its vast applicability in different

9 Alternatively, we could introduce an adaptive step size. Using first or second derivatives, we
estimate the step size, fit the linear model to the data, and produce a new sample based on the
results of the fits. We then compare the x2 of this result to the x2 of the linear model and adapt the
step size based on the results.
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aspects of validating a physics model. For example, it can be used to fit data where
experimental cuts have been applied. It can also be used with a re-weighting process,
as described in Section 2.1, where each event is attributed with a weight dependent
on the model used. This allows us to process an previously-generated event sample
and analyze its characteristics using a different model.

These applications will definitely be useful in future analysis. However, to com-
plete this analysis, we had to be able to thoroughly verify the model and the fitting
framework itself. However, due to inefficiency of this method, some steps of the va-
lidation procedures could not be performed with satisfying results. For example, the
random scan of parameter space mentioned in Section 4.3.2, which allows us to find
a starting point closer to the minimum, significantly improved the efficiency of the
fitting algorithm. To obtain more-precise results and to be able to validate them,
a new approach had to be taken. This required changes both to the fitting framework
and to the physics model itself.

Let us stress that at present, we use the gradient method mainly as a cross-check
for the semi-analytical method described in Section 3, as this is our default method
for the numerical results of the physics interest. This is why some of the aspects of
the gradient method (if it was used to obtain physics results) are not fully explored.
We will return to this aspect of our work in the future, once the gradient method will
be central for the precision fitting.

3. Semi-analytic method

3.1. Improving the physics model

With the availability of unfolded data from the experiments, an alternative strategy
using semi-analytic methods was developed. A set of semi-analytic distributions'® had
been prepared that correspond to the data distributions available to us. This required
a substantial effort on the experimental side as well. Using these, we were able to
make a direct comparison with the data. While these distributions cannot be used in
the manner described in Section 2.5, they allowed for more efficient techniques due
to the efforts mentioned above.

We have also included the final state Coulomb interactions. The estimated effect
of this interaction on the results was relatively low; but for completeness, it had to
be tested [10].

As mentioned in [15] and seen on Figure 4 (middle plot), the main concern in the
case of the modeled process was the low-mass region, which both the old CLEO model
and the new y model have problems representing. Because our model was unable to
describe that region, we added the low-mass scalar o resonance [12], which has been
used in previous experiments to describe the low mass region, to our model. While the

10These distributions use analytical integration methods supported with numerical integration of
at most two variables.
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o resonance is not well-defined by the theory, may not be a true resonance, and is not
part of the RxL scheme, it has been added in a way that does not conflict with the
RxL scheme (see [10], eq. (3)—(7)). The impact of the o resonance was tested in [10].

Implementing changes in the model (contribution of the o state) significantly
improved the agreement with the data. A new comparison of our starting point to
the data has been shown in Figure 5. One can see that the agreement of the starting
point is already better than the best result of our previous approach, especially when
analyzing the ratio of the new model to the data from the middle plot.
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Figure 5. Starting point for the new fitting method, after applying improvements to the
theoretical model. The goodness-of-fit for these results is x?/ndf = 32413/401. See caption
of Figure 4 for description of the plots.

3.2. Improving the fitting framework

Parallel to the work on the physics model, the fitting framework has been improved
as well. Switching from the MC simulation to semi-analytic distributions proved to
be very effective. Just by using these functions instead of the full MC simulation we
have gained more than a factor of 200. On a single core, without any optimizations,
a single step took about one minute to compute'!. And yet, there was still more room
for improvement.

The new performance bottleneck was the three-dimensional integration. The
previously-used 16-point Gaussian integration method was changed from a variable-
step-size to a constant-step-size approach. Even though the first approach is more
sophisticated, the second is better suited for fitting functions where even a small
change of integrals can be significant. The fitting algorithm internally calculates the
derivatives of the distributions with respect to all model parameters. The variable-
step-size integration creates artificial discontinuities in the fitting function at points
where step size changes. Such artifacts were problematic for the fitting procedure
when near the minimum; therefore, we decided to use a more-stable method at a very
small precision cost.

11 At that moment, we were not taking into account the computation of the width of the resonance a;.
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To further smoothen the integrand and improve convergence, a change of inte-
gration variables was introduced according to the following scheme:

T2 1
/ f(@)dz = / J (0 Fg(t))dt,
Xy 0
h . - ¢ xr1 — A2 o ¢ To — A2
where : po=arctg| —m— |, pp=arctg{ ——— |,
x=g(t) = A% + ABtg(y1 + t(y2 — v1)),

(g(t) — A%)* + A*B?
AB ’

(4)

gt) =A%+

This changes the integrated variable from x to g(t), introducing two adjustable
parameters (A,B). This setup is commonly used to optimize the integration of func-
tions describing resonances in particle physics, where parameter A is the resonance
peak and B is the resonance width. In our calculations, we have chosen parameter
A close to peak of p resonance [12] (which can be seen in Figure 5, middle plot)
and decided that parameter B should not be too narrow, to account for the width of
the a1 resonance (seen in Figure 5, right-hand plot). Based on the results from our
benchmark tests, we have chosen A = 0.77, B = 1.8 without further consideration of
possibly more optimal choices.

The change of variables and stability of semi-analytical functions allowed us to
reduce the number of steps of the integration algorithm. While the variable-step-size
integration could take from 6 to 18 steps for the selected integration domain, we have
benchmarked several choices of constant-step-size approach.It turned out that the
precision of calculations did not improve past the 3 steps. We decided to use 2 steps,
as the difference between 2 and 3 was not significant. Applying these changes brought
a gain of speed close to a factor of ten.

3.3. Parallelization

Building our fitting environment around the semi-analytical distributions allowed for
an easy way to introduce parallelization. At this point, the only time-consuming
operation was 3-dimensional integration. This job can easily be sub-divided into as
many parts as needed, and each task can be computed independently. This makes
parallelization straightforward; the only restriction in this manner is the technology
used for this purpose.

Since part of the tests will have to be done by our collaborator on a computing
cluster with unknown support for parallel computing, we had to prepare a method that
would be as portable as possible. Fortunately, the Inter-Process Communication (IPC)
methods of UNIX systems proved to be more than enough for this task. Therefore,
we decided to base our algorithm on message queues.

This choice allows one to easily create an asynchronous communication link be-
tween the master program and any number of computing nodes without the need of
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any other IPC methods!? (see Figure 6). Since the operating system takes care of
cashing sent messages and distributing them to the first node that is ready to receive
the message, this simplifies the whole process down to few points that have to be
taken into account when writing the master program and the computing nodes.

MASTER NODE 1 NODE 2 NODE N

Send M tasks Get 1 task

Receive 1

Return 1 result

result

2

Figure 6. Diagram of communication between master program and computing nodes using

message queue. Note that both master program and computing nodes can send and receive

messages in an asynchronic way. Master program does not have to actively wait for nodes to
finish their computations.

Our algorithms works as follows:

1. The master program divides the job into smaller tasks and sends a complete list
of tasks to the queue, creating a pool of tasks for computing nodes. The ordering
of the tasks is irrelevant.

2. Computing nodes wait for a message to appear in the queue, then proceed to
compute the requested task and send the result back to the queue with proper
ID for the master program to receive them.

3. The master program waits for a message with proper ID and gathers the results.

4. Computation ends when the number of messages received equals the number of
messages sent.

This algorithm requires few things to take into consideration:
1. The master program must be prepared to receive data in any order.
2. A node that failed mid-computation (for any reason) will not return any results.

A time-out must be put in place to decide when the master program has to
re-send tasks that have not been computed.

121n our case, all nodes are homogeneous, which makes this task even simpler.
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Both issues are easy to resolve. With this algorithm in place, the number of
computing nodes can be freely adjusted, allowing us to optimize the resources used
versus computation time. Our tests showed a linear decrease in computation time
with the increase of cores used for computation up to 24 cores. Above this threshold,
communication becomes the main factor that slows down the progress. This could be
mitigated by increasing the size of the tasks sent to one node, but we decided against
further optimization as the computing time was satisfactory at this point.

3.4. Approximating the width of the a; resonance

As mentioned in Section 2.1, one of the key components of the model is the a1 reso-
nance width. Our first attempts used the same approximation as in the MC approach,
where the width of the a; resonance is calculated only at the starting point of the
fitting procedure. However, the lack of a proper recalculation of this resonance turned
out to greatly influence the results. A fitting procedure that relies on a; width calcu-
lated only once ends in a minimum completely off the global minimum found when
this width is properly recalculated for each point in parameter space.

Having wrong values of the a; width can skew the result, creating a minimum
heavily correlated with a starting point for which the width was generated. This meant
that we had to include the a; width in our calculations.

Since the calculation time of a; width significantly dominates the whole compu-
tation time, we decided to introduce an old method in use since 1992 to optimize the
fitting framework (used to approximate the a; width). This approximation, based on
a general knowledge of the shape of a; width distribution, uses a piecewise function
built upon sets of polynomials to interpolate the a; width. It is parameterized by cal-
culating the width in as few as 8 points. This approximation has been tested to show
that it introduces deviations from the precise calculations less than 7% for low-mass
region and less than 1% for the most important region.

Later on, when the parallelized calculation had been introduced, we were able
to easily incorporate the precise calculations into the project. These calculations,
however, still took the majority of computation time, so we left an approximated
function as an option that can be used to quickly obtain preliminary results, as it
may be important in future applications.

4. Results

4.1. Final results of the fits

Figure 7 shows the result of the fits using the semi-analytical method described in
Section 3 compared to the data and results of the CLEQ parameterization used so
far by the experiments. The goodness of the fit is quantified by x2/ndf = 6658/401.
This is the first case when agreement for a non-trivial 7 decay channel was obtained
between the BaBar data and the theoretical model and the systematic errors could
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be addressed. These comparisons can serve as a starting point for future precision
studies of T decays [13].
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Figure 7. Final results of the fits. The goodness-of-fit for these results isy?/ndf = 6658/401.
See caption of Figure 4 for description of the plots.

Table 1
Final results of the fits — parameter values and their ranges. The approximate uncertainty
estimates from the MINUIT are 0.4 for R,, 0.13 for M, and below 10~2 for rest of the para-
meters.

M, rp’ Il/'la1 Mo' Ga’ F FV FA Bp L ﬁa Yo 50 Ra

min |0.767 |1.350{0.3000.990 | 0.400 | 0.400 | 0.088 |0.110|0.100 |-0.370| -10 | -10 | -10 | -10 | -10

max |0.780 [1.500{0.500|1.250|0.550 | 0.700 | 0.094 | 0.250 |0.200 |-0.170| 10 10 10 10 10

fit |0.772 1.350)0.448|1.092 | 0.488 | 0.700 | 0.091 | 0.169 |0.131 |-0.318|-8.796|9.764 | 1.264 | 0.657 |1.867

Since the focus of this paper is on the technical aspects of this project, we refer
the reader to [10] for physics-related results. Instead, we will focus on performance
results and validation process of the fitting framework in this section.

4.2. Performance

Improvements to the fitting framework reduced computation time drastically. On
a single 2.8GHz core with all approximations in place, a single iteration takes about
one minute to complete. This computation time scales linearly with amount of cores
used for computation, up to 24 cores; in this case, it takes about 3 seconds to compute
one iteration.

As shown in Figure 8, 24 cores is the limit for which the time gain is the highest
for a single master program. However, during performance tests, an algorithm for
sending multiple tasks at once was used. A pre-calculated polynomial was used to
estimate the time required for each task to complete, creating groups of tasks with
balanced computation time. On 64 cores, such an algorithm took less than a second to
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complete a single iteration. Preliminary results were available in 2.5 hours. However,
its use turned out to be impractical, as one 64-core job waited far longer in the
computing cluster queue than three 24-core jobs.

The precise computation of the width of the a; resonance increases computation
time by a factor of two. This reduces the x? only by about 10%. In the final steps,
we removed the approximation of using only the value at the bin center and replaced
it with the correct treatment, where we integrate over the bin width. This makes the
x? smaller by another 5-6% at a cost of 3 to 5 times slower computation. When both
options are included and fits are performed from the point calculated without these
improvements, the x? is reduced yet again by 5% to 6%. Ultimately, the final result on
24-core machine takes 2 to 3 days to complete, as compared to two weeks on a 32-core
machine for a Monte-Carlo approach.

100 E| Average Preliminary

] No. | time per results
o z ] nodes | iteration computation
= ] 1 60s 160h
.3 g 2 34s 91h
o © 10 E 4 17s 45h
23 \_‘-_‘ 8 8 21h
ST 16 ss 13h
< g 1 24 3s 8h
1 32 3.2s 8.5h

1 . . . . . 64 3.4s %h

1 2 4 8 16 24 32 64
No. computing nodes

Figure 8. Scalability of the parallel distribution method using one message queue, one master

program and sending one task per message. Above 24 cores, there is no improvement observed

as the communication between computing nodes and master program starts domination over
the computation time gain.

The ability to obtain preliminary results within one day and to produce precise
results within three days gave us an opportunity to test a number of different fitting
strategies and to thoroughly validate our approach. This also allowed us to perform
advanced systematics studies in a reasonable time frame.

4.3. Validating the results

Having an efficient fitting framework at our disposal, we could dedicate more time to
the validation process, which is a crucial step in the fitting process. Our validation
process consisted of asserting statistical errors and correlation coefficients between
the parameters, verifying that the result we have found is a global minimum and
performing studies of the systematics errors.

4.3.1. Statistical errors and correlations

The analysis of statistical error and correlations between parameters was done using
the HESSE algorithm from the MINUIT package, which simply calculates the full matrix
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of 2nd derivatives and inverts it. The results show strong correlations between four
parameters of the model indicating that the model has more free parameters than
can be determined by the data. This is something that could have been expected and
this issue was addressed in more details in [10].

4.3.2. Convergence of the fitting procedure

The purpose of the convergence test is to verify how the fitting procedure behaves
when starting from different points. This test helps to verify that the minimum found
by the fitting procedure is, in fact, a global minimum. It was done in the following
steps:

e Random scan of parameters space. Since precision was of a lesser concern at
this step, we have used all available approximations yielding a sample of 12,000
distinct parameter sets per hour using 240 cores.

e Having gathered more than 200k samples, we began searching for any patterns
that could help us narrow down the region in parameter space where there is
a larger chance of finding a global minimum.

e We choose a 1k sample of distributions for distinct parameter sets with the lowest
x? and choose 20 points from this parameter sets in a way that maximized the
distance between these points.

e We perform fits to the data using these 20 configurations as starting point for
the independent fits.

The results have shown that more than 50% of the fits converge to the minimum
shown as our final result. In other cases, either the minimization process fails due to
the number of parameters being at their limit, or they converge to a local minima of
distinguishably higher x? (by a factor of 10 or more). This indicates that our model
has several local minima. At the same time, it points out that there is a good chance
of our result being a global minimum.

4.3.3. Systematic uncertainties

We have estimated the systematic uncertainties using toy MC studies. Every toy
MC sample has been generated under the Gaussian assumption using the Cholesky
decomposition on systematic covariance matrix provided by the BaBar experiment
to include the correlations between bins of the data histograms. The fit was re-run
for one hundred samples to estimate the systematic uncertainties. It took less than
a week using 320 cores to complete this step (which would be near to impossible to
complete using MC approach).

5. Summary and outlook

We have presented a fitting strategy used for comparing RyxL currents for 7 —
7w~ w v, with experimental data. The resulting improvements to the 7 decays MC
generator TAUOLA are installed in the LHC Computing Grid applications database [20].
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We have presented two methods; one based on an MC simulation and the other based
on semi-analytical distributions. While the first approach is significantly slower, it
can be used in cases where analytic solutions are not available, such as presence of
experimental cuts in data on multi-dimensional distributions.

We have presented improvements both to the theoretical model and to the fitting
framework that significantly reduce computation time: from 2 weeks for the MC-
based method to 2-3 days for method based on semi-analytic distributions. We have
presented approximations introduced to the computations that allowed us to compute
preliminary results within 8 hours. We have also introduced a scalable parallelization
algorithm based on basic Inter-Process Communication methods of UNIX operating
systems.

In the future, we are planning to use this framework to test the model against 2-
dimensional data for 7 — 7~ 7w~ 7 v, and for fits of 7 — K~ 7~ KT, decay channel.
Fits for other decay modes will follow. As a final step of our work, we are planning to
complete a model-independent fitting framework incorporating strategies presented
in this paper with the ability to expand its application to multi-dimensional data and
new fitting strategies.
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