COMPUTER SCIENCE e 14 (1) 2013 http://dx.doi.org/10.7494/csci.2013.14.1.113

RAFAL FRACZEK
Bogustaw CYGANEK
KaAazIMIERZ WIATR

PARALLELIZED ALGORITHMS
FOR FINDING SIMILAR IMAGES
AND OBJECT RECOGNITION

Abstract | The paper addresses the issue of searching for similar images and objects in
a repository of information. The contained images are annotated with the help
of the sparse descriptors. In the presented research, different color and edge
histogram descriptors were used. To measure similarities among images, various
color descriptors are compared. For this purpose different distance measures
were employed. In order to decrease execution time, several code optimization
and parallelization methods are proposed. Results of these experiments, as well
as discussion of the advantages and limitations of different combinations of
methods are presented.

Keywords | color descriptors, code optimization, parallelization, OpenMP

113

114 Rafat Fraczek, Bogustaw Cyganek, Kazimierz Wiatr

The problem of finding similar images or objects in them is important because as
it turns out, many applications in industry, entertainment and digital library require
access and query of image data sets. This access can be performed using a text based
queries (e.g. find images with a given tag). Another possibility is to access the image
database using a reference image. In this approach, the user may want to find an
image that is the same or similar in some way to the reference image (QbE — Query
by Example). Another possibility in this scenario is that a user wants to find all
images containing a specified object (e. g. a car, a building, etc.). This type of systems
are based, in most cases, on features extracted from the media. Sets of features are
generally referred to as “descriptors” and their instances are called “descriptor values”.
The descriptor values are the meta-data of the media.

Over the past years, several methods of Query by Example have been presented.
For instance, the VICTORY project [14] is a good example of advanced research in
the area of QbE — in this case focusing on searching for 3D objects. Another example
of a system for images retrieval is a program called Picture Finder [9] which is a fast
image retrieval library software for image-to-image matching. Similarity is measured
based on spatial distribution of color and texture features. It is especially optimized
for fast matching within large data-sets.

In the case of objects recognition, several methods have been proposed so far.
Most of them are based on the concept of “points of interest” which was introduced by
Moravec [17]. Lowe [13] has proposed a method named SIFT (Scale Invariant Feature
Transform) which is based on selecting stable features in the scale space domain.
Alhwarin et al. [1] have proposed a method for efficient SIFT features matching which
is based on determining the scale factor of the target object in the test and reference
image. Duchenne and Bach [4] have proposed a tensor-based algorithm for SIFT
features matching. The method uses tensors to solve the high-order feature matching
problem.

In [5] we present our previous solution for finding similar images. The method
described in this paper is an extension to the previous one. The difference lies in em-
ploying new image descriptors, adding the possibility of finding objects in images and
application of several optimization and parallelization techniques using the OpenMP
[3] standard.

1. Goals of our research

Our work is focused on both finding similar images and particular objects in the
whole scene depicted in an image. When developing a system for accomplishing this
goal, a question arises: which descriptors and which distance measures should be
applied for the fast and most accurate results. We address this question as well and
try to discuss results of our research in the area of QbE. We examine several color
descriptors, especially most common variants of the SIF'T descriptor as well as mpeg-7
[16] descriptors.

Parallelized algorithms for finding similar images (...) 115

Another aspect of content based images retrieval is choice of the most appropriate
distance (similarity) measure [6] [20]. This is a big challenge in the case of SIFT
descriptor because it is composed of variable number of key points with assigned
feature vectors. This representation enforces non-trivial approaches for descriptors
matching. To address this problem, two possible methods of similarity measure for
SIFT descriptors were examined.

Other very important aspect is the effectiveness of the applied algorithms in terms
of execution time. As it turns out, the procedure of computing and matching STFT
features can take long time and therefore it is necessary to optimize its performance
using some techniques of code optimization and parallelization.

2. Brief description of the algorithm

Image features extraction and classification

The SIFT algorithm was originally proposed by David G. Lowe. It is a method
for extracting distinctive and invariant features form images. The descriptor has been
successfully used in a variety of computer vision problems. SIFT descriptor extracts
so called key points in an image. Each keypoint has assigned a vector of features
describing the distribution of local gradients in the nearest neighborhood of a given key
point. In short, the extraction procedure runs as follows: scale-space image filtration,
localization of the extreme points (keypoints), assigning the descriptor values to each
key point. In our research, we also use different variants of the SIFT algorithm such
as the Opponent SIFT, PCA-SIFT, etc. The difference is that they use other color
spaces for computation (e. g. OpponentSIFT).

One of the most important drawbacks of the SIFT descriptor is its high dimen-
sional feature space. One of the possible solutions is the application of the Principal
Component Analysis [11]. PCA is most widely used method for dimensionality re-
duction. PCA has also been successfully applied in many various image processing
problems including object recognition [18] or features selection [7]. Although PCA is
based on the assumption of Gaussian distributions, it is shown [21] that this method
is well-suited to representing SIFT keypoints patches and can significantly improve
SIFT matching performance in some cases.

We also use two descriptors that belong to the mpeg-7 standard. The Edge Hi-
stogram [15] descriptor computes the spacial distribution of all edges in the image.
The descriptor is represented by a vector of 80 values. In turn, Dominant Color is
a compact descriptor that calculates representative colors and their percentages. The
extraction procedure is based on the Generalized Lloyd Algorithm (GLA) [8].

If we want to compare two images, we need to compute a distance between two
descriptors. In the reported experiments we have employed and tested two approaches
for calculating the distance between two SIFT descriptors. Simple Graph Matching
(SGM) consists in searching the best matches for each feature vector in the query
image. In the case of mpeg-7 descriptors, the appropriate metrics [2][22] described in
the literature were used.

116 Rafat Fraczek, Bogustaw Cyganek, Kazimierz Wiatr

Table 1
Computation of similarity metric.

reference keypoints ‘ similar distribution different distribution
3
.
2 2 3
2 ABZI d
3
. o4 . 4By
1 0y) 4
. 5
1
L] L]
5 4 s 1

Topology measure

In order to make object recognition less sensitive to keypoints mismatching, we
propose to add a special simple measure that tells how much two sets of matched
keypoints are similar in terms of their spatial distribution. The basic idea here is that
if two points P;; and Pjo of image 1 are matched to points P and Pso of image 2,
then the geometric relation between P;; and Pjs and the one between Psp and Pog
should be similar. The main idea of our proposition is explained in the Table 1.

The procedure for calculating the similarity measure is as follows. Some keypoints
from the reference set are matched with some keypoints in the current image. This
way two subsets are obtained. Each keypoint in the A subset has assigned a keypoint
in the B subset. Matched keypoints are denoted with the same index in the table.
The mass center is computed for each of the two subsets. As it is shown in the table,
for two subsequent keypoints, vectors originating in the mass center are computed.
Then the angle (Acq;j;) between this two vectors is calculated. The same procedure
is also applied to the subset in the current image resulting in the angle Ag;;. If the
spatial distribution of keypoints in the subsets A is the same or similar to the spa-
tial distribution in the subset B, then the difference between angles Aa;; and Ag;;
will be very small. Therefore the total similarity measure is proposed, as denoted in
equation 1. The S measure is near 1.0 if two subsets are similar in terms of spatial
keypoints distribution and near 0 if the spatial distributions are significantly different.
The proposed similarity measure is translation, rotation and scale invariant.

N—
1
§= T 9N Z: [[Aci ;1| — |AB; i1l (1)

Code optimizations
Parallelization

In order to boost the code performance in terms of execution speed, some im-
plementation enhancements have been applied. The first possible optimization is to

Parallelized algorithms for finding similar images (...) 117

introduce some improvements that will increase both spatial and time locality. These
changes make it possible for the processor to fully utilize the cache memory resulting
in lower data access latencies. The second possible enhancement is the introduction
of parallelism in order to fully utilize modern multi-core processors. The goal of the
parallelization is to transform some parts of the sequential code into a new structure
that makes it possible to execute computations in parallel on multi-core processors
or systems. This goal can be achieved by employing all extensions provided by the
OpenMP library which makes it easy to parallelize time-consuming loops. In our
work, we have used an advanced hyperplane method [19, 12] that utilizes possible
dependencies among nested loops. In general, the transformation from the sequential
code to the parallel one is not always an easy task and can also be time-consuming.
Below, we briefly present two techniques that have been applied in our code in order
to increase its performance.

Hyperplane method

One of the possible strategies for code parallelization (especially for loops) is to
use so called hyperplane method. The key idea is to find a subset of all iterations that
can be executed in the same time.

The dependency vector between two iterations I = [i1,da,...,i,|7 and J =
[71, 725 -+, jn)T is defined as D = J — I = [j; — i1, ja — G2, .-, jn —in) . One iteration
depends on the other if the two iterations refer to the same memory address and
one of the reference is a write operation. If D is lexicographically greater than a zero
vector (D > 0) then iterations I and J satisfy the lexicographical order I > J.

In an n-dimensional space, a hyperplane is defined as a set of tuples:

{(z1,22,...,2n) | 121 + G222 + ... + quan} (2)

where ¢1,q2, ..., q, are called hyperplane coefficients and k is a hyperplane constant.
Both ¢; and k are rational numbers. A vector ¢ = (q1,¢2, - - -, ¢) defines a hyperplane
family. Each hyperplane belonging to this family has the same hyperplane vector but
different k value. For instance, in a two-dimensional space, a vector ¢ = (1,0) defines
a hyperplane family where two points belong to the same hyperplane as long as they
have the same row index (column index does not matter).

Two points a; and ay belong to the same hyperplane if

¢ a1 =q"as (3)
If ¢D > 0 then all iterations I such that g/ = t belong to the same hyperplane and
therefore can be executed in parallel.

Barrier optimization

Another transformation that has been applied was barrier optimization. Since
it is shown [10] that barriers are critical to the performance of OpenMP programs,
it is necessary to remove redundant barriers wherever possible. Barriers can prevent
programs from getting maximum speed-up even if the parallel code covering is above
90%. Some possible strategies for removing redundant barriers include: synchronizing

118 Rafat Fraczek, Bogustaw Cyganek, Kazimierz Wiatr

only related threads, privatizing some variables in order to reduce the number of
barriers, eliminating redundancy barriers, data-flow analysis and data dependence test
to implement “doacross” parallelism. If there is no data dependence across the barrier,
it is considered redundant. A dependency occurs when a program instruction refers to
the data of a preceding statement. To determine whether there is such a dependency
or not, a test can be performed. The idea is to tell whether there exists a solution to
a set of dependency equations and inequities. For instance, let us consider a code in
the Table 2.

Table 2
Code sample.

#pragma omp parallel

#pragma omp for

for (j=0;j<M;j++) vec{[}2{*}j{1}=...;
#pragma omp for

for(j=0;j<M;j++) vec{[}2{*}j+1{1}=...;

If there exists a data dependence between the implicit barrier after the first “for”
loop, then there exist an j; in the first loop and js in the second one that will satisfy
the following equality and inequality.

2:1=2-50+1, 0<ji1 <M 0<jo<M (4)

Since, there is no such two j; and jo that satisfy this equation, then there is no data
dependency between these two loops and the barrier can be safely removed.

3. Experiments

Image features

In order to determine which descriptors and which distances are most suitable for
finding similar images, we have conducted an experiment which goal was to measure
the number of correctly identified similar images. First, the database was created. It
consists of 2400 test images downloaded from the Flickr website with the accompa-
nying user-generated keywords. All images in the database were randomly divided
into two semantic categories, for example: cars, offices, flowers, scenery, sunset and
cell phone. Each category is comprised of 400 images. We do not split the data-set
into training and test subsets because we do not use classifiers that need separate
training process. The result of searching the similar image is considered correct if
the most similar image belongs to the same semantic category as the reference one.
For tests, Edge Histogram (EHD), Dominant Color (DCD), SIFT, PCA-SIFT, Op-
ponentSIFT descriptors were used. In the case of mpeg-7 descriptors (EHD, DCD),
standard distance measures defined in literature are used. For SIFT and Opoppo-
nentSIFT, we use features matching that consists in finding the best match which
runs as follows. Suppose we have the first SIFT descriptor of N key points and the

Parallelized algorithms for finding similar images (...) 119

second SIFT descriptor of M key points. The distance between these two descriptors
is calculated in the following way. For each feature vector in the first descriptor the
nearest (D7) and the second nearest (Ds) feature vectors in the second descriptor
are found. The distance between two feature vector is computed as the Euclidean
distance. If D1 /D5 is greater that the optimal Lowe threshold then this match is ac-
ceptable. Otherwise, it is ambiguously matched and rejected as a correspondence. We
assume the Lowe threshold to be equal to 0.6 which is the recommend value in [13].
If the match is acceptable, then the Euclidean distance between two feature vectors
is added to the global distance between two images (descriptors). To ensure that the
calculated distance has symmetric property (d(x,a) = d(a,x)), all feature vectors in
the second descriptor are matched in the same way to feature vectors in the first de-
scriptor. Finally, the global distance between descriptors is normalized by the number
of matches.

In the case of PCA-SIFT, high-dimensional vectors are projected onto low-
dimensional feature space. This projection is encoded as a patch eigenspace. In our
experiments we use the eigenspace that is provided in [21]. This eigenspace was con-
structed in the following way. The first three stages of the SIFT algorithm are run
on a diverse collection of images. This results in 21000 patches of 41x41 size. Each
patch is centered at a key-point and the horizontal and vertical gradient maps are
extracted. The feature vector is created by concatenating gradient maps and is com-
posed of 2 -39 -39 = 3042 elements. Finally, PCA is applied to the covariance matrix
of these vectors. The top n = 20 eigenvectors are saved in a file and are used for the
projection matrix for PCA-SIFT.

For evaluation purposes, we compute F-measure which is given by F = 2 -
(precision - recall) / (precision + recall). These metrics are defined as follows: recall =
tp/(tp + fn), precision = tp/(tp + fp), where tp stands for “true positive”, fn means
“false negative” and fp is “false positive”.

Table 3
Results for similar images searching.

descriptor F-measure Execution time
EdgeHistogram 0.82 23%
OpponentSIFT 0.80 91%
PCA-SIFT 0.80 100%
C-SIFT 0.77 91%
SIFT 0.76 91%
Dominant Color 0.60 63%

The goal of the next experiment was to check the effectiveness of our methods
for finding specific objects in a set of images. In this experiment we use standard
SIFT, Opponent SIFT and PCA-SIFT descriptors. We do not use mpeg-7 descrip-
tors because they are not suitable for object recognition. We have taken 20 images

120 Rafat Fraczek, Bogustaw Cyganek, Kazimierz Wiatr

of different reference objects. For each object the corresponding reference SIFT fe-
atures are computed. Then, another set of test images (500 items) with and without
reference objects was taken and SIFT features were computed for all items in the
set. Reference features are matched to the features associated with each test image.
The matching procedure is the same as in the case of finding similar images. After
the keypoints are matched, the spatial distribution similarity metric (1) is computed.
After searching procedure, all test images are sorted in descending order against this
metric. As a result, the image with the best match is at the top of all results. If
the best match contains the reference object, the results is considered correct (true
positive). If the best match does not contain the object, the result is false positive.
In a few cases, it may happen that the best match contains the object but the SIFT
features are not matched correctly. This happens when an image contains the object
that is partially obscured or significantly transformed with an affine transform. This
situation is considered false negative.

Figure 1. Example of finding an object in an image.

Table 4
Results for object recognition.

descriptor F-measure Execution time
PCA-SIFT 0.68 100%
OpponentSIFT 0.52 91%
SIFT 0.51 91%

Code optimization and parallelization

In order to properly use parallelization techniques, it is necessary to apply them
to these parts of code which are computationally ineffective. For this purpose, our
code was examined with profilers. These portions of the source code were parallelized
with the hyperplane method. It turns out that one of the most time consuming opera-
tion is the computation of distances between feature vectors in both images. All tests
were executed on the AMD FX-8120 X8 at 3.1 GHz with 8 MB KB L2 cache. The ope-

Parallelized algorithms for finding similar images (...) 121

rating system was Linux Ubuntu with GCC 4.6.1 compiler. All developed software is
implemented in C++ and compiled with maximum level of performance optimization
(including usage of SIMD instructions). Below, a code snippet is presented.

Table 5
Original sequential code.

for (unsigned int i=0; i<argl->PointsCount; i++)

{for (unsigned int j=0; j<arg2->PointsCount; j++)

{unsigned char {*} __restrict__ irow=(argl->features)+i{*}ncol;
unsigned char {*} __restrict__ jrow=(arg2->features)+j{*}ncol;
unsigned long local_dist=0;
for (unsigned int k=0; k<argl->FeaturesCount/3; k+=4)

{int v=(int) ({*}(irow++)); int u=(int) ({*}(jrow++));
int v1=(int) ({*}(irow++)); int ul=(int) ({*}(jrow++));
int v2=(int) ({*}(irow++)); int u2=(int) ({*}(jrow++));
int v3=(int) ({*}(irow++)); int u3=(int) ({*}(jrow++));
local_dist+=((u-v){*}(u-v)+(ul-v1) {*x}(ul-vi))+
+((u2-v2) {*} (u2-v2) +(u3-v3) {*} (u3-v3)) ; }}}

The code presented in table computes the total distance between two sets of
SIFT features. It consist of three nested “for” loops. The code has been parallelized
with the hyperplane method. In our experiments we have used two possible versions
of loop parallel code after the sequential loop transformation.

Table 6
Parallelized code with k.

#pragma omp parallel private(i,j) shared (argl,arg2)

for (unsigned int i=0; i<argil->PointsCount; i++)

{for (unsigned int j=0; j<arg2->PointsCount; j++)

{unsigned char {*} __restrict__ irow=(argl->features)+i{*}ncol;
unsigned char {*} __restrict__ jrow=(arg2->features)+j{*}ncol;
unsigned long local_dist=0;

#pragma omp for schedule(runtime)

for (unsigned int k=0; k<argl->FeaturesCount/3; k+=4)

{int v=(int) ({#}(irow++)); int u=(int) ({*}(jrow++));
int vi=(int) ({*}(irow++)); int ul=(int) ({*}(jrow++));
int v2=(int) ({*}(irow++)); int u2=(int) ({*}(jrow++));
int v3=(int) ({*}(irow++));
int u3=(int) ({*}(jrow++));
local_dist+=((u-v){*}(u-v)+(ul-v1) {*}(ul-v1))+
+((u2-v2) {*} (u2-v2) +(u3-v3) {*} (u3-v3)); }}}

We have measured both speedup (T'(1)/T(n)) and parallelization efficiency
(T(1)/(nT(n)) where T'(1) is the execution time on one thread and T'(n) is the exe-
cution time on n threads.

The next test was to measure the impact on the computation time the existence
of implicit barriers. For all parallelized loops, the data dependency test was performed

122 Rafat Fraczek, Bogustaw Cyganek, Kazimierz Wiatr

Table 7
Parallelized code with j.

#pragma omp parallel private (i,k) shared (argl,arg2,j)

for (unsigned int i=0; i<argl->PointsCount; i++)

{#pragma omp for shedule(runtime)

for (unsigned int j=0; j<arg2->PointsCount; j++)

{unsigned char {*} __restrict__ irow=(argl->features)+i{*}ncol;
unsigned char {*} __restrict__ jrow=(arg2->features)+j{*}ncol;
unsigned long local_dist=0;

for (unsigned int k=0; k<argl->FeaturesCount/3; k+=4)

{int v=(int) ({*}(irow++)); int u=(int) ({*}(jrow++));
int vi=(int) ({*}(irow++)); int ul=(int) ({*}(jrow++));
int v2=(int) ({*}(irow++)); int u2=(int) ({*}(jrow++));
int v3=(int) ({*}(irow++));
int u3=(int) ({*}(jrow++));
local_dist+=((u-v) {*}(u-v)+(ui-vi){*}(ul-v1))+
+((u2-v2) {*} (u2-v2) +(u3-v3) {*} (u3-v3)) ;}}}

—— speedup —&— efficiency

ORFRr NWhKUION©

1 2 3 4 5 6 7 8

Number of threads

Figure 2. Results for code parallelization.

and barriers were removed in all possible cases. Our code for computing SIFT features
and distances was optimized in this way. The results for 8 threads are shown in figure.
The speedup of 20% and efficiency of 0.15 are relatively low because in the tested code
there are not so many barriers so their overall impact is not very significant.

In our original code, we have used two different arrays for storing SIFT features.
In order to improve spatial locality we use a technique called array merging. The
idea is to sort contiguously in memory all values that are accessed in subsequent loop
iteration. This is achieved by defining a struct that contains all values for each point.
When the cache retrieves the cache block containing the x valuer for point i, it will
automatically prefetch the y value for that point and probably values for the several
next points depending on the cache line size. Our code before and after modification
is shown in tables and.

For now, our code exhibits some temporal locality. This is achieved by keeping
the j index constant on the inner loop which results in each j — th element being

Parallelized algorithms for finding similar images (...) 123

2,5

15

[u

execution time [s]

0,5

before after

Figure 3. Results for barrier optimization.

Table 8
Original unoptimized code.

for (j=0;j<N;j++)

for (i=0;i<N;i++)
{sx+=abs(x[j]1-x[i]);
sy+=abs(y[j1-y[i]1);};

Table 9
Optimized code with array merging.

struct SiftData{int x,y;}

SiftData SIFT[N];

for (j=0;j<N;j++)

for (i=0;i<N;i++)

{sx+=abs(SIFT[j].x-SIFT[i].x);
sy+=abs (SIFT[j].y-SIFT[il.y);};

repeatedly reused. However, during each outer loop iteration, it cycles through all
possible 7 indexes. This results in time between subsequent uses of the same data
being long. A solution is to group a small portion of input data together in small
blocks that will easily fit in the fastest level of cache.

data X, A X, Y,

block 1 block 2

Figure 4. Blocking.

After applying all optimizations described in previous sections, the overall per-
formance test was carried out. Figure shows averaged results achieved on the AMD

124 Rafat Fraczek, Bogustaw Cyganek, Kazimierz Wiatr

Table 10
Optimized code with blocking and array merging.

for (k=0;k+2{*}blocksize<N;k+=blocksize)
for (l=a+blocksize;l+blocksize<N;l+=blocksize)
for (i=k;i<k+blocksize;i++)
for (j=1;j<l+blocksize;j++)
{sx+=abs (SIFT{[}j{]1}.x-SIFT{[}i{]l}.x);
sy+=abs (SIFT{[}j{1}.y-SIFT{[}i{1}.y);}

Table 11
Results for different optimizations.

Applied optimizations Execution time
without blocking and array 100%
merging

with array merging only 69%

with blocking and array mer- 61%

ging

FX-8120 X8 at 3.1 GHz with 8 MB KB L2 cache. The experiment was carried out
using 8 threads. The overall speedup is 4.7 with parallelization efficiency 0.59.

3
2,5
2
15
1
0,5

execution time [s]

OFF ON

0

B S|IFT ™ Graph matching Classification

Figure 5. Execution time with and without optimizations.

4. Results analysis

Tables and contain averaged results. The F-measure has been used in order to ana-
lyze the performance of the descriptors. The best results in similar image searching
were obtained using the Edge Histogram, OpponentSIFT and PCA-SIFT descriptors.
OpponentSIFT, C-SIFT and PCA-SIFT tend to outperform the standard SIFT. The
reason is that C-SIFT and OpponentSIFT are invariant to some image features (e.g.
lightness). In our experiments PCA-SIFT turned out to be slightly more accurate that

Parallelized algorithms for finding similar images (...) 125

the standard SIFT descriptor. Edge Histogram achieves slightly better performance
than the SIFT descriptors. The downside of all SIFT variants is that they are much
more computationally expensive that the Edge Histogram. Dominant Color is cha-
racterized by the poorest performance because this descriptor extracts only dominant
colors without their spatial distribution. Although, the Dominant Color yields poor
results on its own, it can be used in the planned development as a part of the hybrid
method which is supposed to combine information extracted by various descriptors.
In the case of finding objects in images, PCA-SIFT significantly outperformed other
SIFT descriptors. This confirms that the generalization step (PCA) leads to more
accurate features matching. Our results are not compared to those obtained by other
authors because we use different methodology in our experiments. For example, we
consider two images similar if the belong to the same semantic category while other
authors do not use such an assumption.

Applied code optimizations show that rearranging data layout in memory can
yield significant performance increase. Especially array merging turns out to be very
effective way of optimizing code performance. Employing hyperplane method com-
bined with removal of redundant barriers makes it possible to achieve further code
execution acceleration due to utilization of multi-core processors.

5. Conclusions

The paper addresses the issue of finding objects and similar images using different
sparse image descriptors. At the beginning the color and edge descriptors used for
features extraction as well as the methods of their comparison were briefly described.
The goal was to determine the best algorithms as well as to select the ones especially
pertinent for hardware acceleration. Finally, the description of the test and results
are presented.

The obtained results indicate that Edge Histogram, PCA-SIFT and Opponent-
SIFT descriptors are the most effective for selecting the similar images. In comparison
to our previous results in [5], Edge Histogram has confirmed its high robustness for
similar images finding. OpponentSIFT has also confirmed that its effectiveness is
comparable to the one achieved with Edge Histogram.

The further work will be focused on implementing and testing the hybrid descrip-
tor as well as hardware implementation of the SIFT descriptors. The hybrid method
will aggregate information from different descriptors (e. g. OpponentSIFT, Dominant
Color etc.) and meta-data (especially keywords). Another aspect of the further de-
velopment will include employing the hardware acceleration using modern graphics
cards.

Acknowledgements

This research was supported from the Polish funds for scientific research in the years
2010/2011 under the Synat project.

126 Rafat Fraczek, Bogustaw Cyganek, Kazimierz Wiatr

References

[1] Alhwarin F.: Improved sift-features matching for object recognition. In BCS
International Academic Conferenc, pp. 179-190, 2008.

[2] Chee S., Dong K., Soo-Jun P.: Efficient use of mpeg-7 edge histogram descriptor.
ETRI Journal, 24(1), 2002.

[3] Cyganek B.: Adding parallelism to the hybrid image processing library in multi-
threading and multi-core systems. In IEEE 2nd International Conference on
Networked Embedded Systems for Enterprise Applications, pp. 1-8, 2011.

[4] Duchenne O., Bach F.: A tensor-based algorithm for high-order graph matching.
IEEFE Transactions On Pattern Analysis and Machine Intelligence, 33(12), 2011.

[5] Fraczek R., Cyganek B.: Evaluation of image descriptors for retrieval of similar
images. Intelligent Tools for Building a Scientific Information Platform Studies
in Computational Intelligence, 390:217-226, 2012.

[6] Fraczek R., Grega M., Liebau N., Leszczuk M., Luedtke A., Janowski L., Papir Z.:
Ground-truth-less comparison of selected content-based image retrieval measures.
Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, 40:101-108, 2010.

[7] Fukunaga K., Koontz W.: Application of the karhunen-loeve expansion to feature
selection and ordering. IEEE Trans. Communications, 19(4), 1970.

[8] Gersho A., Gray R.: Vector Quantization and Signal Compression. Kluwer Aca-
demic Publishers, 1992.

[9] Hermes T., Miene A., Herzog O.: Graphical search for images by picture-finder.
Multimedia Tools and Applications, Special Issue on Multimedia Retrieval Algo-
rithmics, 2005.

[10] Huang C., Yang X.: Performance analysis and improvement of openmp on so-
ftware distributed shared memory system. In EWOMP 03, 2003.

[11] Joliffe I. T.: Principal Component Analysis. Springer-Verlag, 1986.

[12] Kandemir M., Choudhary A., et al.: A data layout optimization technique based
on hyperplanes. Center for Parallel and Distributed Computing, 1997.

[13] Lowe D. G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Visions, 60(2):91-110, 2004.

[14] Mademlis A., Daras P., Tzovaras D., Strintzis M. G.: 3d volume watermarking
using 3d krawtchouk moments. International Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, 2007.

[15] Manjunath B., Salembier P., Sikora T.: Introduction to MPEG-7: Multimedia
Content Description Interface. John Wiley and Sons Ltd., 2002.

[16] Martinez J., Koenen R., Pereira F.: Mpeg-7: the generic multimedia content
description standard. IEEE Multimedia, 9(2):78-87, 2002.

[17] Moravec H. P.: Towards automatic visual obstacle avoidance. In Proc. of the 5th
International Joint Conference on Artificial Intelligence, p. 584, 1977.

Parallelized algorithms for finding similar images (...) 127

[18] Murase H., Nayar S.: Detection of 3d objects in cluttered scenes using hierarchical
eigenspace. Pattern Recognition Letters, 18(4), 1997.

[19] Poliwoda M.: Automatically loops parallelized, efficiency of parallelized code.
PAK, 54(8), 2008.

[20] similar images finder.: smartimagedenoiser.com/download. online.

[21] Yan K., Sukthankar R.: Pca-sift: A more distinctive representation for local
image descriptors. In Proc. of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 2, pp. 506-513, 2004.

[22] Yang N.C., Kuo C.M., Chang W.H., Lee T.H.: A fast method for dominant
color descriptor with new similarity measurer. Journal of Visual Communication
and Image Representation, 19(2):92-105, 2008.

Affiliations

Rafal Fraczek
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, rafalfr@agh.edu.pl

Bogustaw Cyganek
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, cyganek@agh.edu.pl

Kazimierz Wiatr
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Krakow, Poland, wiatr@agh.edu.pl

Received: 30.07.2012
Revised: 3.10.2012
Accepted: 3.12.2012

