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COMPARISON OF INCOMPLETE DATA
HANDLING TECHNIQUES
FOR NEURO-FUZZY SYSTEMS

Real-life data sets sometimes miss some values. The incomplete data needs
specialized algorithms or preprocessing that allows the use of the algorithms
for complete data. The paper presents a comparison of various techniques for
handling incomplete data in the neuro-fuzzy system ANNBFIS. The crucial
procedure in the creation of a fuzzy model for the neuro-fuzzy system is the
partition of the input domain. The most popular approach (also used in the
ANNBEFIS) is clustering. The analyzed approaches for clustering incomplete
data are: preprocessing (marginalization and imputation) and specialized clu-
stering algorithms (PDS, IFCM, OCS, NPS). The objective of our research is
the comparison of the preprocessing techniques and specialized clustering al-
gorithms to find the the most-advantageous technique for handling incomplete
data with a neuro-fuzzy system. This approach is also the indirect validation
of clustering.

incomplete data, marginalization, imputation, neuro-fuzzy system, ANNBFIS,
PDS, IFCM, OCS, NPS
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1. Introduction

Real-life data sets sometimes miss certain values. This may be the result of an impro-
per acquisition of data, the failure of detectors, the reluctance to answer questions in
a questionnaire, etc.

This incomplete data needs specialized algorithms or preprocessing that allows
the use of the algorithms for complete data. The preprocessing techniques enumerate
two classes:

1. marginalization — deletion of incomplete data items or deletion of incomplete
attributes;

2. imputation — substitution of missing values with some values (constant, average,
median, etc.).

In this paper, we focus on the analysis of incomplete data with neuro-fuzzy
systems. The core of the neuro-fuzzy system is the fuzzy-rule base composed of fuzzy
implications. There are three main techniques of automatic creation of the fuzzy-rule
base for neuro-fuzzy systems. These are:

e grid partition — the oldest approach, the input domain is split into hyperrectan-

gular grid, vulnerable to number of dimensions [12];

e scatter partition (clustering) — the most popular technique, may leave some re-

gions uncovered by any rule [6]

e hierarchical partition — the latest method, has advantages of grid and scatter

partitions but avoids their faults [19, 20, 25, 26].

The objective of our research is the comparison of the preprocessing techniques
and specialized clustering algorithms to find the most-advantageous technique for
handling incomplete data with a neuro-fuzzy system. In our experiments, we use the
ANNBEFIS neuro-fuzzy system [6]. This system uses clustering for partitioning input
domain. We analyze the generalization ability of the systems created with various
techniques of incomplete-data handling. This approach is also the indirect validation
of clustering, because the partition of the domain is crucial for neuro-fuzzy systems.
Many indices of clustering quality exist [35, 21, 2, 6, 17], but they do not always
reflect practical applications. Our approach can be treated as some practical indirect
validation of clustering algorithms.

The paper is organized in the following way: Sec. 2 discusses the methods of
incomplete data handling (preprocessing and specialized algorithms). Sec. 3 shortly
introduces the ANNBFIS neuro-fuzzy system. Sec. 4 describes the experiments and
their results. And finally Sec. 5 sums up the paper.

2. Clustering of incomplete data

Clustering of incomplete data can be divided into two paradigms:
e preprocessing of incomplete data and application of algorithms for complete data,
e specialized algorithms for incomplete data.
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2.1. Preprocessing

Preprocessing is a common technique for handling incomplete data with algorithms
that have proven to be efficient for the complete data [10]. There are two essential
approaches: (1) marginalization of incomplete data items, (2) imputation of missing
values with several techniques.

Both marginalization and imputation are often used due to their simplicity. Pre-
processing distorts the data: marginalization loses some information, but imputation
(on the other hand) may add non-existing or meaningless information [34].

2.1.1. Marginalization

Marginalization is the simplest method of treating incomplete data. This method
deletes incomplete objects from the data set [33, 11] or deletes incomplete attributes
from the set of attributes [4]. The latter approach reduces the dimensionality of the
data set. Marginalization may severely reduce the amount of data and deletes the
potential knowledge in the incomplete data.

2.1.2. Imputation

The missing values can be imputed with various values. The simplest way is imputa-
tion with constant values, zeros, random values, mean values (over all data set [18],
over the class of the data item [9]). The more-sophisticated techniques are nearest-
neighbor selection [36, 37], Expectation-Maximization (EM) algorithm [8] or hot-deck
[23] and cold-deck [13] techniques to avoid imputation of non-existing values.

Imputation with the average of existing values of the attribute is commonly
used. This method is very simple, but has some disadvantages. The average value
is vulnerable to outliers and may have no sense [34], or may present non-existing
values [1]. Imputation with median values is less vulnerable to outliers and imputes
the missing values with existing values. The mean time of calculation of average and
median is a linear function of data size. A popular method is imputation with values
elaborated on k nearest neighbors (kNN). Commonly average and median are used.
The disadvantage of this method is high cost of the selection of k nearest neighbors
from all data items and choosing the most advantageous value of k parameter. The
imputed values are not labeled and cannot be distinguished from the original data.
The conclusions drawn from imputed data are not always reliable enough [33].

The marginalization, imputation, and rough sets are combined and used to pre-
serve the distinction between original and imputed data items [28, 29].

2.2. Specialized clustering algorithms

Many specialized algorithms base on the fuzzy c-mean (FCM) algorithm [7]. The FCM
clustering minimizes the objective function
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with constraints
c

VkEK:Zuck, (2)

c=1

where C stands for number of clusters, K — number of objects (vectors), x =
[v1,22,...,2p]T — object (data vector) with D attributes, v = [vi,vs,...,vp|" —
cluster center and u,j, is membership values of the k-th object to the c-th cluster. The
values uc constitute the matrix U with C rows and K columns. The parameter m

commonly equals 2. The center of the c-th cluster is elaborated with the formula
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The clusters’ centers are gathered into matrix V = [vrlf, v, ... ,vg] T, thus the matrix
V has C rows, each of them representing the center of one cluster (with D attributes).

The algorithm proposed in [28, 27, 29, 30] applies rough sets to the clustering of
data with missing values. This algorithm will not be further analyzed in our paper as
it elaborates rough clusters, and ANNBFIS is not able to handle rough clusters.

2.2.1. Partial Distance Strategy
Partial Distance Strategy (PDS) [32, 11, 31] clustering algorithm uses the partial
distance. This approach is similar to FCM algorithm [7] and has two differences:
e The attribute d of center of cth cluster is calculated with formula
Zil (Uu)m 2idTid

Ved = X

Zi:l (Ucz)m Zid

where z;4 € {0,1} denotes whether the d-th attribute of i-th data item exists (1)
or not (0).
e The distance ¢ of ¢th data item from cluster ¢ is calculated with formula:

; (4)
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2.2.2. Optimal Completion Strategy

The Optimal Completion Strategy (OCS) imputes the missing values in each iteration
of clustering algorithm. The missing values are initially imputed with random values.
After the cluster centers and membership values are calculated, the missing values
are imputed in each iteration with formula
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2.2.3. Improved Fuzzy C-Means

The improved fuzzy c-means (IFCM) [32] imputes the missing values iteratively. The
clusters are elaborated with full data examples, then the missing values are imputed
with weighted mean of values of missing attributes from elaborated clusters’ centers:

c
N Zc:l UeiVed
Tig= . (7)
Zc:l Uci
The weights are the membership values of the object in question to the found clusters.

2.2.4. Nearest Prototype Strategy

The Nearest Prototype Strategy (NPS) [11] is similar to the OCS and IFCM methods.
The missing values in an object k are recalculated in each iteration, instead of applying
the formulae (6) or (7) respectively, the nearest prototype (object with all attributes)
is found and the missing values in object k are substituted with respective values of
the nearest prototype.

3. ANNBFIS neuro-fuzzy system

For the experiments we use the ANNBFIS neuro-fuzzy system [6]. We will not describe
in detail the ANNBFIS system and we will limit ourselves only to highlighting some
essential features. The ANNBFIS system is based on fuzzy rules. Each rules represents
the fuzzy implication. The premises of the rules are constituted by the fuzzy set with
Gaussian membership function. The consequences are formed with isosceles triangles.
The localization of the triangles is a function of the input parameters. This is why the
system is also called a neuro-fuzzy system with moving (parametrized) consequences
[15]. The system implements the logical interpretation of the fuzzy rules. Thus the
value of each rule is a fuzzy set. These sets are then aggregated into answer of the
system and defuzzified into crisp output.

The premises of the fuzzy rules are elaborated from the clustering of the train
data. In the original ANNBFIS the FCM algorithm [7] is used. The fuzzy rules are
represented by the fuzzy implication. In the ANNBFIS the Reichenbach implication
[22] is used although it is possible to use other implication (for details see [6]).

The ANNBFIS system is provided with mechanisms for modifying of the para-
meters to better fit the presented data. The parameters of the premises of the rules
are tuned with the gradient method. The parameters of the rule consequences are
also tuned with the gradient method with one exception: the linear coefficients for
the calculation of the localization of the consequence sets are calculated with the
pseudoinverse matrix.
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4. Experiments

The experiments were executed on three data sets:
e ‘Gas furnace’ is a popular data set describing the carbon dioxide concentration
in fumes of the gas furnace [3]. The downloaded!:? data is the base for 290 tuples
created with the template [6, 5, 14]:

y(n—1),....y(n — 4),2(n - 1),...,2(n - 6), y(n)]. (8)

The data set was split into disjunctive train and test sets with 145 data items
each.

e ‘Carbon dioxide concentration’ dataset contains real life measurements of some
air parameters in a pump deep shaft in one of the Polish coal mines [24]. The
parameters (measured in 1 minute intervals) are: COy — concentration of carbon
dioxide, Ps — atmospheric pressure, RHOs — relative humidity of the air in the
shaft, RHPs — relative humidity of the air near the pump, TOs — air tempe-
rature. The dynamic attributes (10-minute sums of the measurements: DCOo,
DPs, DRHOs, DRHPs, DTOs) are added to the tuples. The task is to predict
the concentration of the carbon dioxide in 10 minutes. The data are divided into
disjunctive train set (700 tuples) and test set (350 tuples) .

e ‘Concentration of leukocytes’ in blood is modeled with Mackey-Glass equation
[16]:

de(t)  ax(t—71)
dt 1+ (x(t—7))t0
where z is concentration of leukocytes, a = 0.2, b = 0.1 and 7 = 17 are constants.
The equation was solved with condition 2:(0) = 0.1 with Runge-Kutt method with
step k = 0.1 [14]. The data series was the base for creation of tuples with the
template

— ba(t), (9)

[z(t),z(y — 6),x(t — 12), z(t — 18),x(k + 6)] . (10)

The data were split into disjunctive train (200 tuples) and test (300 tuples) sets.

We tested two approaches: (1) preprocessing with subsequent FCM clustering
algorithm and (2) specialized clustering algorithms. In preprocessing, we used two
techniques: object marginalization and imputation (average, median, kNN average,
kNN median, constant). The preprocessed (complete) data is passed to the ANNB-
FIS system. In the second approach, the FCM clustering algorithm is substituted
with specialized algorithms (PDS, IFCM, NPS and OCS) in the ANNBFIS. In both
approaches, the ANNBFIS was started with four fuzzy rules, number of clustering
iterations: 100, number of tuning iterations: 400. Each experiment was repeated 8
times. The data sets were split into disjunctive train and test sets. The train sets
lacked 0% (complete data), 1%, 2%, 5%, 10%, 20%, and 40% of values. The data miss

Thttp://neural.cs.nthu.edu.tw/jang/benchmark/
2http://www.stat.wisc.edu/ reinsel/bjr-data/
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values completely at random. The test sets were complete and lacked no values. The
error F of the system was calculated as root mean square error (RMSE) defined as

X

E(X) = [ D> (yolx) —y(xi)?, (11)

=1

where X = {x1,X2,...,xx} stands for the set of data tuples (vectors), X = |X] is the
number of data tuples in the data set, yo(x;) is the answer of the system for the x;
data vector, y(x;) is the desired answer for this vector.

4.1. Results

The root mean square error (RMSE) elaborated with various techniques of handling
of missing values for three test data sets are presented in the Tables 1, 2, and 3 and
in the Figures 1, 2, and 3.

The tables and figures lack the results for marginalization of the data set with
40% of missing values, because after the marginalization there was not enough data
to create the fuzzy model for the neuro-fuzzy system.

The marginalization is the simplest method for handling missing values in data
mining. It cannot be used for high ratios of missing values (in our experiments: 40%).
The results for marginalization are quite various: for 20% of missing values in the
‘Concentration of leukocytes’ data set this method achieves the best results of all
tested methods (the error is one order of magnitude lower than in other methods),
for the ‘Gas furnace’ data set the results are mediocre, for the ‘Carbon dioxide con-
centration’ data set, the RMSE is very high and is not presented in Figure 2 as to not
obfuscate the results of other techniques. With the increase in the ratio of missing
values, the number of full-data items decreases, the marginalized data set shrink, and
the time of calculations reduces. This is clearly observable in Figures 4 and 5.

The imputation of missing values with the constant value (in our experiments:
zero) is unstable: it can result in low errors for one data set and high for other.

For all three data sets, the errors achieved for imputation with the kNN median
and kNN average (k = 5) are among the smallest for 10% and 20% of missing values
(what is in concordance with clustering indices [17]). In the case of 40% of missing
values, the results are similar with exception for the ‘Concentration of leukocytes’ data
set. For this data set, the imputation with the KNN median elaborates the smallest
error, whereas the imputation with kNN average gives the highest errors (very close to
the error elaborated with the average imputation). The time of calculation for the kNN
imputation techniques is quite long. It is caused by the selection of k£ nearest neighbors
from all data items in the data set. Table 6 and Figure 6 present the influence of the
k parameter in kNN imputation. For missing ratio less than 20%, the difference in
RMSE for k = 3 and k = 5 is small. For 40% missing ratio, the errors elaborated for
k = 3 are significantly lower than for £ = 5. In this case there is a high number of
incomplete data items and increase of k parameter results in wider neighborhoods.
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The average or median value from such a wide neighborhood may not substitute the
missing value properly and leads to poorer results than in narrower neighborhoods
(k = 3). The increase in ratio of missing values leads to a quicker-than-linear increase
of error.

Table 1
Root mean square error (RMSE) forthe ‘Gas furnace’ data set (k = 5).

method 0% 1% 2% 5% 10% 20% 40%
marginalization  0.5077 0.5400 0.5077 0.5644 0.9971 0.9248 -
average 0.5077 0.5081 0.5085 0.6069 0.7094 0.9971 1.5020
median 0.5077 0.5238 0.5510 0.6251 0.7391 1.0509 1.4707
Zeros 0.5077 0.4359 0.4870 0.3549 0.3411 0.3515 0.9284

k-NN average 0.5077 0.5128 0.4601 0.6586 0.5260 0.5426 1.3133
k-NN median 0.5077 0.4617 0.4387 0.6895 0.5313 0.4519 1.3170

PDS 0.5077 0.4939 0.4426 0.3895 0.7317 1.3045 1.4112
0cCs 0.5077 0.4427 0.4859 0.6902 0.5682 1.1144 1.4077
IFCM 0.5077 0.4532 0.4911 0.6901 0.5910 1.1433 1.5832
NPS 0.5077 0.4848 0.5573 0.8052 1.0624 1.0111 1.5192

L5 average

median
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o
.

e

—— kNN average
—+— kNN median
-e- PDS
-&- OCS

-8 - IFCM
- NPS

—B— marginalisation

RMSE

0.5

| |
100 101

missing ratio |%]

Figure 1. Root mean square error (RMSE) for the ‘Gas furnace’ data set (k = 5).

The specialized clustering algorithms do not achieve low values of errors. The NPS
algorithm elaborated high error for the ‘Gas furnace’ and ‘Carbon dioxide concentra-
tion’ data sets. The NPS algorithm consumes a long time to calculate the results. The
specialized algorithms are advantageous in clustering of incomplete data with a high
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ratio of missing values (> 40%), when clustering results of the specialized algorithms
are evaluated with clustering indices [17]. There are many known clustering indices
that are not always coherent. Here in our experiments, the clustering quality was
tested in an indirect way. The results show that, for high missing ratios (> 40%), the
specialized clustering algorithms are not the class with the highest efficacy.

Table 2
Root mean square error (RMSE) for the ‘Carbon dioxide concentration’ data set (k = 5).

method 0% 1% 2% 5% 10% 20% 40%
marginalization 0.3423 0.3517 0.3444 0.4417 0.3779 4.5532 -
average 0.3423 0.3389 0.4935 0.4377 0.4994 0.5230 0.7402
median 0.3423 0.3726 0.5046 0.4403 0.4880 0.5322 0.7222
Z€eros 0.3423 0.4903 0.4873 0.5554 0.5199 0.6066 0.7042

kNN average 0.3423 0.3310 0.3235 0.3380 0.3313 0.3964 0.7120
kNN median 0.3423 0.3255 0.3484 0.3264 0.3332 0.3655 0.7709

PDS 0.3423 0.3799 0.4801 0.3837 0.4765 0.4862 0.7390
ocCs 0.3423 0.3244 0.3731 0.3529 0.4146 0.4384 0.7119
IFCM 0.3423 0.3191 04236 0.3750 0.3720 0.4564 0.8622
NPS 0.3423 0.4096 0.4591 0.4372 0.4677 0.4636 1.0295
T T T T T T
1l *

) —o— average

—=— median
—®— Zeros

—— kNN average

(g —e— kNN median
o~ | -e- PDS
- .- OCS
-e- IFCM
-k - NPS

missing ratio %]

Figure 2. Root mean square error (RMSE) for the ‘Carbon dioxide concentration’ data set
(k=5).
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Table 3
Root mean square error (RMSE) for the ‘Concentration of leukocytes’ data set (k = 5).

method 0% 1% 2% 5% 10% 20% 40%
marginalization  0.00053  0.00075 0.00081 0.00063 0.00066 0.00406 -
average 0.00053 0.00319 0.00981 0.01201 0.02395 0.03932 0.10479
median 0.00053 0.00284 0.00905 0.01813 0.02680 0.03602 0.09066
Zeros 0.00053 0.00174 0.00409 0.00919 0.02729 0.07626 0.06924

kNN average 0.00053 0.00364 0.00298 0.00428 0.00960 0.02970 0.10611
kNN median 0.00053 0.00169 0.00392 0.00565 0.01225 0.02535 0.04592

PDS 0.00053 0.00167 0.00778 0.03189 0.02629 0.03194 0.06406
0CSs 0.00053 0.00253 0.00329 0.00709 0.01816 0.04894 0.08359
IFCM 0.00053 0.00312 0.00347 0.00702 0.01966 0.04596 0.09014
NPS 0.00053 0.00168 0.00397 0.01822 0.02458 0.03189 0.07335

T T T T T 1]
0.10 |- N o average
- median
0.08 |- 8 —o— Z€eTos
—— kNN average
H 0.06| 1 |—— ENN median
= -o- PDS
a 0.04 |- . --- OCS
-®- IFCM
0.02 - . -k - NPS
—B— marginalisation
0.00 |- 1

109 10!

missing ratio |%]

Figure 3. Root mean square error (RMSE) for the ‘Concentration of leukocytes’ data set
(k=05).
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time |s]

Table 4

Time (in [s]) of calculation for the ‘Gas furnace’ data set (k = 5).

method 0% 1% 2% 5% 10% 20% 40%
marginalization 7.013 5.969 5.596  4.208 2.810 1.818 -
average 7.153 6.574 6.585  6.604 6.527 6.545 7.208
median 7.297 6.652 6.521  6.590 6.472 6.469 7.315
ZEeros 6.560 6.696 6.770 6.754 6.462 7.805 7.167
kNN average 6.593 6.577 6.522  6.609 6.453 6.722  17.832
kNN median 6.504 6.515 6.587  6.643 6.538 6.767  17.845
PDS 6.620 6.845 6.630  6.947 6.883 7.026 7.442
OCS 6.678 6.794 6.725  6.904 7.050 7.104 8.994
IFCM 6.538 7.031 6.904 6.991 7.139 7.818 9.367
NPS 7.511 8.979 9.882 11.639 13.285 16.547 19.036
20 T N
—o— average
—-— median
15 N —o— Z€eros
—— kNN average
—+— kNN median
10 | — - @ - PDS
-&- 0CS
-® - IFCM
51 | - - NPS

101

missing ratio %]

—=— marginalisation

Figure 4. Time (in [s]) of calculation for the ‘Gas furnace’ data set (k = 5).
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Table 5
Time (in [s]) of calculations for the ‘Concentration of leukocytes’ data set, k =5

method 0% 1% 2% 5% 10% 20% 40%
marginalization  9.715 8.506 8.024 6.191 4.608 1.922 -
average 9.141 9.241 9.288 8.787 8.899 8.550 8.589
median 9.650 9.283 9.158 8.729 8.937 8.405 8.645
Z€eros 9.705 9.472 9.253 9.378 9.733 9.586 8.279
kNN average 9.361 9.248 9.317 8.957 8.964 8.806 9.310
kNN median 9.258 9.251 9.233 8.899 9.400 8.987 9.492
PDS 9.299 9.540 9.612 9.237 9.555 9.347 9.631
OCS 9.569 9.519 9.462 9.304 9.426 9.982 9.621
IFCM 9.290 9.335 9.152 9.585 9.154 9.210 10.439
NPS 11.239 15.221 16.105 43.401 33.267 35.0561 33.964
T T T
K
40 / \\\ 1 —— average
/ . e —m—  median
/ 77 T o ZEToS
30 - / ’ —+— kNN average
= / —+— kNN median
qé) 20 | /l B -® - PDS
i / - .- 0OCS
%
-®- IFCM
10 [ — — k- NPS
—B— marginalisation
0 7\ | L1l |

109 10!

missing ratio [%)]

Figure 5. Time (in [s]) of calculations for the ‘Concentration of leukocytes’ data set, k = 5
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Table 6
Influence of the k£ parameter in kNN imputation methods on RSME for the ‘Carbon dioxide
concentration’ data set.

missing k=3 k=5
ratio | kNN average EkNN median | kNN average kNN median
1% 0.32767 0.33307 0.33102 0.32554
2% 0.33595 0.33724 0.32348 0.34835
5% 0.32029 0.36297 0.33797 0.32644
10% 0.32301 0.31562 0.33126 0.33319
20% 0.33810 0.32829 0.39642 0.36547
40% 0.50571 0.52623 0.71197 0.77085
0.8 T T T T T n
071 —e— 5NN median |

—e— 5NN average
—— 3NN median
0.6 —— 3NN average

m

N

=

~ 05 .
0.4 |
0.3 .

| [
10° 10
missing ratio [%)]

Figure 6. Influence of the k parameter in kNN imputation methods on RSME for the ‘Carbon
dioxide concentration’ data set.
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The Imputation with means and medians leads to models with similar generali-
zation ability as the specialized clustering algorithms.

The results of experiments allow for the ordering of techniques from those with
the lowest RMSE: kNN median, kNN average, specialized clustering algorithms, me-
dian, or average imputation. The marginalization and imputation with a constant
value are excluded from the above list, as they are unstable and their efficacy de-
pends on the data set to which they are applied.

An interesting observation from our experiments is the fact that the system is able
to create the model with incomplete data that has higher generalization ability (and
achieves lower errors) than the model created with complete data. This phenomenon
can be observed for the ‘Carbon dioxide concentration’ and ‘Gas furnace’data sets
and kNN average and kNN median imputation. It can be also observed for imputing
with zeros in the ‘Gas furnace’ data set. Maybe in these situations, the missing values
might be outliers; their values substituted by some mean values.

5. Summary

Neuro-fuzzy systems use three main techniques to create the fuzzy rule base: grid
partition, scatter partition (clustering), and hierarchical partition. Most-used is the
clustering, although hierarchical partition has some advantages in comparison to clu-
stering.

This paper analyzes the application of the ANNBFIS neuro-fuzzy system with
the scatter partition of input domain to incomplete data. We analyzed preprocessing
(marginalization of incomplete data, imputation) and specialized clustering algori-
thms. The created systems were tested with complete data set.

Marginalization is the simplest technique. The creation of fuzzy model with mar-
ginalization is the quickest of all analysis approaches. But it is unstable: for some
data, it is inappropriate, and for other data, it can be very effective. Imputation of
missing values with constant value is similarly unstable.

The best results were obtained with the kNN median and kNN average imputa-
tion. The disadvantage of this approach is the long computation time.

The specialized clustering algorithms do not achieve low values of errors. The
fuzzy models created with the specialized clustering algorithms do not achieve better
values than other techniques. It is worth mentioning that the Nearest Prototype
Strategy (NPS) is significantly time consuming in comparison with other approaches.

The imputation with means and medians leads to models with the similar gene-
ralization ability as the specialized clustering algorithms.

The interesting observation is the fact that the system is able to create the
model with incomplete data that has higher generalization ability (and elaborates
lower errors) than the model created with complete data.
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