AUTOMATYKA/ AUTOMATICS « 2012 « Vol. 16 * No. 2

http://dx.doi.org/10.7494/automat.2012.16.2.175

Piotr Szwed*, Grzegorz Rogus*, Pawet Skrzynski*, Michal Turek*, Jan Werewka*

Towards an Ontology Approach to ATAM
Based Assessment of Service Oriented Architectures

1. Introduction

In this paper we describe SOAROAD (SOA Related Ontology of Architectural Deci-
sions), which was developed to support the evaluation of architectures of information sys-
tems using SOA technologies. The main goal of the ontology is to provide constructs for
documenting service-oriented architectures, however, it is designed to support future reaso-
ning. Building the ontology we focused on the requirements of the Architecture Tradeoff
Analysis Method (ATAM).

ATAM is a scenario-based method for architecture assessment defining a quality mo-
del and an organizational framework for an evaluation process. ATAM represents expected
system qualities as a mapping between scenarios and quality attributes. System architecture
being the input for ATAM is expressed in the form of views describing components
and their connections. During the evaluation a team of experts analyzes selected properties
of components and connections to detect sensitivity points, tradeoffs and assigns risks.

A limitation of the method is that it depends on expert knowledge, perception and
previous experience. It may easily happen, that an inexperienced evaluator overlooks some
implicit decisions and risks introduced by them.

We propose SOAROAD ontology as a tool supporting the ATAM based assessment of
systems following a service-orientation paradigm and deploying web services.

The ontology gathering knowledge about various properties and decisions related to
SOA may facilitate performing an assessment in a more exhaustive manner, helping to ask
questions, revealing implicit design decisions and obtaining more reliable results.

1.1 Architecture evaluation — why SOA?

Nowadays, Service Oriented Architecture (SOA) might be treated as a state of the
art approach to the design and implementation of enterprise software, which is driven by
business requirements. In the SOA paradigm, the system is made up of loosely connected

* AGH University of Science and Technology, Krakow, Poland

175

176 Piotr Szwed, Grzegorz Rogus, Pawet Skrzynski, Michat Turek, Jan Werewka

services, which constitute components that can be reused many times and may occur
in various compositions. The characteristic features of software developed in line with
the SOA are as follows:

— The ability to call up services regardless of the technology and network location;

— One to one communications: at one moment in time, the service consumer can call up
only one service, whereas the communication is two way;

— The flow is initiated by the service consumer — service call up;

— Synchronous communication.

Another paradigm is the EDA (Event Driven Architecture) in which applications and
services exchange events in an asynchronous way one with another. EDA systems are often
called event-oriented SOAs: this paradigm represents an extension of the SOA and not
its competitor thus this is complementary to SOA approach. The characteristic features of
the EDA architecture are as follows:

— Communication in which sources of events are not aware of the existence of event
recipients;

— Many to many communication: one event can be consumed by many subscribers;

— Flow initiated by the buyer depending on the event type;

— Asynchronous communication.

Interestingly, from the implementation perspective, both architectures can use the same
design pattern — the ESB (Enterprise Service Bus). This pattern combines both approaches,
which makes integrating business modules and different platforms significantly easier. The
ESB plays the role of an intermediate layer, which makes possible communication between
different processes. A consumer of an event can initiate every service implemented within
the bus. The ESB provides all the capabilities determined by both paradigms and for this
reason it is the recommended [23] way of implementing the enterprise architecture within
this approach. Hence if one aims in creating useful ontology the concept of ESB and related
terms must be taken into consideration.

1.2. Related works

Ontology of architectural decisions was proposed in [16]. It distinguished by several
types of decisions that can be applied to software architecture and its development process.
The main categories included: Existence, Ban, Property and Executive decisions. The onto-
logy defined also attributes, which were used to describe decisions, including states (Idea,
Tentative, Decided, Rejected, etc.). In [9] an ontology supporting ATAM based evaluation
was proposed. The ontology specified concepts covering the ATAM metamodel, quality
attributes, architectural styles and decisions, as well as influence relations between elements
of architectural style and quality attributes. The effort to structure the knowledge about
architectural decisions, was accompanied by works aimed at the development of tools ena-
bling edition and graphical visualization of design decisions, often in a collaborative mode,
e.g. [4,7, 17].

Towards an Ontology Approach to ATAM Based Assessment... 177

This short selection of works proves, that the problem of documenting and visualizing
architectural decisions as a support for software development process and architecture eva-
luation remains a challenge. In contrast to approaches aimed at providing the classification
of concepts and their relations (TBox) we attempt to gather in the proposed ontology also
facts (ABox) constituting ready to use dictionaries of decisions (properties of architectural
design) and the knowledge about their relations reflecting the current state of the art for
SOA technologies.

1.3. ATAM Overview

ATAM (Architecture Tradeoff Analysis Method) [15, 6] is an early scenario-based
method for software architecture evaluation developed at SEI (Software Engineering
Institute). Considering many different quality goals ATAM is capable of capturing the
interaction between them, setting goal dependencies and assessing that a proposed system
architecture can satisfy those goals. The ATAM process can work in a procedural loop. Each
iteration should be ended with improvement suggestions, including better architectural
decisions and new development scenarios.

Briefly speaking, the greatest benefit from the ATAM methodology is an early identifi-
cation of risks, what in consequence can result in appropriate mitigation actions introduced
before the software is fully designed and implemented, thus at lower cost. ATAM multi-step
system analysis procedure includes detailed risks filtration, sorting and risk reducing pro-
cesses. In the first place each risk is classified into particular risk themes. So-called impacts,
extracted from those risk themes, are afterwards linked with business drivers or an architec-
tural plans. If one of risk theme impacts requires a new business driver definition, a set of
quality attributions is made. That also leads to a new scenario developed, which should be
considered during the next iteration of the process: a scenario of interaction of one of
the (so called) stakeholders with the system. On the other hand, when any risk theme impact
requires a new architectural plan definition (instead of a business driver), an architecture
approach (or approaches) is being created for subsequent software architecture change.

The ATAM process also includes development team interactions. The whole ATAM
process usage typically includes the following steps:

— Steps 1-3: Presentation (ATAM introduction made by an evaluation leader, business
drivers to be considered described by project spokesperson and present architecture to
be evaluated — described by a system architect with a reference to current business
drivers list),

— Step 4: Architectural approaches identification — currently user approaches, without
analysis,

— Step 5: Quality attributes collecting. All those attributes should be gathered in an attri-
bute utility tree. It will describe compromises between system utility parameters, such
performance, security, usability, availability etc.,

— Step 6: Architectural approaches analysis — using knowledge established in step 5,

— Step 7: Scenarios prioritizing during a voting process,

178 Piotr Szwed, Grzegorz Rogus, Pawet Skrzynski, Michat Turek, Jan Werewka

— Step 8: Architectural approaches analysis — step 6 repetition, but with a scenario priori-
ties knowledge used,
— Step 9: results resolving.

As shown above, ATAM provides the necessary techniques supporting the optimiza-
tion of software architecture. There are also different types of scenarios in ATAM: classical
use case scenarios are extended by growth scenarios (showing changes made to the system)
and exploratory scenarios (for extreme changes possibly hazardous to the system). The
ATAM approach provides a way to deal with multiple and strongly dependent parameters
bound to a different system architecture requirements and also generating different risks.
Making a risk dependency tree helps to identify sensitivity points and tradeoffs points
(bounded multi-attribute points). It will also refine any descriptions of the architecture’s
driving quality attribute requirements and architectural design decisions.

A great advantage of ATAM would also be another mechanism. This one provides
efficient business drivers translation into quality attribute scenarios. It is based on structures
called utility trees. Those trees would allow determining important business issues and re-
strictions identifying high priority goals for future system architecture. The root of a tree
(simple utility entry) leads into branches such performance, modifiability, availability, secu-
rity etc. Each branch leads to detailed and decomposed information about all architecture
features needed to be applied to meet the assumed requirements. Therefore (due to the
graphical display of a tree) all the effort to meet enforced requirements could be balanced
between business restrictions displayed on the utility tree branches.

2. A metamodel of software architectures

The basic model of software architecture used in ATAM [2] defines it after [20] as a set
of components and linking them to connections. We extend this simplistic model by defi-
ning Interfaces and Functions of components. A connection links a component having
the caller role with an interface (calee). Components, connections and interfaces can be
attributed with: ComponentProperties, ConnectionProperties and InterfaceProperties
respectively. Examples of such properties are: platform, web service type, communication
type, queueing, query granularity.

A Composition is a coherent set of components and connectors. System architecture is
itself a composition. For the purpose of analysis we may focus on a particular subset of
components and connectors and describe their properties, e.g. the distribution of queries
among a several databases building up a composition or realization of a design pattern.

During the ATAM based evaluation the overall system architecture and properties of
its parts are analyzed to establish the scenario responses and achievements of corresponding
quality attributes. It may be, however, observed that some architecture properties or their
combinations have known influence on quality attributes, e.g. a use of asynchronous web
services or applying MVC design pattern increases modifiability and a granularity of
queries has an impact on performance.

Towards an Ontology Approach to ATAM Based Assessment... 179

Architectural decision is an assignment of a property to a component, interface, con-
nector or a composition. In this context the terms property and architectural decision can be
used to some extent interchangeably. However, it may happen that certain decisions or com-
ponents are dependent on previously assigned properties. An example of such dependency
is the composition type — a property assigned to a set (composition) of web service com-
ponents. Selecting orchestration as the composition type requires that an orchestration
component, e.g. BPEL capable module is be used. The required relation or its subproperties
in the ontological model express this dependency.

The assumed metamodel adopts the reification strategy while modeling various pro-
perties of an architectural design. Properties are defined as classes, whose individuals can
be linked by additional relations indicating specific roles. An example of such a property is
the MVC design pattern — pattern, which requires identification of a components playing
the roles of a Model (typically database), a Controller (e.g. an EJB) and a View (e.g. a set of
HTML pages produced by JSP scripts).

Two types of components are distinguished: ApplicationComponents and Infrastructu-
reComponents. Application components are developed and deployed software modules;
infrastructure components provide such supporting functions, as message queuing or servi-
ce registry.

-is_described _by DesignPattern
0.1
-property CompositionProperty
-influences
-connections Connection -property ConnectionProperty -influences QualityAttribute
1 B
-influencesinflubncas
Composition .
4
1 Funnction ~calee !
! |
Interface -property InterfaceProperty
-interface ‘ | |
-functions * 1 * *
-caller 4
-components Component -property ComponentProperty

L

Fig. 1. Metamodel of software architecture and its properties

180 Piotr Szwed, Grzegorz Rogus, Pawet Skrzynski, Michat Turek, Jan Werewka

3. The ontology of the SOA architectural style

Ontology engineering methodologies [10, 10, 11, 21] usually distinguish the following
common steps in the ontology development:

1) Specification, aimed at establishing the domain of the ontology, its scope, usage and
competency questions (including preparing motivating examples);

2) Conceptualization — the goal of this step is to identify concepts, arrange them in hierar-
chies and establish relations;

3) Formalization consisting in coding ontology in a formal language, e.g. OWL;

4) Deployment — using the ontology in a software tool.

In this section we will briefly describe the assumptions determined in the specification
phase and describe the content of the ontology obtained after formalization. The ontology
has not been yet fully deployed: a tool supporting collection and an analysis of information
about the properties of an architecture is under development.

3.1. The idea of SOAROAD ontology application

The goal of the SOAROAD (SOA Related Ontology for Architectural Decisions)
ontology is to gather the knowledge from the SOA domain and organize it in such manner
that:

— it will help ask questions about various properties of architectural design and deci-
sions;

— it will be capable of representing assignments of properties relevant to SOA technolo-
gy to the elements of system architecture.

It was assumed that the ontology would follow the metamodel described in the pre-
vious section defining various properties corresponding to design decisions that can be
attributed to components, connections, interfaces and compositions. If applicable, these
design decisions can be supplemented by additional relations. The ontology would also spe-
cify design patterns.

Another assumption is related to a distribution of the knowledge between ontology
TBox (classes and properties) and ABox (individuals and their relations). It was decided
that properties would be represented by classes, whereas their values as individuals.

The concept of the ontology application is presented in the Figure 2. The process of
building of an architecture description starts with eliciting architecture views ABox, i.e.
a set of linked components, interfaces and connections. This model can be prepared either
manually or with a support of dedicated import tools converting ArchiMate [18] models of
Archi editor [1] or UML [3] from VisualParadigm.

A tool supporting architecture description uses the classes and individuals defined
in the SOAROAD ontology TBox and basic ABox respectively to generate forms or

Towards an Ontology Approach to ATAM Based Assessment... 181

questionnaires in which software architects or members of development teams can make
assignments of property values to elements of architecture views. Resulting Architecture
ABox refers elements of Architecture views ABox and individuals defined in SOAROAD
ontology (merging two input ontologies and asserting additional relations).

Architecture Component &
views deployment
ArchiMate diagrams UML
[ArchiMate] ’.[e]
Import
\ /
Architecture
views ABox
SOAROAD
ontology
TBox Tool supporting
architecture Architecture ABox
description
SOAROAD T
basic ABox)
Assignment of -
properties to elements of Software Architects
architecture Development Teams

Fig. 2. A concept of application of SOAROAD ontology

Figure 3 illustrates this approach with an excerpt from a resulting Architecture ABox.
ComponentA via ConnectionAB calls functions of ComponentB exposed by the Interface B.
This information originates from architectural views and is contained in the Architecture
Views ABox. In the next step each of these nodes is attributed with properties (architectural
decisions) being instances of concepts gathered in the SOAROAD ontology to form full
Architecture ABox.

In the presented example:

— Component A is deployed on Intel Xeon 2.13 GHz machine running Ubuntu 10.4 sys-
tem and GlassFish application server.

— Connection AB is asynchronous, uses SSL based protection mechanism and a 10 Gb
network.

— Interface B is a SOAP web service with low query granularity and exception handling
based on soap faults.

— Component B is deployed on IIS a platform and is stateless.

The resulting graph of interconnected elements with assigned properties presented in
a user-friendly browsable form can be input to ATAM analysis performed in the standard
manner.

182 Piotr Szwed, Grzegorz Rogus, Pawet Skrzynski, Michat Turek, Jan Werewka

StatePers.stateless
Component B

OSUbuntu 10.4

Component A

J2EEASGIassFish

‘ “hUmberof_cores processor ‘ -memory
[] [xeon 2.136Hz | [4GB |

QGranularity .low

Fig. 3. An example of architecture ABox. Elements of an architectural view (marked with boldlines)
are attributes with design decisions (individuals of classes defined in the ontology)

3.2. The ontology content

As mentioned above the model of SOAROAD ontology uses the notations proposed
in [18] to represent the ontology. The ontology was formalized in the OWL language and
can be accessed using standard ontology tools, e.g. Protégé or with Jena or OWL API
software libraries.

Due to limited space, we will describe the SOAROAD ontology by presenting an ove-
rall model (Fig. 4) and next illustrate our concepts by choosing some specific examples of
classes (ComponentProperty).

v Thing

ArchitecturalElement

Artifact

DesignPattern

Function

Property

b ComponentProperty

v CompositionProperty
; ArchitecturalLayout
ServiceCompositionLanguage
ServiceCompositionType

v--@ ConnectionProperty
CommunicationType
ConnectionSecurity
NetworkType

V- InterfaceProperty

: ExceptionHandling
QueryGranularity
b WebServiceType

b0 QualityAttribute
Standard

oY

Fig. 4. SOAROAD ontology

Towards an Ontology Approach to ATAM Based Assessment... 183

The ontology specifies also functions of components. Their list is rather related to
infrastructure components. The function is the implementation of a specific service that
represents dynamic behaviors of components. Examples of such function are: Routing,
MessageMapping, ProtocolSwitch, MediationService.

The ontology provides a taxonomy of quality attributes. Quality attributes (Fig. 5) are
the overall factors that affect run-time behavior, system design, and user experience. They
represent areas of concern that have the potential for application wide impact across layers
and tiers. Some of these attributes are related to the overall system design, while others are
specific to run time, design time, or user centric issues. The extent to which the application
possesses a desired combination of quality attributes such as usability, performance, reliabi-
lity, and security indicates the success of the design and the overall quality of the software
application.

When designing applications to meet any of the quality attributes requirements, it is
necessary to consider the potential impact on other requirements by analyzing the tradeoffs
between multiple quality attributes. SOAROAD ontology defines influences in relation to
describing the impact of architectural decisions on quality attributes.

u Security
T
Reliability
Capacily

T @ Usahility

Maintainability

Mairtai nab ity Complance

Cormipability

=5 it |
e

i

Tastability

]

Stabiiity
Analyzability

= EfficiancyCompl
Functionality

ParfarmanaaEffi
canoy

ResourcaUilisa

Efficiancy tion

sl

3 FunclionalSuita Madifiabiiity [

hility

Changaability

1!
1114

plock ety Tima Bahaviour

Rausability

Fig. 5. A partial tree of quality attributes (according to ISO/IEC 9126 and ISO/IEC 25010)

[,

84 Piotr Szwed, Grzegorz Rogus, Pawet Skrzynski, Michat Turek, Jan Werewka

3.3. Component properties

In this section we discuss component properties as an example illustrating the structure
of the SOAROAD ontology. Subclasses of ComponentProperty (Fig. 6) class define various
properties and design decisions, which can be assigned to components. Software architect
preparing ATAM evaluation should consider them as an exhaustive list of questions related
to important issues in SOA architectures. An example of such properties is Platform
(Hardware, OperatingSystem, ApplicationServer), PlatformTechnology, ProgrammingLan-
guage, ComponentLogic and ComponentSecurity.

Most of the classes have predefined individuals, that can be selected in assignments,
e.g. JavaEECompliantAS has several predefined individuals: JBoss, Glassfish, WebLogic,
WebSphere, ColdFusion, etc.

E ProgrammingLang
uage

= CompaoneniLogic
3 1
OperatingSystem

[+ Virtual Server l

Y0 StatePersistenc

+ ComponentProper | £

ty..

9 Property i JavaAS l

| I I

Platform

er AS

Hardware 4 JavaEnterpriseC
ompliantAS

£ Thing : ‘ ApplicationServ

r DotMetCompliant ’

Y@ PlatformTechnal

Y@ QuaityAtiribut

ComponentSecuri

=
i Q
I |

Component

Fig. 6. Classes of component properties

3.4. ABox knowledge detailed

As indicated in the Figure 2 the specification process manages three sets of individuals
and relations (ABoxes) using the common SOAROAD terminology: basic, views, and
resulting Architecture ABox combining both previous and asserting additional relations
concerning assignment of properties.

The basic SOAROAD ABox defines individuals of concepts belonging to particular
classes to be presented as choices while specifying architectural decisions. Apart from
providing a basic set of property values, it specifies relations (Fig. 7), that can be used in
architecture assessment. The supports relation indicates that particular elements can be used
together, e.g. JBoss (ApplicationServer) supports Document.Literal (SOAP web service

Towards an Ontology Approach to ATAM Based Assessment... 185

style). The supports property has two subproperties: supports_fully and supports_partially,
that can be used to indicate possible incompatibility issues. Another way to define poten-
tially conflicting architectural decisions is to use Conflict objects (reified multirole pro-
perties) that indicate sets of properties, which should not be used together, provide specifi-
cation of conflict levels (e.g. partially_compatible, incompatible, error_prone) and textual
description (rationales) . The required relation can be used to specify that one element
requires another. Such assertions can be explored, while reasoning about implicit decisions,
i.e. resulting from earlier assignments.

-supports

*

-requires Property -properties Conflict

CompositionProperty ComponentProperty ConnectionProperty InterfaceProperty

Fig. 7. Relations between properties

SOAROAD ontology is formalized in the OWL language. In consequence, the ontolo-
gy should follow the Open World Assumption (OWA) to be compatible with OWL reaso-
ners, e.g. Pellet, Fact+ or Racer.

According to OWA the following approach was adopted:

— A lack of the assertion on the property of a particular type, means that nothing
is known about the assignment. For example in Figure 3 no information is provided
about the hardware or operating system for the component B.

— A lack of decision is represented explicitly by an individual (constant) of a particular type,
e.g. and individual OperatingSystem.not_decided can be assigned to the component B.

— Conflicting decisions of the same type can be attributed to a component, e.g. compo-
nent B can be attributed with Windows and Linux properties. Such conflicts reflect,
that in a certain step an alternative is envisaged. During an evaluation process (possi-
bly supported by reasoning with the use of a separately developed set of SWRL rules)
such an assertion can be indicated as non valid.

— Negative assertions about properties are represented by a special ban relation, whose
object can be an anonymous individual of a selected type. For example an assertion
(ComponentB, ban, I0S.anonymous) can be made, where 10S.anonymous belongs to
the class I0S (operating system).

186 Piotr Szwed, Grzegorz Rogus, Pawet Skrzynski, Michat Turek, Jan Werewka

4. Conclusions

This paper describes the SOAROAD ontology and a concept of a tool that supports
documenting architectures of SOA-based systems. The proposed approach addresses the
problem that can be encountered during architecture assessment: to be reliable, a reasoning
about architecture qualities, must have solid foundations in a knowledge related to a parti-
cular domain: architectural styles, design patterns, used technologies and products. The idea
behind SOAROAD ontology is to gather expert knowledge to enable even inexperienced
users performing ATAM-based architecture evaluation.

An advantage of the presented approach is that its result is a join representation
of architecture views and properties attributed to design elements formalized in OWL
language.

From a software engineering perspective, such centralized information resources may
represent a valuable artifact, which, if maintained during the software lifecycle, can provide
a reference to design decisions that can be examined later in the integration, testing and
deployment phases.

On the other hand, the machine interpretable representation, constituting a graph of
interconnected objects (individuals), can be processed automatically to check consistency,
detect potential flaws and calculate metrics. An extensive list of metrics related to architec-
tural design was defined in [22]. We plan to adapt them to match the structural relations in
the SOAROAD ontology, as well to develop new ones.

Further plans are related to the extensions of the currently developed tool. At present
its functionality is limited to building the architecture description. Our intention is to fully
integrate it with the ATAM process allowing specifyed scenarios, describing sensitivity
points, tradeoffs and risks.

References

[1] Archi, Archimate Modelling Tool, http://archi.cetis.ac.uk/download.html, 2011.

[2] Bianco P., Kotermanski R., Merson P., Evaluating a Service-Oriented Architecture. Engineering
1-91, http://repository.cmu.edu/sei/324/, 2007.

[3] Booch G., Rumbaugh J., Jacobson 1., Unified Modeling Language User Guide. 2nd Edition. Addi-
son-Wesley Professional, 2005.

[4] Capilla R., Nava F., Pérez S. & Duenas J.C., A web-based tool for managing architectural design
decisions. SIGSOFT Softw Eng Notes, 31, 4, 2006.

[5] Clark, Parsia: Pellet: OWL 2 Reasoner for Java, http://clarkparsia.com/pellet/.

[6] Clements P., Kazman R., Klein M., Evaluating Software Architectures: Methods and Case
Studies. Addison Wesley Longman SEI Series In Software Engineering 368 Addison-Wesley
Professional, 2001, http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/
020170482X

[71 De Boer R.C., Lago P., Telea A., Van Vliet H., Ontology-driven visualization of architectural
design decisions. 2009 Joint Working IEEEIFIP Conference on Software Architecture European
Conference on Software Architecture, 82, 51-60, 2009.

Towards an Ontology Approach to ATAM Based Assessment... 187

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

De Nicola A., Missikoff M., Navagli R., 4 proposal for Unified Process for Ontology. Pro-
ceedings of 16th International Conference on Database and Expert Systems Applications, DEXA
2005, Copenhagen, Denmark, 2005.

Erfanian A., Shams Aliee F., An ontology-driven software architecture evaluation method. Pro-
ceedings of the 3rd international workshop on Sharing and reusing architectural knowledge
SHARK 08 79-86, 2008, http://portal.acm.org/citation.cfm?doid=1370062.1370081.
Gomez-Perez A., Fernandez-Lopez M., Juristo N., METHONTOLOGY: From Ontological Art
Towards Ontological Engineering. Proceedings of Symposium on Ontological Engineering of
AAAI, Spring Symposium Series, Stanford, 1997, 33—40.

Gruninger M., Fox M.S., Methodology for the Design and Evaluation of Ontologies. IICAI’95,
Workshop on Basic Ontological Issues in Knowledge Sharing, 1995.

Horrocks 1., Patel-Schneider P.F, Boley H., Tabet S., Grosof B., Dean M., SWRL. A semantic web
rule language combining OWL and RuleML. 21, May 2004, 1-22, http://www.w3.org/Suctub-
mission/SWRL

ISO/IEC 9126. Software engineering — Product quality (ISO/IEC), ISO/IEC, 2001.

ISO/IEC CD 25010.3: Systems and software engineering — Software product Quality Require-
ments and Evaluation (SQuaRE) — Software product quality and system quality in use models.
ISO 2009.

Kazman R., ATAM: Method for Architecture Evaluation. CMUSEI2000TR004, 2000, http://
www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr004.pdf.

Kruchten P., An Ontology of Architectural Design Decisions. Proceedings of 2nd Groningen
Workshop on Software Variability Management Groningen NL, 2004, 55-62.

Lee L., Kruchten, P., Visualizing Software Architectural Design Decisions. Software Architecture
5292, 2008, 359-362.

The Open Group, Archimate 1.0 Specificattion, http://www.opengroup.org, 2009, s. 122.

OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax, W3C Re-
commendation 27 October 2009 http://www.w3.org/TR/owl2-syntax/#Imports.

Shaw M., Garlan D., Software Architecture: Perspectives on an Emerging Discipline. Prentice
Hall, 123, 242, Prentice Hall, 1996.

Sliwa J., Gleba K., Chmiel W., Szwed P., Glowacz A., IOEM — ontology engineering methodology
for large systems. Proceedings of the Third international conference on Computational collective
intelligence: technologies and applications, Transactions on Computational Collective Intelligen-
ce, LNCS, Springer-Verlag Piotr Jedrzejowicz, Ngoc Thanh Nguyen, and Kiem Hoang (Eds.),
Vol. Part I. Springer-Verlag, Berlin, Heidelberg, 2011.

Vasconcelos A., Sousa P., Tribolet J., Information System Architecture Metrics: an Enterprise En-
gineering Evaluation Approach. Electronic Journal of Information Systems Evaluation, Vol. 10,
Issue 1, 2007, 91-122.

Vollmer K., Gilpin M., Rose S., The Forrester Wave™: Enterprise Service Bus. Q2 2011,
www.forrester.comcture.

Wongthongtham P., Chang E., Dillon T.S., Ontology Modelling Notations for Software Engi-
neering Knowledge Representation. Inaugural IEEE International Conference on Digital Ecosys-
tems and Technologies, Cairns, Australia, February 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /PLK ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

