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A sufficient condition for existence
of constantly nondominated trajectories
in linear time-invariant systems

Abstract: This paper considers the multi-criteria optimal control problem in linear time-invariant
systems with a single bounded input. It has been proven that, under certain assumptions, a state trajectory
is non-dominated throughout the whole control process if and only if it is yielded by a control signal
that belongs to a particular class of bang-bang functions. Furthermore, an explicit formula relating
hyperplanes tangent to an attainable set and control switching times is presented.

Keywords: multi-criteria optimal control, attainable set, reachable set, supporting hyperplane method

1. Introduction

The following paper deals with a multi-criteria optimal control problem. Namely, given
a dynamical system and its initial state, one aims at finding a control signal or closed-loop
control law, satisfying particular constraints, which simultaneously minimizes a number of
criteria. The case considered most often in the literature is an optimization problem with
a vector of a finite number of criteria on the final state of the system (see, e.g., [3]). Apart
from this, mulitcriteria optimization may be applied in control science to the controller tuning
problem in the case of multiple performance indices [8] or multi-loop control systems [4].
However, apart from obtaining an optimal final state, one may seek to minimize the criteria
throughout the whole control process. Such an approach was proposed in [11] and considered,
for example, in [9]. It may be applicable to multi-criteria control problems when the final time
is not known a priori. In such a case, it is reasonable to seek trajectories optimal in each time
instant, which guarantees optimality at the end of the control process.

In particular, the paper considers the existence of constantly non-dominated trajectories;
i.e., trajectories that are Pareto-optimal for each moment of the control process with regard
to the criteria on the instantaneous state values. To the best of the author’s knowledge, no
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analytical results have been obtained in this field so far. The reasoning presented below
makes use of the geometric properties of attainable sets of dynamical systems. The supporting
hyperplane method originally presented in [5] is employed in order to find a relationship
between the points on the boundary of an attainable set and the control signals applied to reach
them. In the following paper, an expression explicitly associating control switching moments
with vectors generating a hyperplane tangent to the boundary of a reachable set is formulated.
This formula is then used to state a sufficient condition for the existence of Pareto-optimal
trajectories.

2. Problem statement

Let us consider a finite-dimensional time-invariant dynamical system given by the follo-
wing equations:

x(t) = f(x(1),u(t)) ()
x(0) = xo 2

where x(t) € R", u(t) € U C R" and f: R" x R" — R”

Set U corresponds to the constraints on the instantaneous control values. Furthermore,
we will consider control to be admissible if it is piecewise continuous. Let X () now denote
the set of states accessible at moment ¢ via some admissible control. Finally, let us introduce
a system of k criteria on the instantaneous state values J;(-) to be minimized.

Ji:R" =R fori=1,2,...k

Definition 1. Point x € X(¢) is dominated with regard to criteria J; if there exists a point
% € X(¢), such that, for each i = 1,...,k: J;(x) > J;(%). The point is non-dominated (Pareto-
-optimal) if it is not dominated.

By P(X(¢),J) we will denote the set of non-dominated points of X (¢) with regard to
criteria J;.

We aim at determining a condition on the system and criteria under which there exists
a trajectory x(+) yielded by admissible control u(-) that is non-dominated for each ¢ > 0. In
such a case, the following is satisfied:

Vi>0 u(t)eUAx(t) e P(X(r),J), and u is piecewise continuous 3)

where u(t) and x(r) satisfy (1-2).
In the paper, we will consider a linear system with a single input bounded by < 1 >.

x(t) = Ax(t) + Bu(r) 4)
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A e RV BeR", u(t) € [-1,1] C R. Without loss of generality, we may consider the initial
condition for system (4) to be equal to zero. Furthermore, let us assume that A has only real
eigenvalues and pair (A, B) is controllable.

3. Geometric properties of attainable set

Under the assumptions made in the previous section, the following lemma holds [2, 10]:

Lemma 1. Foreach 1) < T < ... < T,, vectors e*%B are linearly independent.
Let us fix # > 0, which will be considered through the end of the section. Attainable set
X (t) is compact and convex. Furthermore, it has the following property:

Lemma 2. X(¢) has non-empty interior.

Proof. Let §"~! denote a unit sphere in R”. For each x € $"~!, there exists control u, (pos-
sibly not satisfying u,(7) € [—1,1]) yielding x in time ¢. Control u, satisfies the following
equation [7]:

ot -1
u(7) = BTe*ATT(/O efA“'BBTefATsds) e Alx (5)

Since the system is controllable, the matrix equal to the integral in (5) is nonsingular and
(5) is well-defined. Let us consider function M : S"~! 5 x + sup |u,(7)| € R. It follows from
T

(5) that M is continuous; since its domain is compact, it has a maximum m > 0. Thus, each
point of ball B, = {x € R: ||x|| < 1} can be obtained via a control satisfying u,(t) € [—1,1]
and B}, C X(r). As a consequence, 0 € int X (z). ]

Because X () is compact and convex, it is determined by its boundary dX (¢) C X(¢), for
which the following theorem is true [2, 5]:

Theorem 1. Point x;, belongs to dX (t) if and only if it can be reached by control uy, satisfying:
() |up(7)| =1,
(ii) up has n— 1 discontinuities at most.

Furthermore, for a given point on the boundary, the control yielding it is unique up to isolated
time moments.

Proof. Let us first prove the only if part. Let x;, be a fixed point from dX (¢). We will show
that control u;, yielding x;, satisfies (i) and (i7). Since X (¢) is convex, there exists a hyperplane
7 supporting X (¢) at x,. Thus, x;, maximizes the functional:

Q(x(1)) = p" x(t) (6)

where p € R" is a non-zero vector orthogonal to 7.
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By Pontryagin’s maximum principle [1], u;, satisfies:

up(7) = argmax (p’ * "V Bu) = sgn(p” g(1)) (7N
ue[—1,1]
g(t) =e"9B (®)

Property (i) follows directly from (7). Expression p” g(7) can be written as p” eA’e™4%B. It
is a well-known fact that each entry of matrix ¢~7 is a linear combination of terms 77e~ % T
where A; are eigenvalues of A and r are integers. Multiplying e~ by constant matrices p’ e/’
and B yields an expression that is a linear combination of 77¢ %7 as well. Hence, ple(n)
as a function of 7 is a quasi-polynomial of a weight that is » at most and either has n — 1
zeros at most or is constantly equal to 0. However, by Lemma 1, for any set of pairwise
distinct 0;, i = 1,....,n, vectors, g(o;) are linearly independent; so, for some i, pTg(c,-) #£0. As
a consequence, p’ g(7) is nontrivial; thus, control u(7) has n— 1 discontinuities at most and
satisfies (ii). Moreover, uy, is defined uniquely in every point where p? g(7) # 0; i.e., almost
everywhere.

To prove the if part, let us now consider a control u;, satisfying (i) and (ii) with discon-
tinuities at 7] < T < ... < T,—1. Some switching times 7; may be greater than 7 so that u;,
could have fewer than n — 1 switchings in the interval [0,¢]. Let p € R”" denote a vector for
which the following holds:

pTeA(f*Ti)B:() fori=1,2,....n—1 @

By Lemma 1, a nontrivial p satisfying the above always exists. In such a case, pleAt="B s
a nontrivial quasi-polynomial that changes sign at each switching time. Hence,

up(7) = £sgn(p’ A7 B) (10)

by Pontryagin’s maximum principle, it yields point x; that maximizes (6) with p or —p.
Thus, x5, belongs to one of two hyperplanes orthogonal to p supporting X (¢); as a consequence,
xp € 0X(2). L]

Remark 1. The only if part is true even in the case of noncontrollable systems. Then, the
equivalent condition for control to yield a point on the boundary is to satisfy (i) and to have
strictly fewer than k discontinuities, where k is the dimension of the controllability subspace.
This property can be obtained easily by decomposing the state-space into controllability and
noncontrollability subspaces.

Let %"~ now denote the space of all control functions defined on interval [0,¢] satisfying
(i) and (ii) with metric induced from L'[0,¢]. By Theorem 1, there exists a bijective function:

F:u" ' = 0X(r)
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F(u) = /Ot AU Bu(t)dT (11)

Clearly, F(u) = x(t), where x(-) is a solution of (4) for a particular u. The following lemmas
hold:

Lemma 3. Set %" ! is compact.

Proof. Let us consider set 7 = {(11,...,T,1) ER"1:0< 11 <1 <... <7, <t} and
function G : .7 — %"~ that associates vector (7i,...,T,_1) with piecewise constant control
taking values:

— lonintervals (0,71),(72,73), and . ..
— —1 onintervals (71, 72),(73,74), and ...
— +1 oninterval (7,_1,¢) depending on the evenness of n.

It can be easily seen that G(.7) is a subset of %/"~! which consists of control functions
having either exactly (n — 1) discontinuities and taking value 1 in their first interval or strictly
fewer than (n — 1) discontinuities. Hence, "' = G(7)U—~G(.7). Set 7 is compact; thus,
to prove the thesis, it suffices to show that G is continuous. Indeed, in such a case, G(.7)
as an image of compact set under a continuous map is compact; as a consequence, %"~ is
compact as a sum of two compact sets. Let us choose 70 = (Tt ey Tue1), thn-1 = (t1+h,. ..,
Ty 1 +hy 1), 70, T1 € 7, and let T denote vector (T +hy,..., T +hi, Tivt,..., To1). We
can extend map G and define it for sequences of 7; that are not necessarily increasing. In such
a case, we define the extension as G(7) = G(0(7)), where o is such a per mutation of 7; that
sequence o (7) is increasing. Then:

IG(e") = G(z"1)|| = [|G(z") = G(T") + G(e") = G(") +...+ G(t"2) — G(e" )| < 1)
<[[G(T") =G|+ [G(x") = G(T")|| +... + [ G(z"2) = Gz 1)]|

Functions G(7) and G(7"i+1) take different values on the interval whose bounds are
Ti+1 and T;+1 + hi+1. As a consequence:

1G (") = G(" )| < 2lhis] (13)
and finally:

IG(") = G(e" )| < 2( |+ ol + ...+ [hna|) = 2] 770 — 21 |y (14)
The last equation means that G is Lipschitz continuous and completes the proof. |

Lemma 4. F is a homeomorphism; i.e., both F and F ~1 are continuous.
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Proof. Let us choose two control functions u; and uy, and let g(-) be defined as in (8). ||g(-)]|
is continuous in the closed and bounded interval; thus, by the Weierstrass theorem, it has
a supremum and V7 € [0,7] ||g(T)|| < M. Hence:

1F (1) — F(u |—H/ drf/ Dia(t dr‘—H/ )(ur (1) —wo(2))dt]| <

15)
S/O ||g(T)(u1(T)*M2(T))HdTS/OMl(ul(f)*uz(f))\dT:MHMl*M2||

The above means that F is Lipschitz continuous; thus, it must be continuous as well.

Let us now prove that F~! is continuous. Let us choose sequence {w;} in dX(¢) tending
to some w. We will show that F~!(wy) tends to F~!(w). For indirect proof, let us assume
that the above is not true. In such a case, there exists such a V — neighborhood of F~!(w) in
/"~ that there exists a subsequence of F~!(wy) whose elements do not belong to V. Let this
subsequence be denoted by {u;}. Since %"~ is compact, {u;} has a convergent subsequence
namely, {v;}, which tends to some v*. By the continuity of F, {F(v¢)} tends to F(v*), but
{F(v;)} is a subsequence of {wy}, which in turn tends to w; thus, F(v*) = w and v* = F~!(w).
Finally, {v} tends to F~!(w), which contradicts the fact that the elements of {v;} do not
belong to V. This completes the proof. ]

Since X (¢) is convex, compact, and has a non-empty interior, it is homeomorphic to
n-dimensional ball B", and its boundary dX (¢) is homeomorphic to sphere $"~!. Then, by
Lemma 4, %"~ is homeomorphic to $"~!. Applying the above reasoning to a system with
any dimension, we can state the following lemma:

Lemma 5. For any k € N, set %*; i.e., the set of bang-bang controls with k switchings at
most a with metric induced from Ly, is homeomorphic to k-dimensional sphere S¥.

Let us now consider set %7 ~2. By Lemma 5, it is homeomorphic to sphere §"~2. Thus,
since F is a homeomorphism, F (% ”‘2) must be homeomorphic to "2 a5 well. Hence, we can
introduce homeomorphism G : dX () — §*~!, such that G(F (%" 2)) = §" 2 x {0} c s* L.
It can be seen easily that §"2 x {0} divides $"! into two open disjoint hemispheres: S*
and S, which consist of points whose last coordinate is respectively positive and negative.
In a similar manner, since G is a homeomorphism, F(%"~2) divides dX () into two open
disjoint parts: G~ (S*) and G~'(S™). Let us denote them and F(%"~2) by H* (t), H~ (¢) and
R(1), respectively. Furthermore, without loss of generality, we may assume that, in H" (),
there is at least one point that can be obtained via control with value 1 in its first interval of
constancy. We will prove the following lemma:

Lemma 6. H*(t) consists of points that can be reached by control satisfying (i), having
exactly n — 1 discontinuities, and taking value +1 in its first interval.

Proof. The two first conditions follow directly from the previous reasoning and the way H=(t)
was defined. Let us prove the third one; we can write H (1) = H{ UH™, where H{ is a subset
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of H™ (¢) consisting of points reachable by controls with value +1 in the first interval. We need
to prove that H is empty. Since H ™ (¢) is connected (being homeomorphic to the hemisphere),
it is sufficient to prove that both HI and H' are open. Indeed, in such a case, if H' was
nonempty, it would be possible to represent H(¢) as a sum of two open, non-empty, and
disjoint sets, which is a contradiction.

Let us thus choose arbitrary control u* such that F(u*) € H. Clearly, u* has exactly n— 1
switchings. Let I1,. .., 1, now denote the intervals of constancy of u* and / > 0 be the length
of the shortest interval. Let us choose control il € %"~! satisfying ||ii —u*|| < 1I. In each
interval, I; controls u* and i differ on the set whose measure is smaller than %l, which in
turn is smaller than the length of each /;. As a consequence, i must take value 1 in some
point in each of the intervals 11,13, ... and —1 in some point in I, 14, . ... Hence, i has exactly
n — 1 switchings and the same sequence of signs as u*. Thus, there exists neighborhood V of
u* in %"~ that consists solely of controls taking value 1 in the first interval. Let W finally
denote some neighborhood of F (u*) in dX (¢) contained in H* (¢). Such a neighborhood exists
because H™ (¢) is open. Set F (V) NW is a neighborhood of F(u*) in dX (¢) and is contained
in Hj:. As a consequence, HI is open. Analogous reasoning may be applied to H™ and H~ (¢).
This completes the proof. L

Letu, € % =1 how be a fixed control with exactly n— 1 switchings at 7} < 7 < ... < T;—1
with 7; > 0 and 7,_; < ¢. Moreover, let u;, yield point x;. The following theorem describes
the neighborhood of x;:

Theorem 2. The boundary of X(t) is smooth in a neighborhood of xp, and a hyperplane
tangent to dX (1) at x;, is generated by vectors A'"%B fori=1,2,....n— 1.

Proof. Let € be a small positive number. We can consider the following function:
n:[—e e ' = aX(r)

which associates vector &t = (hy,...,h,_1) with F (ul!), where u is control with switchings at
T +hi,...,Ty—1 +hy—1, and with the same sequence of signs as in u,. Forh= (0,... h;,...,0),
we can calculate the following directional derivative:

. _ Ti+h; T
g — im0 E( ADpgr— [ eA<’_T)Bdr)—

“ h,’*)O hi h,'—)O ]’li Ti—1 Ti+h;

T, T iz Ti+h;
—( A0 Bar / ! eA<f*f>Bdr) _ fim =< / At%Bar  (16)
Jo_, g hi—0 h; Jr;

By mean value theorem, there exists &, € [min(7;, 7; + h;), max(7;, T, + h;)] such that the last
integral in (16) is equal to ;¢*"~%) In addition, &, — 7; when h; — 0; finally:

di = lim £2eA07%) = 42A0-T)p A7)

o pi—0
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Since the above derivatives exist for each i, function 7] is smooth. In addition, by Lemma 1,
all vectors df,b are linearly independent; hence, the Jacobi matrix of 1 has a full rank and 7 is,
thus, a local parametrization of dX (¢) in a neighborhood of x;, [6]. As a consequence, dX (¢) is
smooth in a neighborhood of x;, and vectors d,ib span a hyperplane 7, tangent to dX (z) at x;.

(]

In other words, Theorem 2 states that X (¢) is smooth in a neighborhood of points from
H*(t)UH™(t). An example of X (¢) for n = 2 is presented in Figure 1.

X2
o
T

—-1.5 -1 -0.5 0 0.5 1 1.5
X1

Fig. 1. Boundary of X (¢) with two symmetric parts drawn with solid and dashed line, respectively, and
line tangent to its boundary in point x;. Tangent line is parallel to A=) B where 7 is switching
time in control yielding x,. It can be seen that X (¢) is homeomorphic to S! and set of
non-smooth points is homeomorphic to $® = {—1,1}.

4. Sufficient condition for existence
of constantly non-dominated trajectories

In this section, the following notation is being used: for a given set Y, by z+Y we will
denote set {z+y:y € Y}. Similarly, z- Y will denote set {zy:y € Y}.
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Let us now consider m linear criteria J; on the instantaneous state values to be minimized.
They have the following form:

Ji(x(t)) = —plx(r) fori=1,2,...m (18)
for some p; € R". Let 6 denote the cone dual to the set of p;:
0={p1,p2s.,pm} = {xeR":Vi plx>0} (19)

A straightforward proof shows that the cone introduced above determines the preference
structure in the considered optimization problem; that is:

Vx1,x € R": Vi J,~(x2)<J,~(x1) < xnEx+06

Clearly, a particular point x is non-dominated if and only if X (¢) N (x+ 0) = &; from this, we
can gather that set P(X(¢),J) of all non-dominated points is included in the boundary of X (r).
It can be easily seen that the bang-bang control having n — 1 discontinuities at most and taking
value +1 in the first interval yields state trajectory x(-), satisfying V¢ >0 x(t) € H*(¢). Thus,
we immediately obtain a sufficient condition for the existence of non-dominated trajectories.

Theorem 3. [fV: >0 P(X(t),J) = H*(t), constantly non-dominated state trajectories exist.
Furthermore, a trajectory is constantly non-dominated if and only if it is yielded by a bang-
bang control having either n — 1 discontinuities and taking value +1 in the first interval or
having n — 2 discontinuities at most.

In addition, we can state the following theorem, which allows us to make use of the results
obtained in Section 3:

Theorem 4. Let IT denote the space of all hyperplanes tangent to X (t) for any t, shifted to
0. Then:
Vi: P(X(¢),J)=H*(t)VVt: P(X(t),])=H—(t)ifand only i, VR €Il : mNO = 2.

Proof. Let us first prove the if part. Let & be an arbitrary hyperplane tangent to dX(z) in
Xp. Because of the symmetry of X(¢), 7 is tangent to dX (¢) in —x; as well. In such a case,
the whole X (¢) is located on one side of both x;, + 7 and —x;, + 7, but the sides are opposite
to each other. Furthermore, x, + @ and —x;, + 7 support x, + 0 and —x;, + 6, respectively.
Hence, either x;, + 7 or —x;, + 7 separates X (¢) from x;, + 0 or —x;, + 0, respectively; as
a consequence, either x;, or —x; are non-dominated. Because dX (¢) is piecewise smooth and
7 depends continuously on xj, all non-dominated points are located in the same smooth part;
i.e., either in H*(¢) or H~(t). The Pareto optimality of the points from R(¢) can be easily
proven by considering a limit x, — R(¢). Finally, from the continuous dependence of H+(t)
and H—(r) on ¢, we can infer that, if for some #;, the non-dominated part is H(r; ), then H=(¢)
is non-dominated for each ¢.
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To prove the only if part, let us assume that P(X(¢),J) = H*(¢) and consider non-
dominated point x, € HT (). x;, + 7 supports X (¢) at x,; since x;, is non-dominated, 7 supports
xp + 0 as well. Thus, 6N = @. [ ]

From Theorems 2 and 4, we can immediately gather the following:

Theorem 5. If for each set of pairwise distinct and positive T;, i = 1,...,n— 1 hyperplane
span(eA<”T">B) is disjoint with cone 0, then constantly non-dominated trajectories of the
system exist, and for either ugy = 1 or ug = —1, they are yielded by a bang-bang control having
either exactly n — 1 discontinuities and taking value ug in the first interval or strictly fewer
than n — 1 discontinuities.

. . . . 1 -1 1
EXAMPLE. Let us consider two-dimensional system (4) with A = [ 0 2 ], B= [ 1 ] and

criteria (18) with p; = [1 Z]T, P2 = [1 —3]T. By Theorem 4, constantly non-dominated
trajectories of the system exist if, for each # > 0, line A'B-Ris disjoint with 6. Cone (19) is
given by the following inequalities:

2x) > —x (20)
3x2 < X1 (21)

. . : 2! — ¥
while the lines tangent to the attainable set are spanned by v(t) = ¢'B = [ ¢ 2,6 }, t>0.1t
e

can be easily verified that inequality (21) is never satisfied by the points that belong to v(z) - R.
Hence, V¢ P(X(t),J) = H*(t) and non-dominated trajectories exist. In order to determine
the value non-dominated control takes in its first interval, we can explicitly solve an optimal
control problem with one criterion J'(x(t;)) = —x1 (1) for a fixed t;. An explicit calculation
of the control yielding optimal state x* with regard to J’ indicates that it has a switching and
takes value —1 in its first interval of constancy; thus, x* € H ™ (¢;). On the other hand, since x*
minimizes the convex combination of criteria J; and J;, it is non-dominated at #; with regard
to J and x* € P(X(1),J). Finally, V¢t P(X(¢),J) = H~(t), and non-dominated trajectories are
yielded by either constant control functions or those having exactly one discontinuity and
taking value —1 in their first interval.

5. Conclusion

In this paper, a multi-criteria optimization control problem for linear time-invariant
systems with linear criteria was considered. An original contribution of the paper includes
stating and proving a sufficient condition for the existence of constantly non-dominated
trajectories, a description of hyperplanes tangent to the attainable set in function of control
switching times and a proof of the topological equivalence of (n — 1)-dimensional sphere and
a space of bang-bang control functions with (n — 1) switchings at most.
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Warunek wystarczajacy istnienia stale niezdominowanej trajektorii
w liniowym stacjonarnym systemie dynamicznym

Streszczenie: W artykule rozwazono problem wielokryterialnego sterowania optymalnego w liniowym

stacjonarnym systemie dynamicznym z jednym wejsSciem przyjmujacym wartosci z ograniczonego

prz

edzialu. W szczegdlnosci udowodniono, ze przy spetnieniu okre§lonych zatozen trajektoria stanu

jest niezdominowana w trakcie calego procesu sterowania wtedy i tylko wtedy, gdy jest generowana

prz

ez sterowanie nalezace do pewnej klasy sygnaléw typu bang-bang. Ponadto zostat przedstawiony

wz6r pozwalajacy wyrazié hiperptaszczyzneg styczna do zbioru osiagalnego w funkcji czasow przetaczen

sygnatu sterujacego.

Sto

wa kluczowe: wielokryterialne sterowania optymalne, zbior osiqgalny, metoda hiperptaszczyzn

podpierajqcycha



