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On D-decomposition of periodically sampled systems

Abstract: The problem of the stability of non-uniformly sampled systems is considered. For this purpose,
the D-decomposition method for determining the stability region in parameter space is investigated.
Moreover, basic information about non-uniform sampling are presented, with an emphasis on periodic
sampling. Based on the obtained simulation results, some comparisons of systems with different sampling
patterns are considered.
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1. Introduction

Generally, the sampling process is described as follows:

xs(t) = x(t)
∞

∑
k=0

δ (t− tk) (1)

where δ denotes the Dirac impulse, tk are sampling instants, which can be described in the
uniform sampling case as tk = kT , where T denotes the sampling period, k ∈ IN, and tk < tk+1;
see [1]. In non-uniform sampling, the period may differ for two consecutive samples; thus, in
non-uniform sampling, tk 6= kT .

Over the last decades, many non-uniform sampling schemes have been investigated.
The most-common non-uniform sampling schemes are as follows: jittered random sampling
(jrs), additive random sampling (ars), recurrent sampling, periodic sampling, and multi-rate
sampling; see, for example, [1–3].

The use of the practical application of non-uniform sampling has risen over the last years
due to its advantages, such as decreasing data size with simultaneously ensuring sufficient
accuracy; see, for example, [4]. Currently, non-uniform sampling is applied in such areas as
networked control systems, medicine, and automotive applications; see, for example, [5].

Nevertheless, there are still some open problems in the non-uniform sampling theory; for
example, ensuring the stability in non-uniformly sampled systems. There exist less number

? Bialystok University of Technology, Department of Automatics and Robotics, Wiejska 45C, 15-351 Białystok,
Poland, e-mail: j.janczak@doktoranci.pb.edu.pl

7



8 Justyna Jańczak

of stability results for nonuniform sampling than for uniform sampling. This work investi-
gates the problem of the stability of a non-uniformly sampled system with the use of the
D-decomposition method; see, for example, [6, 7]. The idea of D-decomposition is based on
determining the regions on a parameter plane obtained from a characteristic equation with
simple parametrization by jω . In each region, there is a known number of characteristic equa-
tion roots with positive and negative real parts. This technique is based on the decomposition
of the parameter space into domains with boundaries defined by P( jω,λ ) = 0, ω ∈ (−∞,∞)

for continuous-time systems and P(e jω ,λ ) = 0, ω ∈ [0,2π) for discrete ones; λ ∈ IRm is
a parameter, and P(s,λ ) denotes an nth-degree polynomial. In this paper, D-decomposition for
state-space form of the system with periodic sampling of the Lth order is introduced; therefore,
a sampled system is obtained.

The paper is organized as follows. In Section 2, the periodic sampling scheme of the 2nd
and Lth orders is described. The basic notation and facts about D-decomposition are presented.
In Section 3, simulation results based on the example of a DC motor are investigated. In
Section 4, conclusions and suggestions for future works are mentioned.

2. Periodic sampling scheme

In this section, the periodic sampling scheme is discussed. Further basics about D-decom-
position are introduced with reference to non-uniformly sampled systems. An exemplary
sampling scheme that was used in the next part of this work is a periodic sampling of the Lth
order.

Periodic sampling of the 2nd order is a particular case of periodic sampling of the Lth
order; both schemes can be described as follows.

1) Periodic sampling of 2nd order:

The simplest case of non-uniform sampling occurs when two uniform samples with sam-
pling period T are interleaved by time offset 0 < d1 < T . This mode of sampling is called
periodic sampling. The number of interleaved samples define the order of the sampling:
in the 2nd order of periodic sampling, two different lengths of sampling periods occur.
The two sets of samples can be described as x(kT ),k ∈ N and x(kT +d1),k ∈ N,d1 < T ;
see, for example, [2], which is clarified in Figure 1.

x

0 1d T T+ 1d 2T 2T+ 1d

Fig. 1. Periodic sampling of second order
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2) Periodic sampling of Lth order:

In periodic sampling of the Lth order (where L > 1), L different sampling periods are defi-
ned; i.e., as the following set of time instance samplings x(kT ),k ∈ N, x(kT +d1),k ∈ N,
. . . , x(kT +dL−1),k ∈ N, which is presented in Figure 2.

x

0 1d 2d 3d (L-1)d T+d1 T+d 2T

Fig. 2. Periodic sampling of Lth order

3. D-decomposition theory with periodic sampling of Lth order

Consider a hybrid system; i.e., mixed continuous and discrete time subsystems. The
continuous-time part is defined as follows:

ẋ(t) = Acx(t)+Bcu(t)

y(t) =Ccx(t)
(2)

where x ∈ IRn denotes a state vector, u ∈ IRm a control vector, and y ∈ IRr an output vector,
and the system matrices have the following dimensions: Ac ∈ IRn×n, Bc ∈ IRn×m, Cc ∈ IRr×n.

By non-uniformly sampling the continuous-time dynamics of (2), the following discrete-
time subsystem at time instants t = ti, i = 1, ...,k is obtained:

x(ti+1) = Adix(ti)+Bdiu(ti)

y(ti) =Cdix(ti)
(3)

where Adi ,Bdi ,Cdi are discrete-time system matrices of appropriate dimensions.

The discrete-time system matrix Adi from (3) can be described as follows (see [8]):

Adi :=
eAcvi − I

vi
(4)

where vi denotes the sampling step and Adi → Ac, when vi→ 0 and matrices Bdi := eBcvi−I
vi

and Cdi := eCcvi−I
vi

.
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For the periodic sampling scheme applied to the hybrid system [i.e. mixed subsystems
(2) and (3)], discrete and continuous time is described as follows.

1) In the case of the periodic sampling of second order implemented to subsystem (2) is
defined on the sum of time intervals∪k

i=0(iT ; iT +d)+∪k
i=0(iT +d,(i+1)T ) and for dis-

crete subsystem (3), sampling instants are taken from set ti ∈ {0,d,T,T +d, ...,kT +d};
thus, sampling step vi = di for even samples and vi = T −di for odd samples.

2) In the case of the periodic sampling of the Lth order implemented to subsystem (2) is
defined on the sum of time intervals ∪k

i=0(iT ; iT +d1)+∪k
i=0(iT +d1, iT +d2)+ ...+

∪k
i=0(iT + dL−1,(i+ 1)T ) and for discrete subsystem (3), sampling instants are taken

from set ti ∈ {0,d1,d2, ...,dL−1,T,T + d1, ...,kT + dL−1}; thus, sampling step v1 = d1,
v2 = d2−d1, v3 = d3−d2,..., vL−1 = dL−1−dL−2, vL = T −dL−1.

Problem. The aim of this study is to design a controller K by using the D-decomposition
method so that the stability of the system with periodic sampling will be ensured.

Subsystems (2) and (3) with state-feedback controller K are controlled by:

u(t) = Kcy(t) = KcCcx(t)

u(tk) = Kdy(tk) = KdCdx(tk)
(5)

The closed-loop system, which consists of subsystems (2) and (3), has the following
form:

ẋ(t) = (Ac +BcKcCc)x(t)

y(t) =Ccx(t)

x(tk +1) = (Adi +BdiKdiCdi)x(tk)

y(tk) =Cdix(tk)

(6)

where continuous-time subsystem (2) occurs in t 6= tk and a discrete update of the state
occurs for t = tk as in (3). The connection between the system matrices of both subsystems is
descri-bed by (4).

The D-decomposition set of stabilizing matrices K for the state-space form of the sy-
stem (6) is described by:

D = {K ∈K : A+BKC is stable} (7)

Thus, set D contains all matrices K ∈ K such that A+BKC is stable. Also, matrix
A+BKC is stable if all eigenvalues are in the open left-half plane for a continuous-time system
and all eigenvalues are in the open unit disc for a discrete-time system; see [6]. Furthermore,
assume that matrix A does not have zero or imaginary eigenvalues for the continuous-time
subsystem (2) and does not have eigenvalues on the unit circumference for the discrete one (3).
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The D-decomposition technique is based on the decomposition of the parameter space.
For systems in the state-space form class K of parameters K ∈ IRr×m matrices, K may be
described in many different ways. The simplest cases (see [6, 7]) are given by:

K = k or K = kT , (8)

where k ∈ IRn, for the case of m = 1 or r = 1.

K = kI,k ∈ IR or k ∈ C, (9)

where I – identity matrix, for the case of m = r

K ∈ IR2×2 (10)

where matrices K’s dimensions depend on the dimensions of system matrices B and C.

Let us consider class (9) where K = kI; then, matrix A+BKC is defined as A+ kBC due
to the fact that k is a scalar value in this case.

Definition 1 [6, 7]. For l = 0, . . . , n, the D-decomposition is the decomposition of the para-
meter space into regions Dl = {k ∈K : A+ kBC has l stable eigenvalues}. The equation
describing the boundary of regions Dl is called the D-decomposition equation.

Theorem 1 [6, 7]. The D-decomposition equation for continuous-time systems is

det(Ac + kFc− jωI) = 0, ω ∈ (−∞,+∞) (11)

where Fc = BcCc and for discrete systems with Fdi = BdiCdi

det(Adi + kFdi − e jω I) = 0, ω ∈ [0,2π) (12)

defines the D-decomposition for class K ; i.e., if Q ⊂K is a connected set and det(Ac +

kFc− jωI) 6= 0, ω ∈ (−∞,+∞), ∀K ∈ Q or det(Adi + kFdi − e jω I) 6= 0, ω ∈ [0,2π), ∀K ∈ Q,
then A+BKC has the same number of stable and unstable eigenvalues for all matrices K in Q.

Proof. The proof is similar to that presented in [9].
The D-decomposition equation allows us to plot a D-curve that assigns regions on a para-

meter plane where the characteristic equation roots are grouped in a special manner. The
boundaries of the regions are received by mapping the s-plane in jw-axis in the characteristic
equation.

System (6) can be also defined as a transfer function in following manner (see [7]):

G(s) =Cc(Ac− sI)−1Bc (13)

for the continuous-time case; and for the discrete-one:

G(z) =Cdi(Adi − zI)−1Bdi (14)

and (Adi − zI)→ (Ac− sI) when vi→ 0.
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For the case of the class given by (9), the D-decomposition equation for the transfer
functions obtained in (13) and (14) is reduced to the polynomial case; and for continuous-time,
it follows that

a( jω)+ kb( jω) = 0 (15)

where the transfer function is in the form of G(s) = b(s)
a(s) and w(s) = a(s) + kb(s) is the

characteristic polynomial. In the discrete-time case, equation (15) has the following form:

a(e jω)+ kb(e jω) = 0 (16)

For further information, see [6] (for example).

4. D-decomposition for systems with implemented periodic sampling

In this section, the results of the D-decomposition obtained during the simulations are
presented. Simulations were done for system (6) with a periodic sampling of the Lth order.

Example 1. Let us take into consideration a closed-loop linear system with an implemented
periodic sampling of the Lth order with a DC (Direct Current) motor as a plant. The DC motor
parameters were taken from [10] as in Table 1. The considered DC motor (along with the
indicated parameters) is presented in Figure 3.

Table 1
Parameters of DC motor

Parameter Value

Armature Resistance Ra = 11.200 Ω

Armature Inductance Ra = 0.122 H

Rotor Inertia Jm = 0.022 kg ·m2

Viscour Friction Coefficient Bm = 0.003 N·m
s·rad

Motor Torque Constant km = 1.280 N·m
A

Back Emf Constant kb = 1.280 V·s
rad

The state-space form for the continuous-time subsystem is described
as (2), and matrices Ac,Bc,Cc,Dc are defined on set ∪k

ß=0(i · 0.10; i · 0.10 + 0.01)
+ ∪k

ß=0 (i · 0.10 + 0.01, i · 0.10 + 0.03) + ∪k
ß=0 (i · 0.10 + 0.03; i · 0.10 + 0.06

+∪k
ß=0 (i ·0.10+0.06;(i+1) ·0.10 + ... by

Ac =

[
−91.95 −622.95

1.00 0.00

]
, Bc =

[
1.00
0.00

]
,Cc =

[
0.00

476.90

]
, Dc = 0
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Fig. 3. Exemplary DC motor

Periodic sampling of the 4th order was implemented into the DC motor system with
sampling parameters such that d1 = 0.01 s, d2 = 0.03 s, d3 = 0.06 s and T = 0.10 s. The
general state-space form of this discrete subsystem is given by (3) and according to the (4)
discrete-time system matrix changes in each sampling step. The sampling pattern that is used
generates four different sampling steps: v1 = 0.01, v2 = 0.02, v3 = 0.03, and v4 = 0.04. These
consecutive sampling steps repeat periodically. Thus, four discrete matrices were obtained:

Ad1 =

[
−100.00 0.00

2.72 −99.00

]
, Ad2 =

[
−50.00 0.00

2.72 −49.00

]
, Ad3 =

[
−33.33 0.00

2.72 −32.33

]
,

Ad4 =

[
−25.00 0.00

2.72 −24.00

]
and the sampling time instants follows tk ∈ {0;0.01;0.03;0.06;0.10; . . . ; i ·0.10}.

The D-decomposition for system (6) with Lth-order periodic sampling is obtained from
the D-decomposition equations given by (13) and (14).

The parametric curve for continuous-time subsystem with matrices Ac,Bc,Cc,Dc is given
by k(ω) = ω2−91.95 jω−622.95

476.90 .
The parametric curves for the discrete-time subsystems are as follows:

k1(e jω) =
−99e2 jω −9900e jω

1297.17
,

k2(e jω) =
−49e2 jω −2450e jω

1297.17
,

k3(e jω) =
−32.33e2 jω −1077.56e jω

1297.17
,

k4(e jω) =
−24e2 jω −600e jω

1297.17
.

The D-decomposition curve for the continuous-time subsystem is depicted in Figure 4
and for the discrete-time subsystem in Figure 5.
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Fig. 4. D-decomposition regions for continuous-time subsystem

In Figure 5, it can be seen that the D-decomposition circle stability regions become
smaller for larger sampling steps; for v4 = 0.04, the stability region has the smallest surface.
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Fig. 5. D-decomposition regions for discrete-time subsystem: a) discrete-time for v1;
b) discrete-time for v2; c) discrete-time for v3; d) discrete-time for v4

It also can be seen that the discrete stability regions are inside the stability region for the
continuous-time subsystem. Thus, to achieve stability in system (6), parameter k should be
chosen from the smallest circle. Thus, the designed controller is k = 0.2 (for example). Now,
it is necessary to check whether A+ kBC has stable eigenvalues for the chosen k value.

For the continuous-time subsystem and matrices Ac,Bc,Cc,Dc, the eigenvalues are

λ1 =−85.80, λ2 =−6.15

Thus, system (6) is stable for the chosen k = 0.2.
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5. Conclusions

In the paper, a sampled-data control system with periodic sampling of the 4th order was
implemented as two subsystems – one continuous and one discrete.

The technique of D-decomposition was applied into two subsystems. In each subsystem,
one stability region of parameter k was obtained. The stability regions were acquired by taking
common parts of their subsystems. It is observed that the D-decomposition curve for discrete
subsystems with a smaller sampling step has a wider range than for a discrete subsystem with
a greater sampling step.

Future work will include the application of D-decomposition into a continuous-time
system with a discrete, non-uniformly sampled controller.
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D-podział systemów próbkowanych periodycznie
Streszczenie: W artykule przedstawiono rozważania na temat stabilności systemów próbkowanych
niejednorodnie. W tym celu wykorzystano metodę D-podziału do określenia regionów stabilności
w przestrzeni parametrycznej. Ponadto przytoczono podstawowe informacje dotyczące próbkowania
niejednorodnego, w szczególności próbkowania periodycznego. Bazując na otrzymanych wynikach
symulacji, dokonano porównania systemów z różnymi schematami próbkowania.

Słowa kluczowe: próbkowanie periodyczne, systemy hybrydowe, metoda D-podziału badania stabil-
ności


