https://doi.org/10.7494/automat.2017.21.1.7

Justyna Jańczak*

On D-decomposition of periodically sampled systems

Abstract: The problem of the stability of non-uniformly sampled systems is considered. For this purpose, the D-decomposition method for determining the stability region in parameter space is investigated. Moreover, basic information about non-uniform sampling are presented, with an emphasis on periodic sampling. Based on the obtained simulation results, some comparisons of systems with different sampling patterns are considered.

Keywords: periodic sampling, hybrid systems, D-decomposition stability

1. Introduction

Generally, the sampling process is described as follows:

$$x_s(t) = x(t) \sum_{k=0}^{\infty} \delta(t - t_k)$$
(1)

where δ denotes the Dirac impulse, t_k are sampling instants, which can be described in the uniform sampling case as $t_k = kT$, where *T* denotes the sampling period, $k \in \mathbb{N}$, and $t_k < t_{k+1}$; see [1]. In non-uniform sampling, the period may differ for two consecutive samples; thus, in non-uniform sampling, $t_k \neq kT$.

Over the last decades, many non-uniform sampling schemes have been investigated. The most-common non-uniform sampling schemes are as follows: jittered random sampling (jrs), additive random sampling (ars), recurrent sampling, periodic sampling, and multi-rate sampling; see, for example, [1–3].

The use of the practical application of non-uniform sampling has risen over the last years due to its advantages, such as decreasing data size with simultaneously ensuring sufficient accuracy; see, for example, [4]. Currently, non-uniform sampling is applied in such areas as networked control systems, medicine, and automotive applications; see, for example, [5].

Nevertheless, there are still some open problems in the non-uniform sampling theory; for example, ensuring the stability in non-uniformly sampled systems. There exist less number

^{*} Białystok University of Technology, Department of Automatics and Robotics, Wiejska 45C, 15-351 Białystok, Poland, e-mail: j.janczak@doktoranci.pb.edu.pl

of stability results for nonuniform sampling than for uniform sampling. This work investigates the problem of the stability of a non-uniformly sampled system with the use of the D-decomposition method; see, for example, [6,7]. The idea of D-decomposition is based on determining the regions on a parameter plane obtained from a characteristic equation with simple parametrization by $j\omega$. In each region, there is a known number of characteristic equation roots with positive and negative real parts. This technique is based on the decomposition of the parameter space into domains with boundaries defined by $P(j\omega, \lambda) = 0$, $\omega \in (-\infty, \infty)$ for continuous-time systems and $P(e^{j\omega}, \lambda) = 0$, $\omega \in [0, 2\pi)$ for discrete ones; $\lambda \in \mathbb{R}^m$ is a parameter, and $P(s, \lambda)$ denotes an *n*th-degree polynomial. In this paper, D-decomposition for state-space form of the system with periodic sampling of the *L*th order is introduced; therefore, a sampled system is obtained.

The paper is organized as follows. In Section 2, the periodic sampling scheme of the 2nd and *L*th orders is described. The basic notation and facts about D-decomposition are presented. In Section 3, simulation results based on the example of a DC motor are investigated. In Section 4, conclusions and suggestions for future works are mentioned.

2. Periodic sampling scheme

In this section, the periodic sampling scheme is discussed. Further basics about D-decomposition are introduced with reference to non-uniformly sampled systems. An exemplary sampling scheme that was used in the next part of this work is a periodic sampling of the *L*th order.

Periodic sampling of the 2nd order is a particular case of periodic sampling of the *L*th order; both schemes can be described as follows.

1) Periodic sampling of 2nd order:

The simplest case of non-uniform sampling occurs when two uniform samples with sampling period *T* are interleaved by time offset $0 < d_1 < T$. This mode of sampling is called periodic sampling. The number of interleaved samples define the order of the sampling: in the 2nd order of periodic sampling, two different lengths of sampling periods occur. The two sets of samples can be described as $x(kT), k \in \mathbb{N}$ and $x(kT+d_1), k \in \mathbb{N}, d_1 < T$; see, for example, [2], which is clarified in Figure 1.

Fig. 1. Periodic sampling of second order

2) Periodic sampling of *L*th order:

In periodic sampling of the *L*th order (where L > 1), *L* different sampling periods are defined; i.e., as the following set of time instance samplings $x(kT), k \in \mathbb{N}, x(kT + d_1), k \in \mathbb{N}, \dots, x(kT + d_{L-1}), k \in \mathbb{N}$, which is presented in Figure 2.

Fig. 2. Periodic sampling of Lth order

3. D-decomposition theory with periodic sampling of *L*th order

Consider a hybrid system; i.e., mixed continuous and discrete time subsystems. The continuous-time part is defined as follows:

$$\dot{x}(t) = A_c x(t) + B_c u(t)$$

$$y(t) = C_c x(t)$$
(2)

where $x \in \mathbb{R}^n$ denotes a state vector, $u \in \mathbb{R}^m$ a control vector, and $y \in \mathbb{R}^r$ an output vector, and the system matrices have the following dimensions: $A_c \in \mathbb{R}^{n \times n}$, $B_c \in \mathbb{R}^{n \times m}$, $C_c \in \mathbb{R}^{r \times n}$.

By non-uniformly sampling the continuous-time dynamics of (2), the following discretetime subsystem at time instants $t = t_i$, i = 1, ..., k is obtained:

$$x(t_{i+1}) = A_{d_i}x(t_i) + B_{d_i}u(t_i)$$

$$y(t_i) = C_{d_i}x(t_i)$$
(3)

where $A_{d_i}, B_{d_i}, C_{d_i}$ are discrete-time system matrices of appropriate dimensions.

The discrete-time system matrix A_{d_i} from (3) can be described as follows (see [8]):

$$A_{d_i} := \frac{e^{A_c v_i} - I}{v_i} \tag{4}$$

where v_i denotes the sampling step and $A_{d_i} \to A_c$, when $v_i \to 0$ and matrices $B_{d_i} := \frac{e^{B_c v_i} - I}{v_i}$ and $C_{d_i} := \frac{e^{C_c v_i} - I}{v_i}$. For the periodic sampling scheme applied to the hybrid system [i.e. mixed subsystems (2) and (3)], discrete and continuous time is described as follows.

- In the case of the periodic sampling of second order implemented to subsystem (2) is defined on the sum of time intervals ∪^k_{i=0}(iT; iT+d)+∪^k_{i=0}(iT+d, (i+1)T) and for discrete subsystem (3), sampling instants are taken from set t_i ∈ {0, d, T, T + d, ..., kT + d}; thus, sampling step v_i = d_i for even samples and v_i = T d_i for odd samples.
- 2) In the case of the periodic sampling of the *L*th order implemented to subsystem (2) is defined on the sum of time intervals $\bigcup_{i=0}^{k} (iT; iT + d_1) + \bigcup_{i=0}^{k} (iT + d_1, iT + d_2) + ... + \bigcup_{i=0}^{k} (iT + d_{L-1}, (i+1)T)$ and for discrete subsystem (3), sampling instants are taken from set $t_i \in \{0, d_1, d_2, ..., d_{L-1}, T, T + d_1, ..., kT + d_{L-1}\}$; thus, sampling step $v_1 = d_1$, $v_2 = d_2 d_1$, $v_3 = d_3 d_2$,..., $v_{L-1} = d_{L-1} d_{L-2}$, $v_L = T d_{L-1}$.

Problem. The aim of this study is to design a controller *K* by using the D-decomposition method so that the stability of the system with periodic sampling will be ensured.

Subsystems (2) and (3) with state-feedback controller K are controlled by:

$$u(t) = K_c y(t) = K_c C_c x(t)$$

$$u(t_k) = K_d y(t_k) = K_d C_d x(t_k)$$
(5)

The closed-loop system, which consists of subsystems (2) and (3), has the following form:

$$\dot{x}(t) = (A_c + B_c K_c C_c) x(t)$$

$$y(t) = C_c x(t)$$

$$x(t_k + 1) = (A_{d_i} + B_{d_i} K_{d_i} C_{d_i}) x(t_k)$$

$$y(t_k) = C_{d_i} x(t_k)$$
(6)

where continuous-time subsystem (2) occurs in $t \neq t_k$ and a discrete update of the state occurs for $t = t_k$ as in (3). The connection between the system matrices of both subsystems is described by (4).

The D-decomposition set of stabilizing matrices K for the state-space form of the system (6) is described by:

$$D = \{K \in \mathscr{K} : A + BKC \text{ is stable}\}$$
(7)

Thus, set *D* contains all matrices $K \in \mathcal{K}$ such that A + BKC is stable. Also, matrix A + BKC is stable if all eigenvalues are in the open left-half plane for a continuous-time system and all eigenvalues are in the open unit disc for a discrete-time system; see [6]. Furthermore, assume that matrix *A* does not have zero or imaginary eigenvalues for the continuous-time subsystem (2) and does not have eigenvalues on the unit circumference for the discrete one (3).

The D-decomposition technique is based on the decomposition of the parameter space. For systems in the state-space form class \mathcal{K} of parameters $K \in \mathbb{R}^{r \times m}$ matrices, K may be described in many different ways. The simplest cases (see [6,7]) are given by:

$$K = k \text{ or } K = k^T, \tag{8}$$

where $k \in \mathbb{R}^n$, for the case of m = 1 or r = 1.

$$K = kI, k \in \mathbb{R} \text{ or } k \in \mathbb{C}, \tag{9}$$

where I – identity matrix, for the case of m = r

$$K \in \mathbb{R}^{2 \times 2} \tag{10}$$

where matrices K's dimensions depend on the dimensions of system matrices B and C.

Let us consider class (9) where K = kI; then, matrix A + BKC is defined as A + kBC due to the fact that k is a scalar value in this case.

Definition 1 [6,7]. For l = 0, ..., n, the D-decomposition is the decomposition of the parameter space into regions $D_l = \{k \in \mathcal{K} : A + kBC \text{ has } l \text{ stable eigenvalues}\}$. The equation describing the boundary of regions D_l is called the D-decomposition equation.

Theorem 1 [6,7]. The D-decomposition equation for continuous-time systems is

$$det(A_c + kF_c - j\omega I) = 0, \ \omega \in (-\infty, +\infty)$$
⁽¹¹⁾

where $F_c = B_c C_c$ and for discrete systems with $F_{d_i} = B_{d_i} C_{d_i}$

$$det(A_{d_i} + kF_{d_i} - e^{j\omega}I) = 0, \quad \omega \in [0, 2\pi)$$

$$\tag{12}$$

defines the D-decomposition for class \mathscr{K} ; i.e., if $Q \subset \mathscr{K}$ is a connected set and $det(A_c + kF_c - j\omega I) \neq 0$, $\omega \in (-\infty, +\infty)$, $\forall K \in Q$ or $det(A_{d_i} + kF_{d_i} - e^{j\omega}I) \neq 0$, $\omega \in [0, 2\pi)$, $\forall K \in Q$, then A + BKC has the same number of stable and unstable eigenvalues for all matrices K in Q.

Proof. The proof is similar to that presented in [9].

The D-decomposition equation allows us to plot a D-curve that assigns regions on a parameter plane where the characteristic equation roots are grouped in a special manner. The boundaries of the regions are received by mapping the *s*-plane in jw-axis in the characteristic equation.

System (6) can be also defined as a transfer function in following manner (see [7]):

$$G(s) = C_c (A_c - sI)^{-1} B_c$$
(13)

for the continuous-time case; and for the discrete-one:

$$G(z) = C_{d_i} (A_{d_i} - zI)^{-1} B_{d_i}$$
(14)

and $(A_{d_i} - zI) \rightarrow (A_c - sI)$ when $v_i \rightarrow 0$.

For the case of the class given by (9), the D-decomposition equation for the transfer functions obtained in (13) and (14) is reduced to the polynomial case; and for continuous-time, it follows that

$$a(j\omega) + kb(j\omega) = 0 \tag{15}$$

where the transfer function is in the form of $G(s) = \frac{b(s)}{a(s)}$ and w(s) = a(s) + kb(s) is the characteristic polynomial. In the discrete-time case, equation (15) has the following form:

$$a(e^{j\omega}) + kb(e^{j\omega}) = 0 \tag{16}$$

For further information, see [6] (for example).

4. D-decomposition for systems with implemented periodic sampling

In this section, the results of the D-decomposition obtained during the simulations are presented. Simulations were done for system (6) with a periodic sampling of the *L*th order.

Example 1. Let us take into consideration a closed-loop linear system with an implemented periodic sampling of the *L*th order with a DC (Direct Current) motor as a plant. The DC motor parameters were taken from [10] as in Table 1. The considered DC motor (along with the indicated parameters) is presented in Figure 3.

Parameter	Value
Armature Resistance	$R_a = 11.200 \ \Omega$
Armature Inductance	$R_a = 0.122 \text{ H}$
Rotor Inertia	$J_m = 0.022 \text{ kg} \cdot \text{m}^2$
Viscour Friction Coefficient	$B_m = 0.003 \frac{\text{N} \cdot \text{m}}{\text{s} \cdot \text{rad}}$
Motor Torque Constant	$k_m = 1.280 \ \frac{\text{N} \cdot \text{m}}{A}$
Back Emf Constant	$k_b = 1.280 \frac{V \cdot s}{rad}$

 Table 1

 Parameters of DC motor

The state-space form for the continuous-time subsystem is described as (2), and matrices A_c, B_c, C_c, D_c are defined on set $\bigcup_{B=0}^{k} (i \cdot 0.10; i \cdot 0.10 + 0.01)$ $+ \bigcup_{B=0}^{k} (i \cdot 0.10 + 0.01, i \cdot 0.10 + 0.03) + \bigcup_{B=0}^{k} (i \cdot 0.10 + 0.03; i \cdot 0.10 + 0.06)$ $+ \bigcup_{B=0}^{k} (i \cdot 0.10 + 0.06; (i+1) \cdot 0.10 + ...$ by

$$A_c = \begin{bmatrix} -91.95 & -622.95\\ 1.00 & 0.00 \end{bmatrix}, B_c = \begin{bmatrix} 1.00\\ 0.00 \end{bmatrix}, C_c = \begin{bmatrix} 0.00\\ 476.90 \end{bmatrix}, D_c = 0$$

Fig. 3. Exemplary DC motor

Periodic sampling of the 4th order was implemented into the DC motor system with sampling parameters such that $d_1 = 0.01$ s, $d_2 = 0.03$ s, $d_3 = 0.06$ s and T = 0.10 s. The general state-space form of this discrete subsystem is given by (3) and according to the (4) discrete-time system matrix changes in each sampling step. The sampling pattern that is used generates four different sampling steps: $v_1 = 0.01$, $v_2 = 0.02$, $v_3 = 0.03$, and $v_4 = 0.04$. These consecutive sampling steps repeat periodically. Thus, four discrete matrices were obtained:

$$A_{d_1} = \begin{bmatrix} -100.00 & 0.00 \\ 2.72 & -99.00 \end{bmatrix}, A_{d_2} = \begin{bmatrix} -50.00 & 0.00 \\ 2.72 & -49.00 \end{bmatrix}, A_{d_3} = \begin{bmatrix} -33.33 & 0.00 \\ 2.72 & -32.33 \end{bmatrix},$$
$$A_{d_4} = \begin{bmatrix} -25.00 & 0.00 \\ 2.72 & -24.00 \end{bmatrix}$$

and the sampling time instants follows $t_k \in \{0; 0.01; 0.03; 0.06; 0.10; ...; i \cdot 0.10\}$.

The D-decomposition for system (6) with Lth-order periodic sampling is obtained from the D-decomposition equations given by (13) and (14).

The parametric curve for continuous-time subsystem with matrices A_c, B_c, C_c, D_c is given by $k(\omega) = \frac{\omega^2 - 91.95 j\omega - 622.95}{476.90}$.

The parametric curves for the discrete-time subsystems are as follows:

$$k_1(e^{j\omega}) = \frac{-99e^{2j\omega} - 9900e^{j\omega}}{1297.17},$$

$$k_2(e^{j\omega}) = \frac{-49e^{2j\omega} - 2450e^{j\omega}}{1297.17},$$

$$k_3(e^{j\omega}) = \frac{-32.33e^{2j\omega} - 1077.56e^{j\omega}}{1297.17},$$

$$k_4(e^{j\omega}) = \frac{-24e^{2j\omega} - 600e^{j\omega}}{1297.17}.$$

The D-decomposition curve for the continuous-time subsystem is depicted in Figure 4 and for the discrete-time subsystem in Figure 5.

Fig. 4. D-decomposition regions for continuous-time subsystem

In Figure 5, it can be seen that the D-decomposition circle stability regions become smaller for larger sampling steps; for $v_4 = 0.04$, the stability region has the smallest surface.

Fig. 5. D-decomposition regions for discrete-time subsystem: a) discrete-time for v_1 ; b) discrete-time for v_2 ; c) discrete-time for v_3 ; d) discrete-time for v_4

It also can be seen that the discrete stability regions are inside the stability region for the continuous-time subsystem. Thus, to achieve stability in system (6), parameter k should be chosen from the smallest circle. Thus, the designed controller is k = 0.2 (for example). Now, it is necessary to check whether A + kBC has stable eigenvalues for the chosen k value.

For the continuous-time subsystem and matrices A_c, B_c, C_c, D_c , the eigenvalues are

$$\lambda_1 = -85.80, \ \lambda_2 = -6.15$$

Thus, system (6) is stable for the chosen k = 0.2.

5. Conclusions

In the paper, a sampled-data control system with periodic sampling of the 4th order was implemented as two subsystems – one continuous and one discrete.

The technique of D-decomposition was applied into two subsystems. In each subsystem, one stability region of parameter k was obtained. The stability regions were acquired by taking common parts of their subsystems. It is observed that the D-decomposition curve for discrete subsystems with a smaller sampling step has a wider range than for a discrete subsystem with a greater sampling step.

Future work will include the application of D-decomposition into a continuous-time system with a discrete, non-uniformly sampled controller.

References

- [1] Ben-Romdhane P., Rebai C., Ghazel A., et al., *Non-uniform sampling schemes for IF sampling radio receiver*, International Conference in Tunisia, 2016, pp. 15–20.
- [2] Lin Y., Vaidyanathan P.P., Periodically nonuniform sampling of bandpass signals, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45(3), 1998, pp. 340–351.
- [3] Guo G., Systems with nonequidistant sampling: controllable? observable? stable?, Asian Journal of Control 7, 2005, pp. 455–461.
- [4] Feizi S., Angelopoulos G., Goyal V., Mdard M., Energy-efficient time-stampless adaptive nonuniform sampling, in: Proceedings of the IEEE Sensors, Limerick, 2011, pp. 912–915.
- [5] Eng F., Non-uniform sampling in statistical signal processing, PhD Thesis, 2007, pp. 7–29.
- [6] Gryazina E.N., Polyak B.T., Tremba A.A., *D-decomposition technique state-of-the-art*, Automation and Remote Control 69, 2008, pp. 1991–2026.
- [7] Gryazina E.N., *The D-decomposition theory*, Automation and Remote Control 65, 2004, pp. 1872–1884.
- [8] Lennartson B., Middleton R., Christiansson A.-K., Unified, periodic and sampled data H_∞ control using delta operator, in: Proceedings of 43rd Conference on Decision and Control, Atlantis, Bahamas, 2004, pp. 2364–2369.
- [9] Gryazina E.N., Polyak B.T., Stability regions in the parameter space: D-decomposition revisited, Automatica 42(1), 2006, pp. 13–26.
- [10] Suman S.K., Giri V.K., Speed control of DC motor using optimization techniques based on PID controller, IEEE International Conference on Engineering and Technology, 2016, pp. 581–587.

D-podział systemów próbkowanych periodycznie

Streszczenie: W artykule przedstawiono rozważania na temat stabilności systemów próbkowanych niejednorodnie. W tym celu wykorzystano metodę D-podziału do określenia regionów stabilności w przestrzeni parametrycznej. Ponadto przytoczono podstawowe informacje dotyczące próbkowania niejednorodnego, w szczególności próbkowania periodycznego. Bazując na otrzymanych wynikach symulacji, dokonano porównania systemów z różnymi schematami próbkowania.

Słowa kluczowe: próbkowanie periodyczne, systemy hybrydowe, metoda D-podziału badania stabilności